电路设计中三种常用接地方法

合集下载

电气CAD绘中如何绘制电气接地

电气CAD绘中如何绘制电气接地

电气CAD绘中如何绘制电气接地电气接地在电路设计和电器安装中扮演着至关重要的角色。

良好的接地系统能够保护电气设备、减少故障和电击风险。

在电气CAD绘图中,正确地绘制电气接地是确保电路系统安全可靠的重要一环。

本文将介绍在电气CAD绘图中如何绘制电气接地的方法和注意事项。

一、电气接地的基本原理电气接地是将电路或设备与地面建立良好的电气连接,以实现电流的正常流动和故障电流的可控放电。

电气接地有以下几种类型:1. 单点接地:将电路或设备的一个点接地,常用于低压接地系统。

2. 多点接地:将电路或设备的多个点接地,提高系统的可靠性。

3. 电气隔离:不进行接地,适用于特殊情况,如雷电保护等。

二、电气CAD绘图中的接地符号在电气CAD绘图中,接地通常使用特定的符号表示。

以下是一些常用的电气接地符号:1. 单点接地符号:插图1。

单点接地符号2. 多点接地符号:插图2。

多点接地符号根据需要,在电气CAD绘图软件中选择合适的接地符号进行绘制。

三、绘制电气接地的步骤下面将介绍在电气CAD绘图中绘制电气接地的步骤:1. 确定接地点:根据电气系统的要求,在电路中确定适当的接地点。

通常,接地点应位于电源设备和负载设备之间,以提供较短的电流回路。

2. 选择合适的接地符号:根据接地类型选择合适的接地符号,插入到电路图中。

确保使用正确的符号,以便在后续的设计和施工中能够清晰地识别。

3. 连接接地符号:使用CAD绘图工具将接地符号与相关的电气设备或电路连接起来。

确保连接正确,符号与设备之间没有断开或错综复杂的线路。

4. 导线细节:绘制接地导线的细节,如导线的厚度、颜色和线型。

导线应符合国家标准和安全规定。

5. 检查和修改:绘制完毕后,仔细检查接地的连接和导线细节,确保符合设计要求和安全标准。

如发现问题,及时进行修改和调整。

四、注意事项和常见问题在绘制电气接地时,需要注意以下事项和常见问题:1. 符号选择:确保选择正确的接地符号,以免在后续的设计和施工中产生混乱。

电路设计中的接地问题

电路设计中的接地问题

电路设计中的接地问题接地是电路系统设计中的一个很重要问题。

目前,大多数数字电路都是以地为参考电压(ECL电路以电源为参考电压),只有所有的地都保持相同的电位,数字信号才能被正确的传送和接收;此外,良好的接地对电磁场有很好的屏蔽作用,能释放设备机壳上积累的大量的电荷,从而避免产生静电放电效应。

电子设备中地线结构大致有系统地、机壳地(屏蔽地)、数字地(逻辑地)和模拟地等,合理的应用接地技术,就能大大提高系统的抗干扰能力,减少EMI。

接地的方式可以分为三种:单点接地,多点接地和混合接地。

其中单点接地可以分为串联单点接地和并联单点接地两种(见图):单点接地指所有电路的地线接到公共地线的同一点,以减少地回路之间的相互干扰。

其中,串联单点接地指所有的器件的地都连接到地总线上,然后通过总线连接到地汇接点(如图1-8-8中a图)。

由于大家共用一根总线,会出现较严重的共模耦合噪声,同时由于对地分布电容的影响,会产生并联谐振现象,大大增加地线的阻抗,这种接法一般只用于低于1M的电路系统里。

并联单点接地指所有的器件的地直接接到地汇接点,不共用地总线(如图1-8-8中b图)。

可以减少耦合噪声,但是由于各自的地线较长,地回路阻抗不同,会加剧地噪声的影响,同样也会受到并联谐振的影响,一般使用的频率范围是1M到10MHZ 之间。

实际的情况中可以灵活采用这两种单点接地方式,比如,可以将电路按照信号特性分组,相互不会产生干扰的电路放在一组,一组内的电路采用串联单点接地,不同组的电路采用并联单点接地。

这样,既解决了公共阻抗耦合的问题,又避免了地线过多的问题。

总的来说,单点接地适用于较低的频率范围内,或者线长小于1/20波长的情况。

多点接地指系统内各部分电路就近接地,比如,设备内电路都以机壳为参考点,而各个设备的机壳又都以地为参考点。

这种接地结构能够提供较低的接地阻抗,这是因为多点接地时,每条地线可以很短;而且多根导线并联能够降低接地导体的总电感。

PCB板设计中的接地方法与技巧

PCB板设计中的接地方法与技巧

PCB板设计中的接地方法与技巧在电子设备设计中,印制电路板(PCB)的地位至关重要。

PCB板的设计需要考虑诸多因素,其中之一就是接地问题。

良好的接地方式可以有效地提高设备的稳定性、安全性以及可靠性。

本文将详细介绍PCB板设计中的接地方法与技巧。

让我们了解一下PCB板设计的基本概念。

PCB板设计是指将电子元件按照一定的规则和要求放置在板子上,并通过导线将它们连接起来的过程。

接地是其中的一个重要环节,它是指将电路的地线连接到PCB 板上的公共参考点,以实现电路的稳定工作和安全防护。

在PCB板设计中,接地的主要作用是提高电路的稳定性,同时还可以防止电磁干扰和雷电等外界因素对电路的影响。

通过将电路的地线连接到PCB板的公共参考点,可以减少电路之间的噪声和干扰,提高设备的性能和可靠性。

接地方式的选择取决于PCB板的设计和实际需求。

以下是一些常见的接地方式及其具体方法:直接接地:将电路的地线直接连接到PCB板上的参考点或金属外壳。

这种接地方式适用于对稳定性要求较高的电路,但需要注意避免地线过长导致阻抗过大。

间接接地:通过电容、电感等元件实现电路与地线的连接。

这种接地方式可以有效抑制电磁干扰,提高设备的抗干扰能力。

混合接地:结合直接接地和间接接地的方式,根据实际需求在不同位置选择不同的接地方式。

这种接地方式可以满足多种电路的接地需求,提高设备的灵活性和可靠性。

多层板接地:在多层PCB板中,将其中一层作为地线层,将电路的地线连接到该层上。

这种接地方式适用于高密度、高复杂度的PCB板设计,可以提供良好的电磁屏蔽效果。

挠性印制电路板接地:对于挠性印制电路板,可以使用金属箔或导电胶带实现电路与地线的连接。

这种接地方式适用于需要弯曲或伸缩的电路,可以提供良好的可塑性和稳定性。

确保接地连续且稳定:接地线的连接必须牢靠、稳固,确保在设备运行过程中不会出现松动或脱落现象。

同时,要确保地线阻抗最小,以提高电路的稳定性。

避免地线过长导致阻抗过大:地线的长度应尽可能短,以减少阻抗。

接地规范

接地规范

第1章通信设备的接地分类在通信设备和通信系统中,各种电路均有电位基准,将所有的基准点通过导体连接到一起,该导体就是通信设备或系统内部的地线,如果将这些基准点连接到一个导体平面上,则该平面就称为基准平面,所有信号都是以该平面作为零电位参考点。

通信设备常以其金属底座、外壳或铜带作为基准面,基准面并不一定都与大地相连,在通常情况下,将基准面与大地相连主要是出于两个目的:一是为设备的操作人员提供安全保障;二是提高设备的工作稳定性。

a、工作接地通信设备的工作接地主要是为了使整个电子电路有一个公共的零电位基准面,并给高频干扰信号提供低阻抗的通路,以及使屏蔽措施能发挥良好的效能。

工作接地主要有以下三种方式。

(1) 浮地浮地是指通信设备的地线在电气上与建筑物接地系统保持绝缘,如图1-1所示,两者之间的绝缘电阻一般应在50MΩ以上,这样建筑物接地系统中的电磁干扰就不能传导到通信设备上去,地电位的变化对设备也就无影响。

在许多情况下,为了防止电子设备外壳上的干扰电流直接耦合到电子电路上,常将外壳接地,而将其中的电子电路浮地。

浮地方式的优点是抗干扰能力强,缺点是容易产生静电积累,当雷电感应较强时,外壳与其内部电子电路之间可能出现很高的电压,将两者之间绝缘间隙击穿,造成电子电路的损坏。

图1-1 浮地方式(2) 单点接地把整个通信系统中某一点作为接地基准点,其各单元的信号地都连接到这一点上,如图1-2所示,该图(a)为串联式单点接地,图(b)为并联单点接地。

单点接地可以避免形成地线回路,防止通过地线回路的电流传播干扰。

在通常情况下,把低幅度的且易受干扰的小信号电路(如前置放大器等)用单独一条地线与其它电路的地线分开。

而幅度和功率较大的大信号电路(如末级放大器和大功率电路等)具有较大的工作电流,其流过地线中的电流较大,为了防止它们对小信号电路的干扰,应有自己的地线。

当采用多个电源分别供电时,每个电源都应有自己的地线,这些地线都直接连接到一点去接地。

电源地,信号地,还有大地,这三种地有什么区别?

电源地,信号地,还有大地,这三种地有什么区别?

电源地,信号地,还有大地,这三种地有什么区别?电路设计中各种“地”——各种GND 设计电源地,信号地,还有大地,这三种地有什么区别?电源地主要是针对电源回路电流所走的路径而言的,一般来说电源地流过的电流较大,而信号地主要是针对两块芯片或者模块之间的通信信号的回流所流过的路径,一般来说信号地流过的电流很小,其实两者都是GND,之所以分开来说,是想让大家明白在布PCB 板时要清楚地了解电源及信号回流各自所流过的路径,然后在布板时考虑如何避免电源及信号共用回流路径,如果共用的话,有可能会导致电源地上大的电流会在信号地上产生一个电压差(可以解释为:导线是有阻抗的,只是很小的阻值,但如果所流过的电流较大时,也会在此导线上产生电位差,这也叫共阻抗干扰),使信号地的真实电位高于0V,如果信号地的电位较大时,有可能会使信号本来是高电平的,但却误判为低电平。

当然电源地本来就很不干净,这样做也避免由于干扰使信号误判。

所以将两者地在布线时稍微注意一下,就可以。

一般来说即使在一起也不会产生大的问题,因为数字电路的门限较高。

各种“地”——各种“GND”GND,指的是电线接地端的简写。

代表地线或0 线。

电路图上和电路板上的GND(Ground)代表地线或0 线.GND 就是公共端的意思,也可以说是地,但这个地并不是真正意义上的地。

是出于应用而假设的一个地,对于电源来说,它就是一个电源的负极。

它与大地是不同的。

有时候需要将它与大地连接,有时候也不需要,视具体情况而定。

设备的信号接地,可能是以设备中的一点或一块金属来作为信号的接地参考点,它为设备中的所有信号提供了一个公共参考电位。

有单点接地,多点接地,浮地和混合接地。

单点接地是指整个电路系统中只有一个物理点被定义为接地参考点,其他各个需要接地的。

如何进行电路的电磁干扰抑制

如何进行电路的电磁干扰抑制

如何进行电路的电磁干扰抑制电磁干扰是现代电子设备和电路中常见的问题,它会对电子设备的性能和稳定性产生负面影响。

为了有效抑制电路的电磁干扰,我们可以采取一系列的措施和技术手段。

本文将介绍几种常见的方法来进行电路的电磁干扰抑制。

一、电路布局设计电路布局设计是电磁干扰抑制的第一步。

合理的电路布局可以降低信号回路之间的相互干扰。

以下是一些电路布局设计的原则:1. 分离摆放敏感电路和干扰源:将敏感电路和干扰源放置在不同的电路板上,或者采用金属屏蔽隔离。

2. 最短线路原则:电路布线应尽量缩短,减小电流回路的面积。

3. 保持线路间距:避免线路之间的交叉和靠近。

4. 使用地面屏蔽:在电路板上使用地面屏蔽,形成屏蔽环境,减小电磁辐射。

5. 避免共模干扰:使用差分传输线、差分信号传输等方法,抑制共模信号的干扰。

二、滤波器的应用滤波器是电磁干扰抑制的重要手段之一。

通过选择合适的滤波器来滤除电磁干扰信号,可以有效提高电路的抗干扰能力。

常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。

1. 低通滤波器:用于滤除高频电磁干扰信号,使得只有低频信号通过。

2. 高通滤波器:用于滤除低频电磁干扰信号,使得只有高频信号通过。

3. 带通滤波器:用于滤除指定的频率范围之外的电磁干扰信号。

4. 带阻滤波器:用于滤除指定的频率范围内的电磁干扰信号。

三、地线和屏蔽措施有效地布置地线和采取屏蔽措施对于电磁干扰抑制至关重要。

以下是几种常见的地线和屏蔽措施:1. 单点接地:将各个电路板的地点连接到一个地方,形成一个电位参考点,避免地线回流产生的共模干扰。

2. 地面屏蔽:在电路板或设备外壳上使用金属屏蔽材料,起到防护屏蔽的作用,减少电磁辐射和接收干扰。

3. 电磁屏蔽罩:对于一些特别敏感的电子设备,可以使用电磁屏蔽罩来包裹,减少外部干扰的影响。

四、接地技术良好的接地技术有助于降低电路的电磁干扰。

以下是几种常用的接地技术:1. 按照接地分区原则划分接地系统:将设备分为数字、模拟和电源等不同的接地分区,减少接地回流路径。

电路设计中各种“地”——各种GND设计

电路设计中各种“地”——各种GND设计

电路设计中各种“地”——各种GND设计电源地,信号地,还有大地,这三种地有什么区别?电源地主要是针对电源回路电流所走的路径而言的,一般来说电源地流过的电流较大,而信号地主要是针对两块芯片或者模块之间的通信信号的回流所流过的路径,一般来说信号地流过的电流很小,其实两者都是GND,之所以分开来说,是想让大家明白在布PCB板时要清楚地了解电源及信号回流各自所流过的路径,然后在布板时考虑如何避免电源及信号共用回流路径,如果共用的话,有可能会导致电源地上大的电流会在信号地上产生一个电压差(可以解释为:导线是有阻抗的,只是很小的阻值,但如果所流过的电流较大时,也会在此导线上产生电位差,这也叫共阻抗干扰),使信号地的真实电位高于0V,如果信号地的电位较大时,有可能会使信号本来是高电平的,但却误判为低电平。

当然电源地本来就很不干净,这样做也避免由于干扰使信号误判。

所以将两者地在布线时稍微注意一下,就可以。

一般来说即使在一起也不会产生大的问题,因为数字电路的门限较高。

各种“地”——各种“GND”GND,指的是电线接地端的简写。

代表地线或0线。

电路图上和电路板上的GND(Ground)代表地线或0线.GND就是公共端的意思,也可以说是地,但这个地并不是真正意义上的地。

是出于应用而假设的一个地,对于电源来说,它就是一个电源的负极。

它与大地是不同的。

有时候需要将它与大地连接,有时候也不需要,视具体情况而定。

设备的信号接地,可能是以设备中的一点或一块金属来作为信号的接地参考点,它为设备中的所有信号提供了一个公共参考电位。

有单点接地,多点接地,浮地和混合接地。

单点接地是指整个电路系统中只有一个物理点被定义为接地参考点,其他各个需要接地的点都直接接到这一点上。

在低频电路中,布线和元件之间不会产生太大影响。

通常频率小于1 MHz的电路,采用一点接地。

多点接地是指电子设备中各个接地点都直接接到距它最近的接地平面上(即设备的金属底板)。

详解电路设计中三种常用接地方法

详解电路设计中三种常用接地方法

详解电路设计中三种常用接地方法小T[电子工程技术2017-06-17`. ~、,, r-::'·• 点击上方蓝字关注我们!FOLLOW US,. ,. 地线也是有阻抗的,电流流过地线时,会产生电压,此为噪声电压,而噪声电压则是影响系统稳定的干扰源之—,不可取。

所以,要降低地线噪声的前提是降低地线的阻抗。

众所周知,地线是电流返回源的通路。

随着大规模集成电路和高频电路的广泛应用,低阻抗的地线设计在电路中显得尤为重要。

这里就简单列举几种常用的接地方法:1、单点接地,顾名思义,就是把电路中所有回路都接到一个单一的,相同的参考电位点上。

如下固所示。

Ri串联单诅拢并联单点接地写到这里时,可能有人会问,如何才算是高频电路?参考杨继深教授的书籍《电磁兼容E MC技术》有提到“通常1MHZ以下算低频电路,可以采用单点接地,10MHZ以上算高频电路,可以采用多点接地的方式",1MHZ和10MHZ时,如果最长地线不超过波长的1/20, 可以单点接地,否则多点接地。

假如电路中既有高频信号,又有低频信号,怎么办?混合接地会是个好选择!3、混合接地。

如图所示:通过图来分析。

. .... -----.... ... .,,, ..'.\.,; , 地环路电流、``、.......... _____ , 一一; 安全桵地上图中的第一种结构,假定工作在低频电路中,根据容抗Zc = 1/2Tifc可知,容抗在低频环境下很大,而高频环境下很小。

那么地线在低频时是断开的,在受到高频干扰时接近导通。

如此接法可以有效避开地线环路的干扰影响。

上图中的第二种结构,假定工作在高频电路中,根据感抗ZI = 2rrfl可知,感抗在低频环境下很小,而高频环境下很大。

那么地线在低频时是类似导通的,在受到高频干扰时是断开。

如此接法可以有效避开地环路电流的影响。

综述,在实际应用中,电路根据工作环境采用合适的接地方式可以有效避开干扰信号,达到电路的最优效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电路设计中三种常用接地方法
地线也是有阻抗的,电流流过地线时,会产生电压,此为噪声电压,而噪声电压则是影响系统稳定的干扰源之一,不可取。

所以,要降低地线噪声的前提是降低地线的阻抗。

众所周知,地线是电流返回源的通路。

随着大规模集成电路和高频电路的广泛应用,低阻抗的地线设计在电路中显得尤为重要。

这里就简单列举几种常用的接地方法:
单点接地
单点接地,顾名思义,就是把电路中所有回路都接到一个单一的,相同的参考电位点上。

如下图所示。

单点接地可以分为串联接地和并联接地两种方式。

串联单点接地的方式简单,但是存在共同地线的原因,导致存在公共地线阻抗,如果此时串联在一起的是功率相差很大的电路,那么互相干扰就非常严重。

并联单点接地的方式可以避免公共地线耦合的因素,但是每部分电路都需要引地线到接地点上,需要的地线就过多,不实用。

所以,在实际应用时,可以采用串联和并联混合的单点接地方式。

在画PCB 板时,把互相不易干扰的电路放一层,把互相容易发生干扰的电路放不同层,再把不同层的地并联接地。

如下图所示。

单点接地在高频电路里面,因为地线长,地线的阻抗是永远避免不了的因素,所以并不适用,那怎么办呢?下面再介绍多点接地。

多点接地
当电路工作频率较高时,想象一下高频信号在沿着地线传播时,所到之处影响周边电路会有多么严重,因此所有电路就要就近接到地上,地线要求最短,。

相关文档
最新文档