低压电网的接地方式与漏电保护检测原理

合集下载

低压施工配电系统三种接地形式:IT、TT、TN解析

低压施工配电系统三种接地形式:IT、TT、TN解析

低压施工配电系统三种接地形式:IT、TT、TN解析根据现行的国家标准《低压配电设计规范》(GB50054),低压配电系统有三种接地形式,即IT系统、TT系统、TN系统。

(1)第一个字母表示电源端与地的关系T-电源变压器中性点直接接地。

I-电源变压器中性点不接地,或通过高阻抗接地。

(2)第二个字母表示电气装置的外露可导电部分与地的关系T-电气装置的外露可导电部分直接接地,此接地点在电气上独立于电源端的接地点。

N-电气装置的外露可导电部分与电源端接地点有直接电气连接。

下面分别对IT系统、TT系统、TN系统进行全面剖析。

一、IT系统IT系统就是电源中性点不接地,用电设备外露可导电部分直接接地的系统。

IT系统可以有中性线,但IEC强烈建议不设置中性线。

因为如果设置中性线,在IT系统中N线任何一点发生接地故障,该系统将不再是IT系统。

IT系统接线图如图1所示。

低压施工配电系统三种接地形式:IT、TT、TN解析图1 IT系统接线图IT系统特点IT系统发生第一次接地故障时,接地故障电流仅为非故障相对地的电容电流,其值很小,外露导电部分对地电压不超过50V,不需要立即切断故障回路,保证供电的连续性;-发生接地故障时,对地电压升高1.73倍;-220V负载需配降压变压器,或由系统外电源专供;-安装绝缘监察器。

使用场所:供电连续性要求较高,如应急电源、医院手术室等。

IT 方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。

一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电力炼钢、大医院的手术室、地下矿井等处。

地下矿井内供电条件比较差,电缆易受潮。

运用IT 方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。

但是,如果用在供电距离很长时,供电线路对大地的分布电容就不能忽视了。

在负载发生短路故障或漏电使设备外壳带电时,漏电电流经大地形成架路,保护设备不一定动作,这是危险的。

智能断路器中的漏电和接地保护原理及应用分析(1)

智能断路器中的漏电和接地保护原理及应用分析(1)

此文章枪手代写的并且没有付费,严重侵害版权,客户要用就会告的其没工作智能断路器中的塑壳断路器MCCB的原理及应用分析【摘要】随着计算机技术的普及,出现了智能断路器。

智能断路器具有很多优点,其中主要就有漏电保护和接地保护。

本文主要分析了智能断路器中的漏电和接地保护的应用原理及应用,希望能为广大读者解惑。

【关键词】智能断路器;矢量和;漏电保护;接地保护1.引言在配电网络系统中,为了避免电力系统的损失,使用了低压断路器。

低压断路器能够减少电力系统的损害。

但随着经济的发展和计算机技术的普及,就开始出现了智能断路器。

智能断路器比传统的低压电路器性能好,可供测量的参数种类多,它不仅可以完成传统的低压断路器对低压配电网络和用电设备提供的短路保护、过载保护、欠压和单相接地保护,还提供遥调、遥测、遥信、遥控此“四遥”功能。

其中,智能断路器中漏电保护原理和接地保护原理相似,只是两者测量的范围、精度不同而已,但两者均是测量三极断路器和四极断路器的矢量和。

智能断路器可分为框架断路器、塑壳断路器、漏电断路器和六氟化断路器,但从结构、性能又分为万能式断路器和塑壳断路器。

在使用智能断路器时,也应根据保护的要求不一样而选择不同的断路器。

智能断路器额定电流为630~5000A,智能断路器在使用过程中,机器就一直出于预备贮藏能量位置。

一旦断路器发出合闸命令,断路器就能瞬间合闸。

2.塑壳断路器的分析及发展前景塑壳断路器在民用建筑设计中应用广泛,塑壳断路器能够在高电流中超过跳脱后自动的切断电流,它将一种塑料作为绝缘体充当装置的外壳,大型的塑壳断路器常常会有跳脱感应器,断路器分类多种多样,有空气断路、惰性气体分类、油断路。

塑壳断路器又称为装置性断路器,所有的辅助零件全都密封于塑料壳内,正因如此,工作人员才无法检查与修理塑壳断路器。

而塑壳断路器中最常见的断路器有西门子3VL、施耐德NSX,西门子3VL为标准的分段能力断路器,西门子是国内最受推崇的电子与电气公司,施耐德NSX内置双芯感应器,它传承了NS的所有优点,可以显示所有脱扣单元测量的信息,有极强的限流能力,并且它还能保证持续性用电。

接地保护与漏电保护

接地保护与漏电保护

接地保护与漏电保护
一、接地爱护
接地爱护是平安防护技术的主要措施之一。

消失故障时,比如电气设备绝缘被击穿后,电气设备不带电的金属外壳以及与之相连的机器、管道等金属部分可能呈现危急的对地电压、人体触准时便可能发生触电危急。

为保证人身平安、削减或避开触电事故的发生,将电器设备不带电的金属外壳与大地做电气联接,称为接地爱护。

采纳了接地爱护,可使接触电压和跨步电压远小于设备故障时的对地电压,因而大大减轻了触电危急。

不接地电网与大地没有电气联接,对地之间只有绝缘电阻和分布电容存在,又称对地绝缘电网或系统。

10KV高压系统多为这种运行方式。

低压系统通常采纳三相四线制,假如其中性点不接地即属不接地电网,又称中性点不接地系统。

二、接零爱护
不接地电网运用接地爱护措施是当绝缘良好、电网分布范围较小时,其绝缘电阻可限制触电电流,对触电有肯定防护作用,因此多用于线路较短,分布范围小。

环境正常、线路能常常保持绝缘良好的状况。

不接地电网的缺点是一相故障接地时,其它相对地电压上升为线电压因而增加触电的危急性;故障点难于发觉,不能很好地利用爱护装置;对高压窜入低压及绝缘损坏带来的危急需采纳特别的措施。

因此,在大部分场合,特殊是分布较广的低压系统,都采纳中性点直接接地的
运行方式,称为接地电网或中性点接地系统。

接地电网中的中性点接地,称为工作接地,即为了系统平安运行而采纳的接地。

接地的中性线即为零线。

所谓接零爱护,就是把设备不带电的金属外壳部分接于电源的零线,不存在危急电压;同时,漏电将造成单相短路,短路电流通常很大,足以促动爱护装置快速切断电源,消退触电危急。

低压配电系统IT、TT和TN接地方式的详细图文详解分析

低压配电系统IT、TT和TN接地方式的详细图文详解分析

低压配电系统IT、TT和TN接地方式的详细图文详解分析仪表人对仪表接地并不陌生,在本文讲讲低压配电IT系统、TT系统、TN系统的接地方式。

这三种接地方式容易混淆,它们的原理、特点和适用范围各有不同,希望能对广大的仪表人有所帮助。

定义根据现行的国家标准《低压配电设计规范》(GB 50054-2011),低压配电系统有IT系统、TT系统、TN系统三种接地形式。

①IT、TT、TN的第一个字母表示电源端与地的关系T表示电源变压器中性点直接接地;I标志电源变压器中性点不接地,或通过高阻抗接地。

②IT、TT、TN的第二个字母表示电气装置的外露可导电部分与地的关系T标志电气装置的外露可导电部分直接接地,此接地点在电气上独立于电源端的接地点;N表示电气装置的外露可导电部分与电源端接地点有直接电气连接。

低压配电系统IT、TT和TN全面剖析1、IT系统IT系统就是电源中性点不接地,用电设备外露可导电部分直接接地的系统。

IT系统可以有中性线,但IEC强烈建议不设置中性线。

因为如果设置中性线,在IT系统中N线任何一点发生接地故障,该系统将不再是IT系统。

IT系统特点①IT系统发生第一次接地故障时,仅为非故障相对地的电容电流,其值很小,外露导电部分对地电压不超过50V,不需要立即切断故障回路,保证供电的连续性;②发生接地故障时,对地电压升高1.73倍;③220V负载需配降压变压器,或由系统外电源专供;④安装绝缘监察器。

使用场所:供电连续性要求较高,如应急电源、医院手术室等。

⑤IT方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。

一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电力炼钢、大医院的手术室、地下矿井等处。

地下矿井内供电条件比较差,电缆易受潮。

⑥运用IT方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。

但是,如果用在供电距离很长的情况下,供电线路对大地的分布电容就不能忽视了。

井下低压供电系统常见故障分析及其保护原理

井下低压供电系统常见故障分析及其保护原理

井下低压供电系统常见故障分析及其保护原理摘要:本文对煤矿井下低压电网中常见的的短路、漏电、过载、过电压、欠电压、断相等故障进行了深入的分析,讨论了相应的故障处理原理,针对各种保护确定一套可行的方案。

关键词:故障短路漏电保护一、井下低压供电系统特点我国矿井通常采用变电站加放射式供电的形式,以动力变压器为中心,引出主电缆,各个用电设备分别挂接在母线上,各个供电回路彼此独立,互不干扰。

供电系统结构主要分为五个部分:高压配电装置、降压变压器、总馈电开关、分支馈电开关和磁力启动器。

磁力启动器的末端接负载。

如图1所示。

图1 井下低压供电系统结构井下低压供电系统的特点:(1)我国矿井低压电网采用的电压等级目前,我国矿井供电结构主要采用6kV或10kV,通过双回路下井,在井下变电站通过井下降压变压器,将高压降为3.3kV、1140V、660V和380V等不同电压等级,目前我国井下普遍采用的是660V和1140V的低压电网,再通过不同型号的矿用电缆送到移动变电站、负荷控制中心,馈电开关或者磁力启动器等电气设备,形成了煤矿井下的配电网络,向采煤机、皮带运输机、破碎机、井下通风机等电器设备供电。

(2)井下电网的中性点接地方式井下低压电网的中性点接地方式可以分为大电流接地系统和小电流接地系统(NUGS)。

大电流接地系统包括中性点直接接地系统和中性点经低阻接地系统。

小电流接地系统包括中性点不接地系统(NUS)、中性点经消弧线圈接地系统(NES)和中性点经高阻接地系统(NRS)。

各种中性点接地方式的特点如下表2-1所示。

由于受历史条件和环境的影响,目前不同的国家采用的中性点处理方式也不同,像英国、加拿大国家大都采用的是中性点经小电阻接地和直接接地方式,日本、俄罗斯、德国等国家大多采用中性点不接地或经消弧线圈接地方式。

在我国井下电网中,普遍采用中性点不接地的方式,当井下电网发生单相接地故障时,由于大地与中性点之间绝缘,故障时的接地电流比较小,而三相电网线电压之间保持平衡,从而使生产设备在短时间内可以继续工作。

低压供电系统中的接地保护与接零保护

低压供电系统中的接地保护与接零保护
低压供电系统中的接地保护与接零保护.txt始终相信,这世间,相爱的原因有很多,但分开的理由只有一个--爱的还不够。人生有四个存折:健康 情感 事业和金钱。如果健康消失了,其他的存折都会过期。 本文由yjpjx2002贡献
doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。
在 TN-C 或 TN-C-S 系统中,中性线进户后重复接地,电器离重复接地点距离 短,故障电流产生的电压
1、在同一个电源系统(如变压器)下不能一部分设备采用保护接地、一部 分设备采用保护接零。 2、保护接零危险比较大,因为如果零线断了,就会通过单相设备使保护接 零的设备外壳带电,所以保护接零线应该从干线引出,绝对不能从支线引出,另 外如果在保护接零处做重复接地,就会比较安全。 3、一般保护接地指 TT 接地系统,特点是设备的接地(保护接地)与电源的 工作接地是分开的,所以保护接地和电源工作接地都会有接地电阻的,所以一旦 设备漏电会在电源工作接地电阻上产生电压降, 电压的高低由保护的接地电阻和 电源的工作接地电阻有关,并与其关系成正比,电阻值越大的分得的电压越高。 因为电源中性点接地,所以零线上就会因工作接地电阻的压降,而带有电压,这 样保护接零的设备外壳也就会通过零线而带电,所以和距离没有太大关系。 4、PE 线是 TN-s 系统的(pe 线是从电源中性点直接用导线连接到设备外壳, 所以电流经过 PE 线直接回到电源中性点,形成强大的短路电流,开关会迅速跳 闸,从而切断故障电流,保证安全。 5、如果以大地作为 PE 线,其实就会等于回到了 TT 系统接地是分开的, 之间没有导线连接, 因为保护接地和工作接地都有接地电阻,所以设备漏电后,电流经过保护接地电 阻和工作接地电阻回到中性点,这样接地电流是不会很大的,所以一般开关是不 会跳闸的,使得故障电流一直存在,并在保护接地上产生电压降,使设备外壳长 期带电。如果加装漏电开关就会比较安全了。 6、大地导电,但是设备接地是一定会有接地电阻的,所以不能简单的看成 一个点,而是应该把接地电阻考虑进去,所以不能看成一个点,可以看成一个串 入电阻的电气回路,而导线阻值非常低,就可以不考虑电阻。 六、问题解答: 1、为什么在 TT 系统中用保护接地而在 TN-C 或 TN-C-S 系统中用保护接零 呢? 答:在 TT 系统中,中性线只在电源处做工作接地,电器如果采用保护接零, 产生故障时,故障电流流过中性线(零线)时会产生电压降,此电压降对地电压可 能会危及人身安全,所以不能用保护接零而用保护接地.

低压配电系统三种形式

低压配电系统三种形式

低压配电系统三种形式根据现行的国家标准《低压配电设计规范》(GB50054)的定义,将低压配电系统分为三种,即TN、TT、IT三种形式。

其中,第一个大写字母T表示电源变压器中性点直接接地;I则表示电源变压器中性点不接地(或通过高阻抗接地)。

第二个大写字母T表示电气设备的外壳直接接地,但和电网的接地系统没有联系;N表示电气设备的外壳与系统的接地中性线相连。

TN系统:电源变压器中性点接地,设备外露部分与中性线相连。

TT系统:电源变压器中性点接地,电气设备外壳采用保护接地。

IT系统:电源变压器中性点不接地(或通过高阻抗接地),而电气设备外壳电气设备外壳采用保护接地。

1、TN系统电力系统的电源变压器的中性点接地,根据电气设备外露导电部分与系统连接的不同方式又可分三类:即TN—C系统、TN—S系统、TN—C—S系统。

下面分别进行介绍。

1.1、TN—C系统其特点是:电源变压器中性点接地,保护零线(PE)与工作零线(N)共用。

(1)它是利用中性点接地系统的中性线(零线)作为故障电流的回流导线,当电气设备相线碰壳,故障电流经零线回到中点,由于短路电流大,因此可采用过电流保护器切断电源。

TN—C系统一般采用零序电流保护;(2)TN—C系统适用于三相负荷基本平衡场合,如果三相负荷不平衡,则PEN线中有不平衡电流,再加一些负荷设备引起的谐波电流也会注入PEN,从而中性线N带电,且极有可能高于50V,它不但使设备机壳带电,对人身造成不安全,而且还无法取得稳定的基准电位;(3)TN—C系统应将PEN线重复接地,其作用是当接零的设备发生相与外壳接触时,可以有效地降低零线对地电压。

由上可知,TN-C系统存在以下缺陷:(1)、当三相负载不平衡时,在零线上出现不平衡电流,零线对地呈现电压。

当三相负载严重不平衡时,触及零线可能导致触电事故。

(2)、通过漏电保护开关的零线,只能作为工作零线,不能作为电气设备的保护零线,这是由于漏电开关的工作原理所决定的。

低压配电网的分类和保护方式(1)

低压配电网的分类和保护方式(1)

第一部分低压配电系统本章主要内容一、低压配电网的分类和保护方式IT、TT、TN电网知识;保护接零和保护接地。

二、低压配电系统保护要求短路保护、过载保护、欠压保护、防触电保护、接地。

三、常用低压电器低压断路器、熔断器、漏电保护器、接触器、中间继电器、时间继电器、热继电器、电压继电器、电流继电器等原理和技术参数。

四、低压系统的电气维保、故障诊断、分析与处理结合样例讲授。

1.低压配电网的分类IT供电系统☜TT供电系统☜TN供电系统TN—C供电系统☜TN—S供电系统☜TN—C—S供电系统☜IT供电系统:IT供电系统通常称为三相三线制(不)接地系统。

IT供电系统电源侧中性点不接地,(或经消弧线圈接地)而电气设备的金属外壳采取与保护接地极做可靠连接。

这种系统主要用于10kV 及35kV的高压系统和矿山、井下、油田的某些低压供电系统。

该系统无中性线N,只有线电压(380V)无相电压(220V),不同的电气设备具有独立的保护接地体,保护接地线PE与各自的接地体独立连接。

TT供电系统:TT供电系统通常称为三相四线(中性点接地)系统[TT一般需配合漏电保护器]TT供电系统系指电源侧中性点直接接地,而电气设备的金属外壳采取保护接地。

TT系统的特点是中性线N与保护接地线PE无任何电气连接,即中性点接地与PE线接地是分开的。

这种供电系统,主要用在低压公用变压器供电系统。

TN供电系统:TN—C系统通常称为三相四线制(中性点接地)供电系统。

TN—C供电系统系指电源侧中性点直接接地,而电气设备的金属外壳采取保护接零。

该系统的工作零线N与保护接地线PE合二为一,通称PEN线。

这种供电方式造价低、线路简单,但它只适合用于三相负荷较平衡的场所。

TN供电系统:TN—S系统通常称为三相五线制(中性点接地)供电系统。

TN—S供电系统系指电源侧中性点直接接地,而电气设备的金属外壳采取保护接零。

该系统的工作零线N与保护接地线PE各自独立,这种供电方式可靠性高、抗干扰能力强,但线路耗材较大,建筑物内设有独立变配电所时采用该系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

低压电网的接地方式与漏电保护检测原理
一、低压电网的接地方式
我们知道,低压电网和用电设备常见的接地方式有TT方式,有TN方式,有IT方式。

1、TT方式,第一个字母T表示低压电力系统的中性点工作接地,第二个字母T表示用电设备外壳接地,系统中除了中性点接地外工作零线不允许再次接地,既我们常见的“保护接地”。

按照规程要求,中性点和设备外壳接地电阻≤4Ω。

2、TN方式,第一个字母T表示低压电力系统的中性点工作接地,第二个字母N表示用电设备外壳接零线,既我们常见的“保护接零”。

3、IT方式,第一个字母I表示低压电力系统的中性点对地绝缘,第二个字母T表示用电设备外壳接地。

此方式适合对于持续不间断供电要求很高的用电场所,比如医疗单位手术过程中和矿山井下排水通风系统等场所,这些用电场所不允许因某一电气设备绝缘故障而自动切断整个系统电源。

在TT方式中,若有人体触及相线或用电设备绝缘不良造成外壳带电,电流会通过人体或用电设备外壳流入大地,然后回到配电变压器的中性点(系统中不存在第二个接地点时),形成闭合回路。

(如下图所示)电流通过人体时会造成伤害,接地系统容易造成漏电和火灾。

在低压配电变压器的低压绕组间发生击穿短路时,由于中性点接地,低压侧对地电压均为相电压。

相对来讲,中性点直接接地运行方式对电气设备及操作比较安全,适用于大容量低压电网。

这种方式便于安装电流型漏电保护器,并能采用总保护、分路保护和终端直接保护,提高低压电网安全管理水平。

二、漏电保护检测原理
任何低压线路,对地都存在着漏电电流。

产生漏电电流的主要原因,在于带电体与大地之间的绝缘电阻和分布电容。

在低压电网TT接地方式中,相线对大地的漏电,用零序电流互感器检测是目前普遍使用的方法。

零序电流互感器具有检测灵敏度高,传输特性好等特点。

目前其铁芯一般采用最先进的、矫顽力很小的软磁材料——坡莫合金,如;1J85等型号。

零序电流互感器是决定漏电保护器性能的重要的检测部件。

零序电流互感器是一种原边通以各项电流,由副边绕组输出能量的电流互感器,其结构原理如下图所示。

对于任何一种电路,无论负载是否对称,只要对地无漏电,零序电流互感器原边电流的矢量和始终为零,既:
单相二线电路:IA+I0 =0
三相三线电路:IA+IB +IC =0
三相四线电路:IA+IB +IC +I0 =0
因此,各相电流在铁芯中所产生的磁通相互抵消,副边没有能量输出。

然而,当负载对地有漏电流时(这部分电流没有通过负载和零序电流互感器中的相线或零线成回路,而是通过大地回到了中性点),零序电流互感器原边电流的矢量和将不再为零,而等于漏电流IΔ,此时原边对漏掉的这部分电流IΔ在铁芯中产生磁通,副边绕组将有能量输出。

这就是零序电流互感器的检测原理。

传输性能是零序电流互感器的重要指标,要提高零序电流互感器的传输性能,制作时必须注意以下几点:
⑴尽可能地提高原边数N1 。

⑵选取合理的匝比,使负载阻抗和激磁阻抗相匹配。

⑶在同等材料和正常稳升的前提下,尽可能地增大铁芯截面和缩小平均直径。

在绝缘性能上要求零序电流互感器既经得起6500伏的冲击波电压的冲击,还可以承受2000伏的工频电压一分钟而不击穿。

平衡特性是零序电流互感器的另一个重要指标。

根据GB6829-95标准要求,在没有漏电流时;漏电保护器的被保护侧瞬时出现大于漏电保护器额定电流6倍的电流负荷时,漏电保护器不能误动作,这是针对零序电流互感器的性能要求的。

与此相反;GB6829-95标准要求,如果漏电电流是在近似短路情况下,此时电流很大(是额定电流的20倍左右)漏电保护器必须动作,这对零序电流互感器来说是很残酷的要求。

(注:额定电流;是漏电保护器为被保护侧提供的额定电流,与额定漏电动作电流无关。


目前,零序电流互感器是各种漏电保护器的检测部件,可以检测出几毫安的漏电电流,是漏电保护器的眼睛。

相关文档
最新文档