单链表的插入与删除

合集下载

数据结构单链表插入、删除和修改实验报告

数据结构单链表插入、删除和修改实验报告

计算机学院实验报告课程名称:数据结构实验名称:单链表学生姓名:***学生学号:***********实验日期:2012一、实验目的1.理解数据结构中带头结点单链表的定义和逻辑图表示方法。

2.掌握单链表中结点结构的C++描述。

3.熟练掌握单链表的插入、删除和查询算法的设计与C++实现。

二、实验内容1.编制一个演示单链表插入、删除、查找等操作的程序。

三、实验步骤1.需求分析本演示程序用C++6.0编写,完成单链表的生成,任意位置的插入、删除,以及确定某一元素在单链表中的位置。

①输入的形式和输入值的范围:插入元素时需要输入插入的位置和元素的值;删除元素时输入删除元素的位置;查找操作时需要输入元素的值。

在所有输入中,元素的值都是整数。

②输出的形式:在所有三种操作中都显示操作是否正确以及操作后单链表的内容。

其中删除操作后显示删除的元素的值,查找操作后显示要查找元素的位置。

③程序所能达到的功能:完成单链表的生成(通过插入操作)、插入、删除、查找操作。

④测试数据:A.插入操作中依次输入11,12,13,14,15,16,生成一个单链表B.查找操作中依次输入12,15,22返回这3个元素在单链表中的位置C.删除操作中依次输入2,5,删除位于2和5的元素2.概要设计1)为了实现上述程序功能,需要定义单链表的抽象数据类型:(1)insert初始化状态:单链表可以不为空集;操作结果:插入一个空的单链表L。

(2)decelt操作结果:删除已有的单链表的某些结点。

(3)display操作结果:将上述输入的元素进行排列显示。

(4)modify操作结果:将上述输入的某些元素进行修改。

(5)save操作结果:对上述所有元素进行保存。

(6)load操作结果:对上述元素进行重新装载。

3.使用说明程序执行后显示======================1.单链表的创建2.单链表的显示3.单链表的长度4.取第i个位置的元素5.修改第i个位置的元素6.插入元素到单链表里7.删除单链表里的元素8.合并两个单链表9.退出系统=======================5.源代码:#include<iostream>using namespace std;#define true 1#define false 0#define ok 1#define error 0#define overflow -2typedef int Status;typedef int ElemType;typedef struct LNode{ ElemType data;struct LNode *next;}LNode,*LinkList;void CreateList(LinkList &L,int n){ LinkList p;L=new LNode;L->next=NULL;LinkList q=L;for(int i=1;i<=n;i++){ p=new LNode;cin>>p->data;p->next=NULL;q->next=p;q=p; }}Status GetElem(LinkList L,int i,ElemType &e){ LinkList p=L->next;int j=1;while(p&&j<i){ p=p->next;++j; }if(!p||j>i) return error;e=p->data;return ok;}Status LinkInsert(LinkList &L,int i,ElemType e) { LinkList p=L;int j=0;while(p&&j<i-1){ p=p->next;++j; }if(!p||j>i-1)return error;LinkList s=new LNode;s->data=e;s->next=p->next;p->next=s;return ok;}Status ListDelete(LinkList &L,int i,ElemType &e){ LinkList p=L;LinkList q;int j=0;while(p->next&&j<i-1){p=p->next;++j; }if(!(p->next)||j>i-1) return error;q=p->next;p->next=q->next;e=q->data;delete(q);return ok;}void MergeList(LinkList &La,LinkList &Lb,LinkList &Lc) {LinkList pa,pc,pb;pa=La->next;pb=Lb->next;Lc=pc=La;while(pa&&pb){ if(pa->data<=pb->data){ pc->next=pa;pc=pa;pa=pa->next; }else{ pc->next=pb;pc=pb;pb=pb->next; }}pc->next=pa?pa:pb;delete(Lb);}void show(LinkList L){ LinkList p;p=L->next;while(p){ cout<<p->data<<"-->";p=p->next; }cout<<endl;}int Length(LinkList L,int i){ i=0;LinkList p=L->next;while(p){ ++i;p=p->next; }return i;}void xiugai(LinkList L){ int i,j=1;ElemType k;ElemType e,m;LinkList p=L->next;cout<<"请输入要修改的元素位置(0<i<length):";cin>>i;GetElem(L,i,e);cout<<"该位置的元素:"<<e<<endl;cout<<"修改后的元素值:";cin>>k;while(p&&j<i){ p=p->next;++j; }m=p->data;p->data=k;cout<<"修改后的单链表显示如下:"<<endl;show(L);}void hebing(){ int a,b;LinkList La,Lb,Lc;cout<<"请输入第一个有序链表的长度:"<<endl;cin>>a;cout<<"请输入第一个有序链表的元素共("<<a<<"个):"<<endl;CreateList(La,a);show(La);cout<<"请输入第二个有序链表的长度:"<<endl;cin>>b;cout<<"请输入第二个有序链表的元素共("<<b<<"个):"<<endl;CreateList(Lb,b);show (Lb);MergeList(La,Lb,Lc);cout<<"合并后的有序链表如下:"<<endl;show(Lc);}void main(){ int select;int x;ElemType y;LinkList list;for(;;){ cout<<" 单链表的基本操作"<<endl;cout<<" 1.单链表的创建"<<endl;cout<<" 2.单链表的显示"<<endl;cout<<" 3.单链表的长度"<<endl;cout<<" 4.取第i个位置的元素"<<endl;cout<<" 5.修改第i个位置的元素"<<endl;cout<<" 6.插入元素到单链表里"<<endl;cout<<" 7.删除单链表里的元素"<<endl;cout<<" 8.合并两个单链表"<<endl;cout<<" 9.退出系统"<<endl;cout<<"请选择:";cin>>select;switch(select){ case 1:cout<<"请输入单链表的长度:"<<endl;cin>>x;cout<<"请输入"<<x<<"个元素"<<endl;CreateList(list,x);break;case 2: cout<<"单链表显示如下:"<<endl;show(list);break;case 3: int s;cout<<"单链表的长度为:"<<Length(list,s)<<endl;break;case 4: cout<<"请选择所要取出元素的位置:";cin>>x;while(x<0||x>Length(list,s)){ cout<<"输入有误,请重新输入"<<endl;cout<<"请选择所要取出元素的位置:";cin>>x; }GetElem(list,x,y);cout<<"该位置的元素为:"<<y<<endl;break;case 5: xiugai(list); break;case 6: cout<<"请选择要插入的位置:"; cin>>x;while(x<0||x>Length(list,s)){ cout<<"输入有误,请重新输入"<<endl;cout<<"请选择所要插入元素的位置:";cin>>x; }cout<<"要插入的元素值:";cin>>y;LinkInsert( list,x,y);cout<<"插入后单链表显示如下:"<<endl;show(list);break;case 7: cout<<"请选择要删除的位置:"; cin>>x;while(x<0||x>Length(list,s)){ cout<<"输入有误,请重新输入"<<endl;cout<<"请选择所要删除元素的位置:";cin>>x; }ListDelete(list,x,y);cout<<"要删除的元素值:"<<y<<endl;cout<<"删除后的单链表显示如下:"<<endl;show(list);break;case 8: hebing();break;case 9: exit(0);break;default : cout<<"输入有误,请重新输入"<<endl;break;}}}6.测试结果四、实验总结(结果分析和体会)单链表的最后一个元素的next为null ,所以,一旦遍历到末尾结点就不能再重新开始;而循环链表的最后一个元素的next为第一个元素地址,可返回头结点进行重新遍历和查找。

数据结构实验报告--单链表

数据结构实验报告--单链表

数据结构实验报告--单链表数据结构实验报告--单链表1.引言1.1 研究目的本实验旨在通过实践的方式,深入了解单链表的数据结构以及相关操作,提升对数据结构的理解和应用能力。

1.2 实验内容本实验主要包括以下几个方面的内容:●单链表的基本定义和实现●单链表的插入、删除、遍历操作●单链表的逆置操作●单链表的查找和修改操作2.理论基础2.1 单链表的定义单链表是一种常见的线性数据结构,它由一系列的节点组成,每个节点包含数据和指向下一个节点的指针。

2.2 单链表的基本操作①单链表的插入操作在单链表中,可以通过插入操作在指定位置插入一个新节点,该操作主要包括以下步骤:●创建一个新的节点,并为其赋值●将新节点的next指针指向插入位置的后一个节点●将插入位置的前一个节点的next指针指向新节点②单链表的删除操作在单链表中,可以通过删除操作删除指定位置的节点,该操作主要包括以下步骤:●将删除位置的前一个节点的next指针指向删除位置的后一个节点●释放删除节点的内存③单链表的遍历操作单链表的遍历操作主要是依次访问链表中的每一个节点,并执行相应的操作。

④单链表的逆置操作单链表的逆置操作可以将一个单链表中的节点顺序进行颠倒。

⑤单链表的查找操作在单链表中,可以通过查找操作找到指定值的节点。

⑥单链表的修改操作在单链表中,可以通过修改操作修改指定位置的节点的值。

3.实验过程3.1 实验环境本次实验使用C语言进行编程,需要先安装相应的编程环境,如gcc编译器。

3.2 实验步骤①单链表的创建和初始化首先创建一个空链表,并初始化链表的头指针。

②单链表的插入操作按照需求,在链表的指定位置插入一个新节点。

③单链表的删除操作按照需求,删除链表中的指定位置的节点。

④单链表的遍历操作依次访问链表中的每一个节点,并输出其值。

⑤单链表的逆置操作将单链表中的节点顺序进行逆置。

⑥单链表的查找操作按照需求,在链表中查找指定值的节点。

3.2.7 单链表的修改操作按照需求,修改链表中指定位置的节点的值。

数据结构单链表实验报告

数据结构单链表实验报告

数据结构单链表实验报告实验目的:掌握单链表的基本操作,学会使用单链表实现各种算法。

实验内容:实现单链表的基本操作,包括创建、插入、删除、访问等。

利用单链表完成以下算法:- 单链表逆序- 查找单链表中的中间节点- 删除单链表中的倒数第K个节点- 合并两个有序单链表为一个有序单链表实验步骤:1. 创建单链表在创建单链表时,先定义一个结构体Node来表示链表中的节点,节点包括数据域和指针域,指针域指向下一个节点。

然后,用指针p指向链表的头节点,将头节点的指针域初始化为NULL。

2. 插入节点在单链表中插入节点的操作分为两种情况:- 在链表头插入节点- 在链表中间或尾部插入节点无论是哪种情况,先将新节点的指针域指向要插入的位置的下一个节点,再将要插入的位置的指针域指向新节点即可。

3. 删除节点删除链表节点的操作同样分为两种情况:- 删除头节点- 删除中间或尾部节点要删除头节点,先用一个指针将头节点指向的下一个节点保存起来,再将头节点释放掉。

要删除中间或尾部节点,先用一个指针指向要删除节点的前一个节点,然后将指向要删除节点的前一个节点的指针域指向要删除节点的下一个节点,最后将要删除的节点释放掉。

4. 单链表逆序单链表逆序可以使用三个指针来完成,分别为pre指针、cur指针和next指针。

首先将pre指针和cur指针指向NULL,然后循环遍历链表,将cur指针指向当前节点,将next指针指向当前节点的下一个节点,然后将当前节点的指针域指向pre指针,最后将pre指针和cur指针向前移动一个节点,继续进行循环。

5. 查找单链表中的中间节点查找单链表中的中间节点可以使用双指针法,将两个指针p1和p2都指向链表头,然后p1每次向前移动一个节点,而p2每次向前移动两个节点,当p2指向了链表尾部时,p1指向的节点即为中间节点。

6. 删除单链表中的倒数第K个节点删除单链表中的倒数第K个节点可以使用双指针法,在链表中定义两个指针p1和p2,p1指向链表头,p2指向第K个节点,然后p1和p2同时向前移动,直到p2指向链表尾部,此时p1指向的节点即为要删除的节点。

单链表基本操作的实现

单链表基本操作的实现

单链表基本操作的实现单链表是一种常见的数据结构,它由多个节点组合而成,每个节点包含一个数据元素和一个指向下一个节点的指针。

通过指针,我们可以方便地在单链表中进行插入、删除和遍历等操作。

以下是关于单链表基本操作的实现。

1. 单链表的创建单链表的创建需要定义一个空的头结点,它的作用是方便在链表的头部进行添加和删除节点操作。

一个空的头节点可以在链表初始化的过程中进行创建。

```typedef struct Node{int data;struct Node *next;}Node;Node *createList(){Node *head = (Node*)malloc(sizeof(Node)); //创建空的头节点head->next = NULL;return head; //返回头节点的地址}```2. 单链表的插入单链表的插入可以分为在链表头部插入、在链表尾部插入和在链表中间插入三种情况。

a. 在链表头部插入节点:```void insertAtHead(Node *head, int data){Node *node = (Node*)malloc(sizeof(Node));node->data = data;node->next = head->next;head->next = node;}```b. 在链表尾部插入节点:```void insertAtTail(Node *head, int data){Node *node = (Node*)malloc(sizeof(Node));node->data = data;node->next = NULL;Node *p = head;while(p->next != NULL){p = p->next;}p->next = node;}```c. 在链表中间插入节点:```void insertAtMid(Node *head, int data, int pos){ Node *node = (Node*)malloc(sizeof(Node)); node->data = data;node->next = NULL;Node *p = head;int count = 0;while(p->next != NULL && count < pos-1){ p = p->next;count++;}if(count == pos-1){node->next = p->next;p->next = node;}else{printf("插入位置错误!");}}```3. 单链表的删除单链表的删除可以分为在链表头部删除、在链表尾部删除和在链表中间删除三种情况。

数据结构单链表实验报告

数据结构单链表实验报告

数据结构单链表实验报告一、实验目的1、深入理解单链表的数据结构及其基本操作。

2、掌握单链表的创建、插入、删除、查找等操作的实现方法。

3、通过实际编程,提高对数据结构和算法的理解和应用能力。

二、实验环境1、操作系统:Windows 102、编程语言:C 语言3、开发工具:Visual Studio 2019三、实验原理单链表是一种常见的数据结构,它由一系列节点组成,每个节点包含数据域和指针域。

指针域用于指向下一个节点,从而形成链表的链式结构。

单链表的基本操作包括:1、创建链表:通过动态分配内存创建链表的头节点,并初始化链表为空。

2、插入节点:可以在链表的头部、尾部或指定位置插入新的节点。

3、删除节点:根据给定的条件删除链表中的节点。

4、查找节点:在链表中查找满足特定条件的节点。

四、实验内容(一)单链表的创建```cinclude <stdioh>include <stdlibh>//定义链表节点结构体typedef struct Node {int data;struct Node next;} Node;//创建单链表Node createList(){Node head =(Node)malloc(sizeof(Node));if (head == NULL) {printf("内存分配失败!\n");return NULL;}head>data = 0;head>next = NULL;return head;}int main(){Node list = createList();//后续操作return 0;}```在创建单链表时,首先为头节点分配内存空间。

若内存分配失败,则提示错误信息并返回`NULL`。

成功分配内存后,初始化头节点的数据域和指针域。

(二)单链表的插入操作插入操作分为三种情况:头部插入、尾部插入和指定位置插入。

1、头部插入```cvoid insertAtHead(Node head, int data) {Node newNode =(Node)malloc(sizeof(Node));if (newNode == NULL) {printf("内存分配失败!\n");return;}newNode>data = data;newNode>next = head>next;head>next = newNode;}```头部插入时,创建新节点,将新节点的数据域赋值,并将其指针域指向原头节点的下一个节点,然后更新头节点的指针域指向新节点。

数据结构——链表的创建、插入、删除

数据结构——链表的创建、插入、删除
s > a a x 一dt= :
/ 令 S指 向结点的存储 内容为 x / 半 * ① s >e t p > e t 一nx=一nx : 令新创设的结点 的指针指于 P 相邻 后方 的结点 /
② P >e ts 一nx= : p之 后 ,指 于 相 邻 后 方 的结 点 /
这样一来。便实 现了于单链表中数据的后插放置 。 ①②行顺序我们 不能去忽略, 因为常常这里就是很容产生 错误的地方 , 以说 , 可 这两句顺序错误 , 插入操作便不 能实现 , 因为 a 5的地址被存储在 a 4结点的指针域中 , 不是 明确 的, 如 果我们选择②先运行 ,则 a 5的地 址将 由于 x结点的地址数据 的抹去 , 不能够指 向 a 5以及其最 后的结点了。因为这个原因 , 我们不仅仅需要知道涉及结点 的指针为 明确或者 隐含 , 并且要 谨记将隐含结点先于别的结点执行 。

麝 一
相关代码

图5
l 4~ o
计算机光盘软件 与应用
2 1 第 8期 0 2年
C m u e DS fw r n p lc t o s o p t rC o t a ea dA p i a i n 工 程 技 术
① s (t u t d o e卓 a lc (i e f s r c = sr c n d )m l o s z o (t u t


图 3
2 后 插 法 .
后插法没有前插法这么复杂 ,我们想象 ,于书 p指 向的结 点的最后放进新创设 的结 点 x ,如图 4 。 相关语 句: sr c n d p 水声 明指针 P宰 t u t L o e书 :/ / 令术 p的地址为 a : 4 s (t u t L o e木 m lo (i e f sr c n d ) :木 = s r c n d ) a lc s z o (t u t L o e ) / 令 S指于新创设 的结点 木 /

数据结构实验题目

数据结构实验题目

实验题目一一、单链表基本运算【问题描述】设计并实现线性表的单链表存储和运算。

【基本要求】实现单链表的插入、删除和遍历运算,每种操作用一个函数实现。

插入操作:将一个新元素插入表中指定序号的位置。

删除操作:将指定序号的元素从表中删除。

遍历操作:从表头按次序输入所有元素的值,若是空表,则输出信息“empty list!”。

【实现提示】程序运行时,首先在main函数中创建空的、带头结点的单链表。

然后多次调用实现插入操作的函数(每次都将元素在序号1位置上插入),将元素依次插入表中,最后调用实现遍历操作的函数输出所有元素。

之后再多次调用实现删除操作的函数将表还原为空表(每次都删除第1个元素,每删除一个元素后,将表中剩余元素都输出一次)。

【测试数据】输入数据:1 2 3 4 5 0(为0时结束,0不存入链表)第一次输出:5 4 3 2 1第二次输出:4 3 2 1第三次输出:3 2 1第四次输出:2 1第五次输出:1第六次输出:empty list!二、约瑟夫环问题【问题描述】编号为1,2,...,n的n个人按顺时针方向围坐一圈,每人持有一个密码(正整数)。

现在给定一个随机数m>0,从编号为1的人开始,按顺时针方向1开始顺序报数,报到m时停止。

报m的人出圈,同时留下他的密码作为新的m值,从他在顺时针方向上的下一个人开始,重新从1开始报数,如此下去,直至所有的人全部出列为止。

【基本要求】利用单向循环链表存储结构模拟此过程,按照出列的顺序印出各人的编号。

【测试数据】M的初始值为20;n等于7,7个人的密码依次为:3,1,7,2,4,8,4。

输出为:6,1,4,7,2,3,5【实现提示】程序运行时,首先要求用户指定初始报数上限值,然后读取各人的密码。

可设n≤30。

此题所用的循环链表中不需要“头结点”,请注意空表和非空表的界限。

【选作内容】用顺序存储结构实现该题目。

三、一元多项式相加、减运算器【问题描述】设计一个一元稀疏多项式简单计算器。

C#数据结构之单链表(LinkList)实例详解

C#数据结构之单链表(LinkList)实例详解

C#数据结构之单链表(LinkList)实例详解本⽂实例讲述了C#数据结构之单链表(LinkList)实现⽅法。

分享给⼤家供⼤家参考,具体如下:这⾥我们来看下“单链表(LinkList)”。

在上⼀篇《》的最后,我们指出了:顺序表要求开辟⼀组连续的内存空间,⽽且插⼊/删除元素时,为了保证元素的顺序性,必须对后⾯的元素进⾏移动。

如果你的应⽤中需要频繁对元素进⾏插⼊/删除,那么开销会很⼤。

⽽链表结构正好相反,先来看下结构:每个元素⾄少具有⼆个属性:data和next。

data⽤来存放数据,⽽next⽤来指出它后⾯的元素是谁(有点“指针”的意思)。

链表中的元素,通常也称为节点Node,下⾯是泛型版本的Node.csnamespace 线性表{public class Node<T>{private T data;private Node<T> next;public Node(T val, Node<T> p){data = val;next = p;}public Node(Node<T> p){next = p;}public Node(T val){data = val;next = null;}public Node(){data = default(T);next = null;}public T Data{get { return data; }set { data = value; }}public Node<T> Next{get { return next; }set { next = value; }}}}链表在存储上并不要求所有元素按顺序存储,因为⽤节点的next就能找到下⼀个节点,这好象⼀根“⽤珠⼦串成的链⼦”,要找到其中的某⼀颗珠⼦,只要从第⼀颗节点(通常称为Head节点)开始,不断根据next指向找到下⼀个,直到找到需要的节点为⽌。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档