初中数学-立体图形与平面图形(练习题)

合集下载

人教版七年级下册 平面与立体 提高题

人教版七年级下册 平面与立体 提高题

人教版七年级下册平面与立体提高题
目标
本文档的目标是为七年级学生提供一些平面与立体方面的提高题,旨在帮助学生提升对该知识点的理解和运用能力。

题目一
1. 根据给定的图形,判断该图形是平面图形还是立体图形。

并简要说明你的判断依据。

题目二
2. 给出一个平面图形,要求在该图形上画出一个与之相似的立体图形,并解释相似的依据。

题目三
3. 已知一个立体图形的表面积为100平方厘米,体积为50立方厘米。

求该立体图形的长、宽、高各是多少?
题目四
4. 一个盒子的长、宽、高分别为5厘米、10厘米、8厘米。


该盒子的体积和表面积。

题目五
5. 一个长方形的长度为8厘米,宽度为6厘米,高度为4厘米。

围绕它的一条边旋转一周,生成一个立体图形。

求该立体图形的体
积和表面积。

题目六
6. 已知一个立方体的体积为64立方厘米,求它的棱长。

结束语
以上是几道关于平面与立体的提高题,希望能够帮助同学们巩
固和提升这方面的知识。

如果存在任何问题,请及时向老师咨询。

祝大家学业进步!。

人教版七年级数学上册第4章几何图形初步练习题

人教版七年级数学上册第4章几何图形初步练习题

人教版七年级数学上册第4章几何图形初步练习题明日复明日,明日何其多,我生待明日,万事成蹉跎。

不要等到明日才来做七年级数学练习题。

小编整理了关于人教版七年级数学上册第4章几何图形初步练习题,希望对大家有帮助!人教版七年级数学上册第4章几何图形初步习题一、选择题1.分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是( )A. B. C. D.2.从左面看图中四个几何体,得到的图形是四边形的几何体共有( )A.1个B.2个C.3个D.4个3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是( )A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥4.如图,对于直线AB,线段CD,射线EF,其中能相交的图是( )A. B. C. D.5.下面等式成立的是( )A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44°D.41.25°=41°15′6.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有( )A.1个B.2个C.3个D.4个7.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是( )A.25°B.35°C.45°D.55°8.如图,∠1+∠2等于( )A.60°B.90°C.110°D.180°9.C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为( )A.3cmB.4cmC.5cmD.6cm10.甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是( )A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错二、填空题11.如图,各图中的阴影部分绕着直线l旋转360°,所形成的立体图形分别是.12.如图,以图中A,B,C,D,E为端点的线段共有条.13.如图所示:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC=.14.如图,直线AB,CD相交于点0,OE平分∠AOD,若∠BOC=80°,则∠AOE=°.15.如图是某几何体的平面展开图,则这个几何体是.16.如图绕着中心最小旋转能与自身重合.17.如图所示,一艘船从A点出发,沿东北方向航行至B,再从B 点出发沿南偏东15°方向航行至C点,则∠ABC等于度.18.一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转度,就可以形成一个球体.19.已知∠A=40°,则它的补角等于.20.两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.如图,若CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.22.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.23.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?24.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.25.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD的度数.26.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.27.一个角的余角比它的补角的还少20°,求这个角.人教版七年级数学上册第4章几何图形初步练习题参考答案一、选择题1.分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是( )A. B. C. D.【考点】由三视图判断几何体.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是三角形可判断出此几何体为三棱柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个三角形,∴此几何体为三棱柱.故选C.【点评】本题主要考查了由三视图判断几何体,由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.2.从左面看图中四个几何体,得到的图形是四边形的几何体共有( )A.1个B.2个C.3个D.4个【考点】简单几何体的三视图.【分析】四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形,由此可确定答案.【解答】解:因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体;故选B.【点评】本题主要考查三视图的左视图的知识;考查了学生的空间想象能力,属于基础题.3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是( )A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥【考点】几何体的展开图.【分析】根据正方体、圆锥、三棱柱、圆柱及其表面展开图的特点解题.【解答】解:观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是正方体、圆柱、三棱柱、圆锥.故选A.【点评】可根据所给图形判断具体形状,也可根据所给几何体的面数进行判断.4.如图,对于直线AB,线段CD,射线EF,其中能相交的图是( )A. B. C. D.【考点】直线、射线、线段.【分析】根据直线、射线、线段的定义对各选项分析判断利用排除法求解.【解答】解:A、直线AB与线段CD不能相交,故本选项错误;B、直线AB与射线EF能够相交,故本选项正确;C、射线EF与线段CD不能相交,故本选项错误;D、直线AB与射线EF不能相交,故本选项错误.故选B.【点评】本题考查了直线、射线、线段,熟记定义并准确识图是解题的关键.5.下面等式成立的是( )A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44°D.41.25°=41°15′【考点】度分秒的换算.【专题】计算题.【分析】进行度、分、秒的加法、减法计算,注意以60为进制.【解答】解:A、83.5°=83°50′,错误;B、37°12′=37.48°,错误;C、24°24′24″=24.44°,错误;D、41.25°=41°15′,正确.故选D.【点评】此类题是进行度、分、秒的加法、减法计算,相对比较简单,注意以60为进制即可.6.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有( )A.1个B.2个C.3个D.4个【考点】垂线;直线、射线、线段;对顶角、邻补角.【分析】根据垂线的性质可得①错误;根据对顶角的性质可得②正确;根据两点确定一条直线可得③错误;根据邻补角互补可得④正确.【解答】解:①一条直线有且只有一条垂线,说法错误;②不相等的两个角一定不是对顶角,说法正确;③不在同一直线上的四个点可画6条直线,说法错误,应为4或6条;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,说法正确.故选:B.【点评】此题主要考查了垂线、邻补角、对顶角,关键是熟练掌握课本知识.7.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是( )A.25°B.35°C.45°D.55°【考点】角平分线的定义;对顶角、邻补角.【专题】计算题.【分析】根据角平分线的定义求出∠AOC的度数,再根据对顶角相等即可求解.【解答】解:∵OA平分∠EOC,∠EOC=110°,∴∠AOC= ∠COE=55°,∴∠BOD=∠AOC=55°.故选D.【点评】本题主要考查了角平分线的定义以及对顶角相等的性质,认准图形是解题的关键.8.如图,∠1+∠2等于( )A.60°B.90°C.110°D.180°【考点】余角和补角.【专题】计算题.【分析】根据平角的定义得到∠1+90°+∠2=180°,即有∠1+∠2=90°.【解答】解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.【点评】本题考查了平角的定义:180°的角叫平角.9.C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为( )A.3cmB.4cmC.5cmD.6cm【考点】两点间的距离.【分析】先求出BC,再根据线段中点的定义解答.【解答】解:∵AB=12cm,AC=2cm,∴BC=AB﹣AC=12﹣2=10cm.∵D是BC的中点,∴BD= BC= ×10=5cm.故选C.【点评】本题考查了两点间的距离,主要利用了线段中点的定义,熟记概念是解题的关键,作出图形更形象直观.10.甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是( )A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错【考点】翻折变换(折叠问题).【分析】甲沿正方形的对角线进行折叠,根据正方形对角线的性质,可得∠1=45°,故甲的做法是正确的;乙进行折叠后,可得两对等角,而四个角的和为90°,故∠MAN=45°是正确的,这样答案可得.【解答】解:∵AC为正方形的对角线,∴∠1= ×90°=45°;∵AM、AN为折痕,∴∠2=∠3,4=∠5,又∵∠DAB=90°,∴∠3+∠4= ×90°=45°.∴二者的做法都对.故选A.【点评】本题考查了图形的翻折问题;解答此类问题的关键是找着重合的角,结合直角进行求解.二、填空题11.如图,各图中的阴影部分绕着直线l旋转360°,所形成的立体图形分别是圆柱;圆锥;球.【考点】点、线、面、体.【分析】三角形旋转可得圆锥,长方形旋转得圆柱,半圆旋转得球,结合这些规律直接连线即可.【解答】解:根据分析可得:各图中的阴影图形绕着直线l旋转360°,各能形成圆柱、圆锥、球.故答案为:圆柱、圆锥、球.【点评】本题考查面动成体的知识,难度不大,熟记常见平面图形旋转可得到什么立体图形是解决本题的关键.12.如图,以图中A,B,C,D,E为端点的线段共有10 条.【考点】直线、射线、线段.【分析】分别写出各个线段即可得出答案.【解答】解:图中的线段有:线段AB,线段AC,线段AD,线段AE,线段BC,线段BD,线段BE,线段CD,线段CE,线段DE,线段共10条.故答案为:10.【点评】本题考查了直线上点与线段的数量关系,同学们可以记住公式:线段数= .13.如图所示:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC=52°.【考点】角的计算.【专题】计算题.【分析】根据题意得到∠AOB=∠COD=90°,再计算∠BOD=∠AOD﹣90°=38°,然后根据∠BOC=∠COD﹣∠BOD进行计算即可.【解答】解:∵∠AOB=∠COD=90°,而∠AOD=128°,∴∠BOD=∠AOD﹣90°=38°,∴∠BOC=∠COD﹣∠BOD=90°﹣38°=52°.故答案为52°.【点评】本题考查了角的计算:1直角=90°;1平角=180°.14.如图,直线AB,CD相交于点0,OE平分∠AOD,若∠BOC=80°,则∠AOE=40 °.【考点】对顶角、邻补角;角平分线的定义.【分析】根据对顶角相等可得∠AOD=80°,再根据角平分线的性质可得∠AOE的度数.【解答】解:∵∠BOC=80°,∴∠AOD=80°,∵OE平分∠AOD,∴∠AOE=80°÷2=40°,故答案为:40.【点评】此题主要考查了角平分线定义,以及对顶角性质,关键是掌握对顶角相等,角平分线平分角.15.如图是某几何体的平面展开图,则这个几何体是三棱柱.【考点】几何体的展开图.【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:由几何体展开图可知,该几何体是三棱柱,故答案为:三棱柱.【点评】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键.16.如图绕着中心最小旋转90°能与自身重合.【考点】旋转对称图形.【分析】该图形被平分成四部分,因而每部分被分成的圆心角是90°,并且圆具有旋转不变性,因而旋转90°的整数倍,就可以与自身重合.【解答】解:该图形围绕自己的旋转中心,最少顺时针旋转360°÷4=90°后,能与其自身重合.故答案为:90°.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.17.如图所示,一艘船从A点出发,沿东北方向航行至B,再从B 点出发沿南偏东15°方向航行至C点,则∠ABC等于60 度.【考点】方向角.【分析】根据南北方向是平行的得出∠ABF=45°,再和∠CBF相加即可得出答案.【解答】解:∵AE∥BF,∴∠ABF=∁EAB=45°,∴∠ABC=∠ABF+∠CBF=45°+15°=60°,故答案为:60.【点评】本题考查了方向角和角的有关计算的应用,主要考查学生的计算能力.18.一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转360 度,就可以形成一个球体.【考点】点、线、面、体.【分析】一个半圆围绕直径旋转一周,根据面动成体的原理即可解.【解答】解:半圆绕它的直径旋转360度形成球.故答案为360.【点评】本题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.19.已知∠A=40°,则它的补角等于140°.【考点】余角和补角.【专题】计算题.【分析】根据补角的和等于180°计算即可.【解答】解:∵∠A=40°,∴它的补角=180°﹣40°=140°.故答案为:140°.【点评】本题考查了补角的知识,熟记互为补角的两个角的和等于180°是解题的关键.20.两条直线相交有 1 个交点,三条直线相交最多有 3 个交点,最少有 1 个交点.【考点】直线、射线、线段.【分析】解析:两条直线相交有且只有1个交点;三条直线两两相交且不交于一点时,有3个交点;当三条直线交于同一点时,有1个交点.【解答】解:两条直线相交有1个交点,三条直线相交最多有3个交点,最少有1个交点.故答案为:1;3;1.【点评】本题考查了直线、射线、线段,主要利用了相交线的交点,是基础题.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.如图,若CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.【考点】两点间的距离.【分析】根据线段的和差,CB、DB的长,可得DC的长,根据线段中点的性质,可得AD与DC的关系,根据线段的和差,可得答案.【解答】解:DC=DB﹣CB=7﹣4=3(cm);D是AC的中点,AD=DC=3(cm),AB=AD+DB=3+7=10(cm).【点评】本题考查了两点间的距离,线段的和差,线段中点的性质是解题关键.22.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.【考点】对顶角、邻补角;角平分线的定义.【专题】计算题.【分析】由已知∠FOC=90°,∠1=40°结合平角的定义,可得∠3的度数,又因为∠3与∠AOD互为邻补角,可求出∠AOD的度数,又由OE平分∠AOD可求出∠2.【解答】解:∵∠FOC=90°,∠1=40°,AB为直线,∴∠3+∠FOC+∠1=180°,∴∠3=180°﹣90°﹣40°=50°.∠3与∠AOD互补,∴∠AOD=180°﹣∠3=130°,∵OE平分∠AOD,∴∠2= ∠AOD=65°.【点评】本题主要考查邻补角的概念以及角平分线的定义.23.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?【考点】角的计算;角平分线的定义.【专题】计算题.【分析】(1)根据∠AOB是直角,∠AOC=40°,可得∠AOB+∠AOC=90°+40°=130°,再利用OM是∠BOC的平分线,ON 是∠AOC的平分线,即可求得答案.(2)根据∠MON=∠MOC﹣∠NOC,又利用∠AOB是直角,不改变,可得 .【解答】解:(1)∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴ , .∴∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵ = ,又∠AOB是直角,不改变,∴ .【点评】此题主要考查角的计算和角平分线的定义等知识点的理解和掌握,难度不大,属于基础题.24.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.【考点】专题:正方体相对两个面上的文字.【分析】(1)正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可;(2)确定出上面和底面上的两个数字3和1,然后相加即可.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“﹣2”是相对面,“3”与“1”是相对面,“x”与“3x﹣2”是相对面,(1)∵正方体的左面与右面标注的式子相等,∴x=3x﹣2,解得x=1;(2)∵标注了A字母的是正方体的正面,左面与右面标注的式子相等,∴上面和底面上的两个数字3和1,∴3+1=4.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.25.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD的度数.【考点】角的计算;翻折变换(折叠问题).【分析】根据翻折变换的性质可得∠ABC=∠A′BC,再根据角平分线的定义可得∠A′BD=∠EBD,再根据平角等于180°列式计算即可得解.【解答】解:由翻折的性质得,∠ABC=∠A′BC,∵BD平分∠A′BE,∴∠A′BD=∠EBD,∵∠ABC+∠A′BC+∠A′BD+∠EBD=180°,∴∠A′BC+∠A′BD=90°,即∠CBD=90°.【点评】本题考查了角的计算,主要利用了翻折变换的性质,角平分线的定义,熟记概念与性质是解题的关键.26.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.【考点】比较线段的长短.【专题】计算题.【分析】(1)根据中点的概念,可以证明:AB=2DE,故AB的长可求;(2)由CE的长先求得BC的长,再根据C是AB的中点,D是AC 的中点求得CD的长,最后即可求得BD的长.【解答】解:(1)∵D是AC的中点,E是BC的中点,∴AC=2CD,BC=2CE,∴AB=AC+BC=2DE=18cm;(2)∵E是BC的中点,∴BC=2CE=10cm,∵C是AB的中点,D是AC的中点,∴DC= AC= BC=5cm,∴DB=DC+CB=10+5=15cm.【点评】考查了线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.27.一个角的余角比它的补角的还少20°,求这个角.【考点】余角和补角.【专题】计算题.【分析】首先根据余角与补角的定义,设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),再根据题中给出的等量关系列方程即可求解.【解答】解:设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),根据题意可,得90°﹣x= (180°﹣x)﹣20°,解得x=75°.故答案为75°.【点评】此题综合考查余角与补角,属于基础题中较难的题,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式和方程求解.。

新人教版七年级几何图形初步练习专题(一)---三视图、展开图专题

新人教版七年级几何图形初步练习专题(一)---三视图、展开图专题

三视图、展开图专题【题型一】从不同方向看几何体1、如图所示的立体图形从上面看到的图形是( )2、从左面看图中四个几何体,得到的图形是四边形的几何体共有( ) A. 1个 B. 2个 C. 3个 D. 4个3、从不同方向看一只茶壶,如图,下列选项中从上往下看的效果图是( )。

4、从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )。

A. 圆柱B. 三棱锥C. 球D. 圆锥5、由四个相同的小正方体搭建了一个积木,它的左视图和主视图均如图所示,则这堆积木不可能是( )6、由7个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是( )A . 从正面看面积最大B . 从左面看面积最大C . 从上面看面积最大D . 三个视图的面积一样大AB CD从左面看 从上面看从正面看ABC D7、5个棱长为1的正方体组成图所示的几何体.(1)该几何体的体积是 (立方单位),表面积是 (平方单位). (2)画出从正面看和从左面看到的平面图形.8、如图,这个图形从正面看是__________,从左面看是__________,从上面看是__________.【题型二】正方体的展开与折叠1、如图是一个长方体包装盒,则它的平面展开图是( )A .B .C .D .2、下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是( )A .B .C .D .3、把如图中的三棱柱展开,所得到的展开图是( )A .B .C .D .4、下列四个图形中,是三棱柱的平面展开图的是( )A .B .C .D .5、小明为了鼓励芦山地震灾区的学生早日走出阴影,好好学习,制作了一个正方体礼盒(如1 2 3x y图).礼盒每个面上各有一个字,连起来组成“芦山学子加油”,其中“芦”的对面是“学”,“加”的对面是“油”,则它的平面展开图可能是( ).A. B. C. D6、一个正方体的平面展开图如图所示,将它折成正方体后,与汉字“岳”相对的面上的汉字是( ) A .建 B .设C .和D .谐7、如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是( )A .我B .中C .国D .梦月8、一个正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是( )9、下面四个图形中,经过折叠能围成如图所示的几何图形的是【 】10、若要使图中平面展开图按折叠成正方体后,相对面上两个数之和为6,x=_ ___, y=______.A。

人教版七年级数学4.1.1-立体图形与平面图形习题

人教版七年级数学4.1.1-立体图形与平面图形习题

•DCBAC BA5 题图4.1.1 立体图形和平面图形1.将下列各展开图与立体图形连线。

四棱锥 三棱柱 正方体 长方体 2.长方体共有( )个面.A .8B .6C .5D .4 3.六棱柱共有( )条棱.A .16B .17C .18D .20 4.下列说法,不正确的是( )A .圆锥和圆柱的底面都是圆B .棱锥底面边数与侧棱数相等C .棱柱的上、下底面是形状、大小相同的多边形D .长方体是四棱柱,四棱柱是长方体 5.物体的形状如图所示,则此物体的俯视图是( )6.甲、乙、丙、丁四人分别面对面坐在一个四边形桌子旁边,桌上一张纸上写着数字“9”,甲说他看到 的是“6”,乙说他看到的是“”,丙说他看到的是“”,丁说他看到的是“9”,则下列说法正确 的是( )A .甲在丁的对面,乙在甲的左边,丙在丁的右边;B .丙在乙的对面,丙的左边是甲,右边是乙;C .甲在乙的对面,甲的右边是丙,左边是丁;D .甲在丁的对面,乙在甲的右边,丙在丁的右边。

7.由四个大小相同的小正方体搭成的几何体的左视图如图所示,则这个几何体的搭法不能是( )8.由若干个相同的小正方体搭成的几何体的俯视图如图,各小方格内的数字表示叠在该层位置的小正方体的个数,则这个几何体的左视图是( )9.将如图所示的Rt △ABC 绕直角边AC 旋转一周,所得几何体的主视图是( )A B C B''D 3 12A B C D10.如图,小强拿一张正方形的纸,沿虚线对折一次得图②,再对折一次得图③,然后用剪刀沿图③中的虚线剪去一个角,再打开后的形状是()11.下列图形哪些是正方体的展开图()A.(1)(2)(3) B.(2)(3(4) C.(1)(3)(4) D.(1)(2)(4)12.如图所示,是正方体纸盒的展开图,若在其中的三个正方形A,B,C内分别填上适当的数,使它们折成正方体后相对的面上的两个数互为相反数,则填入正方形A,B,C的三个数依次是()A.1,-2,0 B.0,-2,1 C.-2,0,1 D.-2,1,013.在正方体的六个面上分别涂上红、黄、蓝、白、黑、绿六种颜色,现有涂色方式完全相同的四个正方体,如图拼成一个长方体,请判断涂红、黄、白三种颜色的对面分别涂着哪一种颜色?14.如图,已知一个正方体的六个面上分别写着六个连续的整数,且每两个相对面上的两个数的和都相等,图中所能看到的数是16,19和20,求这6个整数的和。

初一数学立体图形试题答案及解析

初一数学立体图形试题答案及解析

初一数学立体图形试题答案及解析1.下列几何图形中为圆柱体的是()A.B.C.D.【答案】C.【解析】选项A是圆台,B是圆锥,C是圆柱,D是三棱柱.故选C.【考点】认识立体图形.2.在矩形ABCD中,AB=3cm,AD=2cm,则以AB所在直线为轴旋转一周所得的圆柱的表面积为()【答案】B【解析】先根据旋转的性质判断出圆柱的底面半径为AD=2cm,高为AB=3cm,再根据圆柱的表面积公式求解即可.由题意得所得的圆柱的表面积,故选B.【考点】圆柱的表面积公式点评:本题属于基础应用题,只需学生熟练掌握圆柱的表面积公式,即可完成.3.一个几何体被一个平面所截后,得到一个七边形截面,则原几何体可能是()A.圆锥B.长方体C.八棱柱D.正方体【答案】C【解析】根据几何体的截面的特征依次分析各选项即可作出判断.A.圆锥,B.长方体,D.正方体,截面均不可能是七边形,故错误;C.八棱柱的截面可能是七边形,本选项正确.【考点】几何体的截面点评:本题属于基础应用题,只需学生熟练掌握几何体的截面,即可完成.4.用一个平面去截一个正方体,截面不可能是()A.四边形B.五边形C.六边形D.七边形【答案】D【解析】根据正方体的特征依次分析各选项即可作出判断.因为正方体一共6个面,故截面不可能是七边形,故选D.【考点】正方体的截面点评:本题属于基础应用题,只需学生熟练掌握正方体的特征,即可完成.5.如图是一个正方体的表面展开图,相对面上两个数互为相反数,则x+y=___________.【答案】-1【解析】根据正方体的表面展开图的特征结合相反数的定义即可得到x、y的值,从而得到结果. 由题意得,,则【考点】正方体的表面展开图,相反数点评:解题的关键是熟记正方体相对面展开后间隔一个正方形;只有符号不同的两个数互为相反数.6.将一个直角三角板绕直角边旋转一周,则旋转后所得几何体是()A.圆柱B.圆C.圆锥D.三角形【答案】C【解析】直角三角形绕直角边旋转一周,其中一个锐角顶点不动,即为圆锥顶端,其中一直角边为旋转轴,即为圆锥的高,另一直角边旋转一周,所经过的区域为圆锥的底面,斜边旋转一周,经过的区域为圆锥的侧表面。

人教版七年级数学上册第四章《几何图形初步》单元练习题(含答案)

人教版七年级数学上册第四章《几何图形初步》单元练习题(含答案)

人教版七年级数学上册第四章《几何图形初步》单元练习题(含答案)一、单选题1.如图是一个由5个相同的正方体组成的立体图形,从其正面看,得到的平面图形是()A.B.C.D.2.如图,将矩形绕着它的一边所在的直线l旋转一周,可以得到的立体图形是()A.B.C.D.3.图中的长方体是由三个部分拼接而成的,每一部分都是由四个同样大小的小正方体组成的,那么其中第一部分所对应的几何体可能是()A.B.C.D.4.下列图形旋转一周,能得到如图几何体的是()A.B.C.D.5.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C. D.6.数学源于生活,并用于生活,要把一根木条固定在墙上至少需要钉两颗钉子,其中的数学原理是()A.过一点有无数条直线B.线段中点的定义C.两点之间线段最短D.两点确定一条直线7.下列图形是正方体展开图的个数为()A .1个B .2个C .3个D .4个8.下列说法中正确的有( ).(1)线段有两个端点,直线有一个端点; (2)由两条射线组成的图形叫角(3)角的大小与我们画出的角的两边的长短无关; (4)线段上有无数个点;(5)两个锐角的和必定是直角或钝角;(6)若AOC ∠与AOB ∠有公共顶点,且AOC ∠的一边落在AOB ∠的内部,则AOB AOC ∠>∠.A .1个B .2个C .3个D .4个9.如果一个角的度数比它的补角的度数2倍多30°,那么这个角的度数是( ) A .50°B .70°C .130°D .160°10.圆柱与圆锥的体积之比为2:3,底面圆的半径相同,那么它们的高之比为( ) A .2:3B .4:5C .2:1D .2:911.几何图形都是由点、线、面、体组成的,点动成线,线动成面,面动成体,下列生活现象中可以反映“线动成面”的是( ) A .笔尖在纸上移动划过的痕迹 B .长方形绕一边旋转一周形成的几何体 C .流星划过夜空留下的尾巴 D .汽车雨刷的转动扫过的区域12.己知点M 是线段AB 上一点,若14AM AB =,点N 是直线AB 上的一动点,且AN BN MN -=,则MNAB 的( ) A .34B .12C .1或12D .34或2二、填空题13.有一块积木,每一块的各面都涂上红绿黑白蓝黄六种不同的颜色,下面是它摆放的三种不同方向的图像,请根据图像判断绿色面的对面是_____色14.将两个三角尺的直角顶点重合为如图所示的位置,若108∠=︒,则AOD∠=_________.COB15.如图是用一副七巧板拼成的正方形,边长是10cm.图中小正方形(涂色部分)的面积是( )2cm.16.如图是一个正方体的展开图,将它拼成正方体后,“神”字对面的字是________.17.圆柱的侧面展开图是一个相邻的两边长分别为4,2π的长方形,则圆柱体的体积为_____.18.有一个正方体,六个面上分别写有数字1,2,3,4,5,6,如图是我们能看到的三种情况,如果记6的对面数字为a,2的对面数字为b,那么a+b的值为_____.三、解答题19.如图,点E是线段AB的中点,C是EB上一点,AC=12,(1)若EC:CB=1:4,求AB的长;(2)若F为CB的中点,求EF长。

最新人教版七年级数学上册:立体图形与平面图形课时练习及答案解析.docx

新人教版数学七年级上册4.1.1立体图形与平面图形课时练习一、选择题(共15小题)1.如下图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①②B.②③C.②④D.③④答案:B知识点:简单几何体的三视图解析:解答:运用已学过的简单几何体三视图,分别列出上述四个几何体的三视图。

①长方体:它的主视图、左视图、俯视图均为长方形,主视图是由其长和高组成的长方形,左视图是由其宽和高组成的长方形,俯视图是由其长和宽组成的长方形。

在没有告知长宽高具体数据的情况下,我们一般地认为长宽高是互不相等的。

②圆柱:它的主视图和左视图都是长方形,长方形的长都等于圆柱底面的直径,宽等于圆柱的高。

其俯视图是圆。

③圆锥:它的主视图和左视图都是三角形,三角形的底等于圆锥底面的直径,两腰都是顶点到底面圆边的距离。

其俯视图是圆。

④球:它的三视图都是圆,并且圆的直径相等。

分析:本题容易混淆的是①图和③图,有的学生会默认①图的主视图和俯视图相同,对于③图,有时会记错它的左视图。

本题考查简单几何体的三视图。

2.将下列图形绕直线l 旋转一周, 可以得到右图所示的立体图形的是()答案:C知识点:图形的旋转;主视图解析:解答:图形绕直线旋转一周,得到一个立体图形。

这个立体图形的横切面(俯视图)是圆,圆的半径等于旋转面上的点到直线的距离。

而该立体图形的主视图,则是平面图形以旋转直线为对称轴作出来的轴对称图形。

比如,圆柱是由长方形绕其一边旋转得到的,它的底面半径是该长方形另一边的长,绕其旋转的一边就是它的高。

圆锥是由一个直角三角形绕其一条直角边旋转一周得到的图形,这条直角边就是圆锥的高,另一条直角边就是圆锥的底面半径。

题目中的立体图形是一个等腰梯形,其上底长小于下底长。

由此,可以选出正确答案。

分析:在大脑中构建旋转立体图形,或者将已知立体图形的主视图画出来,按照选项中的直线位置作对称轴,得到的图形就是正确选项。

立体图形与平面图形练习题(含答案

立体图形与平面图形
1.从下列物体抽象出来的几何图形可以看成圆柱的是( )
2.下列图形不是立体图形的是( )
A.球
B.圆柱
C.圆锥
D.圆
3.下列图形属于棱柱的有( )
A.2个
B.3个
C.4个
D.5个
4.将下列几何体分类:
其中柱体有,锥体有,球体有(填序号).
5.如图所示是用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形个,圆个.
6.把下列图形与对应的名称用线连起来:
圆柱四棱锥正方体三角形圆
第1课时立体图形与平面图形
1.B
2.D
3.B
4.①①①①①①①
5.44
6.解:如图所示.
第2课时从不同的方向看立体图形和立体图形的展开图1.A 2.B 3.C 4.B 5.A
6.三棱柱五棱柱六棱柱长方体圆柱圆锥。

初中数学几何图形专题训练50题含答案

初中数学几何图形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,已知∠AOC=∠BOD=90º,∠AOD=150º,则∠BOC 的度数为( )A .30ºB .45ºC .50ºD .60º 2.下列图形属于立体图形的是( )A .正方形B .三角形C .球D .梯形 3.已知∠AOB =75°,以O 为端点作射线OC ,使∠AOC =48°,则∠BOC 的度数为( )A .123°B .123°和27°C .23°D .27°4.如图,已知点C 是线段AB 的中点,2AC cm =, 1.5DC cm =,则BD =( )A .0.5cmB .1cmC .1.5cmD .2cm 5.已知A ,B ,C ,D 四点,任意三点都不在同一直线上,以其中的任意两点为端点的线段的数量是( )A .5B .6C .7D .8 6.如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若2110∠=︒,那么1∠的度数是( )A .10°B .20°C .30°D .40° 7.如图,已知∠ACB=90°,CD∠AB ,垂足是D ,则图中与∠A 相等的角是( )A.∠1B.∠2C.∠B D.∠1、∠2和∠B 8.在地理课堂上,老师组织学生进行寻找北极星的探究活动时,李佳同学使用了如图所示的半圆仪,则下列四个角中,最可能和互补的角为()A.B.C.D.9.下列说法正确的是()A.连接两点的线段,叫做两点间的距离B.射线OA与射线AO表示的是同一条射线C.经过两点有一条直线,并且只有一条直线D.从一点引出的两条直线所形成的图形叫做角10.我军在海南举行了建国以来海上最大的军事演习,位于点O处的军演指挥部观测到军舰A位于点O的北偏东65︒方向(如图),同时观测到军舰B位于点O处的南偏西20︒方向,则AOB∠=()A .85︒B .105︒C .125︒D .135︒ 11.如图,小玮从A 处沿北偏东40°方向行走到点B 处,又从点B 处沿东偏南23°方向行走到点C 处,则∠ABC 的度数为( )A .99°B .107°C .127°D .129° 12.如图,CE 是ABC 的外角ACD ∠的平分线,且CE 交BA 的延长线于点E ,30B ∠=︒,100ACD ∠=︒,则E ∠的度数为( )A .10°B .15°C .20°D .25° 13.如图所示,正方体的展开图为( )A .B .C .D .14.如图方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上,点P 也在小正方形的顶点上.某人从点P 出发,沿图中已有的格点所连线段走一周(即不能直接走线段AC 且要回到P ),则这个人所走的路程最少是( )A .7B .14C .10D .不确定 15.如图,等边∠ABC 的边长为6,AD 是BC 边上的中线,M 是AD 上的动点,E 是边AC 上一点,若AE =2,则EM +CM 的最小值为( )AB .C .D .16.已知A ,B ,C 三点在同一条直线上,M ,N 分别为线段AB ,BC 的中点,且AB =60,BC =40,则MN 的长为( )A .10B .50C .10或50D .无法确定 17.如图,从4点钟开始,过了40分钟后,分针与时针所夹角的度数是( )A .090B .0100C .0110D .0120 18.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒ 19.一把直尺和一块三角板ABC (含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D 、点E ,另一边与三角板的两直角边分别交于点F 、点A ,且∠CED=50°,那么∠BAF=()A.10°B.50°C.45°D.40°20.如图,直线AB MN∥,点C为直线MN上一点,连接AC、BC,∠CAB=40°,∠ACB=90°,∠BAC的角平分线交MN于点D,点E是射线AD上的一个动点,连接CE、BE,∠CED的角平分线交MN于点F.当∠BEF=70°时,令ECMα∠=,用含α的式子表示∠EBC为().A.52αB.10α︒-C.1102α︒-D.1102α-︒二、填空题21.如图,将∠AOB 绕点O 按逆时针方向旋转40°后得到∠COD,若∠AOB=15°,则∠AOD 的度数是______°.22.若∠A与∠B互余,则∠A+∠B=_____;若∠A与∠B互补,则∠A+∠B=_____. 23.如图,点A、O、B在一条直线上,且∠AOD=35°,OD平分∠AOC,则图中∠BOC=______度.24.如图,在直线AB 上有一点O ,OC ∠OD ,OE 是∠DOB 的角平分线,当∠DOE =20°时,∠AOC =___°.25.一个直棱柱有12条棱,则它是__棱柱.26.如图,EF 是ABC 的中位线,BD 平分ABC ∠交EF 于D ,若6,10AB BC ==,则DF =______.27.已知5526α∠=︒',则α∠的余角为____________28.在墙上钉一根细木条至少要钉2根钉才稳,根据是_________________________; 29.在棱柱中,任何相邻的两个面的交线都叫做______,相邻的两个侧面的交线叫做_______.30.如图所示,//AB CD ,CE 平分ACD ∠,并且交AB 于E ,118A ∠=︒,则AEC ∠等于______.31.如图,AOB 与COB △关于边OB 所在的直线成轴对称,AO 的延长线交BC 于点D .若45BOD ∠=︒,20C ∠=︒,则ADC ∠=___________.32.一副三角板按如图放置,则下列结论:∠如果230∠=︒,则有AC DE ∥;∠如果BC AD ∥,则有245∠=︒;∠如果445∠=︒,那么160∠=︒;∠ BAE CAD ∠+∠ 随着2∠的变化而变化,其中正确的是____.33.已知C 是线段AB 的中点,AB=10,若E 是直线AB 上的一点,且BE=3,则CE=_____34.如图,C ,D 是线段AB 上两点,已知AC :CD :DB=1:2:3,M 、N 分别为AC 、DB 的中点,且AB=8cm ,求线段MN 的长_____.35.已知OC 为一条射线,OM 平分AOC ∠,ON 平分BOC ∠.(1)如图1,当60AOB ∠=︒,OC 为AOB ∠内部任意一条射线时,MON ∠=_____; (2)如图2,当60AOB ∠=︒,OC 旋转到AOB ∠的外部时,MON ∠=_____; (3)如图3,当AOB α∠=,OC 旋转到AOB ∠(120BOC ∠<︒)的外部时,求MON ∠,请借助图3填空.解:因为OM 平分AOC ∠,ON 平分BOC ∠ 所以1122COM AOC CON BOC ∠=∠∠=∠,(依据是____________) 所以MON COM ∠=∠-_________12AOC =∠-_______12=________. 36.如图,已知60BAC ∠=︒,AD 是角平分线且20AD =,作AD 的垂直平分线交AC 于点F ,作DE AC ⊥,则DEF 的周长为 ______.37.平面内,已知AOB 90∠=,20,BOC OE ∠=平分,AOB OF ∠平分BOC ∠,则EOF ∠=______.38.如图所示,设L AB AD CD =++,M BE CE =+,N BC =.试比较M 、N 、L 的大小:________.39.已知点C 在线段AB 上,2AC BC =,点D 、E 在直线AB 上,点D 在点E 的左侧.(1)若18AB =,点D 与点A 重合,8DE =,则EC =_________;(2)若2AB DE =,线段DE 在直线AB 上移动,且满足关系式32AD EC BE +=,则CD AB =_______.三、解答题40.如图所示,在长方形ABCD 中,6cm BC ,8cm CD =,现绕这个长方形的一边所在直线旋转一周得到一个几何体.请解决以下问题:(1)说出旋转得到的几何体的名称?(2)如果用一个平面去截旋转得到的几何体,那么截面有哪些形状(至少写出3种)?(3)求旋转得到的几何体的表面积?(结果保留π)41.将一个正方体的表面沿某些棱剪开,展成一个平面图形,你能得到哪些形状的平面图形?42.如图,OB 为AOC ∠的平分线,OD 是COE ∠的平分线.(1)如果40AOB ∠=︒,30DOE ∠=︒,那么BOD ∠为多少度?(2)如果140AOE ∠=︒,30COD ∠=︒,那么AOB ∠为多少度?(3)如果AOC α∠=︒,COE β∠=︒,则BOD ∠=______°,如果AOE θ∠=︒,则BOD ∠=______︒.43.如图,点C 是线段AB 上的一点,点M 是线段AC 的中点,点N 是线段BC 的中点.(1)如果12,5AB cm AM cm ==,求BC 的长;(2)如果8MN cm =,求AB 的长.44.如图,一只蚂蚁沿长方体的表面从顶点A 爬到另一顶点M ,已知AB =3,AD = 4,BF = 5.求这只蚂蚁爬行的最短距离.45.已知AB CD ∥,点M 、N 分别在直线AB 、CD 上,AME ∠与CNE ∠的平分线所在的直线相交于点F .(1)如图1,点E 、F 都在直线AB 、CD 之间且70MEN ∠=︒时,MFN ∠的度数为___________;(2)如图2,当点E在直线AB、CD之间,F在直线CD下方时,写出MEN∠与MFN∠之间的数量关系,并证明;∠与(3)如图3,当点E在直线AB上方,F在直线AB与CD之间时,直接写出MEN∠之间的数量关系.MFN46.O为直线AB上的一点,OC∠OD,射线OE平分∠AOD.(1)如图∠,判断∠COE和∠BOD之间的数量关系,并说明理由;(2)若将∠COD绕点O旋转至图∠的位置,试问(1)中∠COE和∠BOD之间的数量关系是否发生变化?并说明理由;(3)若将∠COD绕点O旋转至图∠的位置,探究∠COE和∠BOD之间的数量关系,并说明理由.47.已知,P是线段AB的中点,点C是线段AB的三等分点,线段CP的长为4 cm.(1)求线段AB的长;(2)若点D是线段AC的中点,求线段DP的长.48.【提出问题】如图1,在直角ABC中,∠BAC=90°,点A正好落在直线l上,则∠1、∠2的关系为【探究问题】如图2,在直角ABC中,∠BAC=90°,AB=AC,点A正好落在直线l 上,分别作BD∠l于点D,CE∠l于点E,试探究线段BD、CE、DE之间的数量关系,并说明理由.【解决问题】如图3,在ABC中,∠CAB、∠CBA均为锐角,点A、B正好落在直线l 上,分别以A、B为直角顶点,向ABC外作等腰直角三角形ACE和等腰直角三角形BCF,分别过点E、F作直线l的垂线,垂足为M、N.∠试探究线段EM、AB、FN之间的数量关系,并说明理由;∠若AC=3,BC=4,五边形EMNFC面积的最大值为49.如图,两个形状、大小完全相同的含有3060︒︒、的三角板如图∠放置,PA PB 、与直线MN 重合,且三角板PAC ,三角板PBD 均可以绕点P 逆时针旋转.(1)求DPC ∠;(2)如图∠,若三角板PBD 保持不动,三角板PAC 的边PA 从PN 绕点P 逆时针旋转一定角度,PF 平分,APD PE ∠平分CPD ∠,求EPF ∠.(3)如图∠,在图∠基础上,若三角板PAC 的边PA 从PN 开始绕点P 逆时针旋转,转速为3︒/秒,同时三角板PBD 的边PB 从PM 绕点P 逆时针旋转,转速为2︒/秒,(当PC 转到与PM 重合时,两三角板都停止转动),求CPD BPN∠∠的值. (4)如图∠,在图∠基础上,若三角板PAC 开始绕点P 逆时针旋转,转速为5︒/秒,同时三角板PBD 绕点P 逆时针旋转,转速为1︒/秒,(当PA 转到与PM 重合时,两三角板都停止转动),在旋转过程中,PC PB PD 、、三条射线中,当其中一条射线平分另两条射线的夹角时,直接写出旋转的时间.参考答案:1.A【详解】试题分析:根据∠AOC=∠BOD=90º,∠AOD=150º,可得∠COD的度数,从而求得结果.∠∠AOC=∠BOD=90º,∠AOD=150º∠∠COD=∠AOD-∠AOC=60°∠∠BOC=∠BOD-∠COD=30°故选A.考点:本题考查的是角的计算点评:本题是基础应用题,只需学生熟练掌握角的大小关系,即可完成.2.C【分析】依据立体图形的定义回答即可.【详解】解:正方形、三角形、梯形是平面图形,球是立体图形.故选:C.【点睛】本题主要考查的是立体图形的认识,掌握相关概念是解题的关键.3.B【分析】讨论:当OC在∠AOB的内部,如图1,则∠BOC=∠AOB-∠AOC;OC在∠AOB的外部,如图2,则∠BOC=∠AOB+∠AOC.【详解】解:当OC在∠AOB的内部,如图1,∠∠AOB=75°,∠AOC=48°,∠∠BOC=∠AOB-∠AOC=75°-48°=27°;当OC在∠AOB的外部,如图2,∠∠AOB=75°,∠AOC=48°,∠∠BOC=∠AOB+∠AOC=75°+48°=123°,综上所述,∠BOC的度数为27°或123°.【点睛】本题考查的是角的计算,在解答此题时要注意进行分类讨论,不要漏解.4.A【分析】根据线段中点和线段之间的关系计算即可.【详解】解:点C是线段AB的中点,∴2==,BC AC cm∴2 1.50.5=-=-=.BD BC CD cm故选:A.【点睛】本题考查线段中点和线段的长度关系,掌握线段中点的性质是解答关键.5.B【分析】根据题意画出示意图,即可得答案.【详解】解:如图所示,有四个点,且每三点都不在同一直线上,每两点连一条线段,则可以连6条线段,故选:B.【点睛】本题主要考查了直线、线段、射线数量问题,能正确根据题意画出图形是解决问题的关键.6.D【分析】利用平行线的性质和平角的性质可以求得结果得出答案.【详解】解:如图示∠=︒,将一块含有30︒的直角三角板的顶点放在直尺的一边上,2110∠32110∠=∠=︒,∠11802301801103040∠=︒-∠-︒=︒-︒-︒=︒【点睛】本题主要考查了平行线的性质,正确得出3∠的度数是解题关键.7.B【分析】【详解】∠∠ACB= 90°,即∠1+∠2= 90°又∠在Rt∠ACD 中,∠A+∠1=90°∠∠A=∠2故选:B.8.D【详解】析:根据图形估计∠AOB 的大致度数,然后根据互为补角的和等于180°进行解答即可.解答:解:根据图形可得∠AOB 大约为135°,∠与∠AOB 互补的角大约为45°,综合各选项D 符合.故选D .9.C【分析】根据线段、射线、直线的定义即可解题.【详解】解:A. 连接两点的线段长度,叫做两点间的距离B. 射线OA 与射线AO 表示的是同一条射线,错误,射线具有方向性,C. 经过两点有一条直线,并且只有一条直线,正确,D. 错误,应该是从一点引出的两条射线所形成的图形叫做角,故选C.【点睛】本题考查了线段、射线、直线的性质,属于简单题,熟悉定义是解题关键. 10.D【分析】根据方向角的定义以及角的和差关系进行计算即可.【详解】解:由方向角的定义可知,65NOA ∠=︒,20SOB ∠=︒,∠906525AOE ∠=︒-︒=︒,∠AOB AOE EOS SOB ∠=∠+∠+∠,259020=︒+︒+︒故选:D .【点睛】本题考查方向角,理解方向角的定义是解决问题的前提.11.B【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【详解】如图:∠小明从A 处沿北偏东40︒方向行走至点B 处,又从点B 处沿东偏南23︒方向行走至点C 处,∠40DAB ∠=︒,23CBF ∠=︒,∠向北方向线是平行的,即AD BE ∥,∠40ABE DAB ∠=∠=︒,∠90EBF ∠=︒,∠902367EBC ∠=︒-︒=︒,∠4067107ABC ABE EBC ∠=∠+∠=︒+︒=︒,故选B .【点睛】本题考查方位角,解题的关键是画图正确表示出方位角.12.C 【分析】先根据角平分线的定义求出1502ECD ACD ∠=∠=︒,再由三角形外角的性质求解【详解】解:∠CE平分∠ACD,∠ACD=100°,∠1502ECD ACD∠=∠=︒,∠∠B=30°,∠∠E=∠ECD-∠B=20°,故选C.【点睛】本题主要考查了角平分线的定义,三角形外角的性质,熟知角平分线的定义和三角形外角的性质是解题的关键.13.A【分析】根据正方体的展开图的性质判断即可;【详解】A中展开图正确;B中对号面和等号面是对面,与题意不符;C中对号的方向不正确,故不正确;D中三个符号的方位不相符,故不正确;故答案选A.【点睛】本题主要考查了正方体的展开图考查,准确判断符号方向是解题的关键.14.B【分析】根据题意作图得到运动的轨迹,根据矩形的周长特点即可求解.【详解】如图,这个人所走的路程是图中的矩形,周长为2(3+4)=14故选B.【点睛】此题主要考查网格的作图,解题的关键是根据题意作出图形求解.15.C【分析】连接BE,交AD于点M,过点E作EF∠BC交于点F,此时EM+CM的值最小,求出BE即可.【详解】解:连接BE,交AD于点M,过点E作EF∠BC交于点F,∠∠ABC是等边三角形,AD是BC边上的中线,∠B点与C点关于AD对称,∠BM=CM,∠EM+CM=EM+BM=BE,此时EM+CM的值最小,∠AC=6,AE=2,∠EC=4,在Rt∠EFC中,∠ECF=60°,∠FC=2,EF=在Rt∠BEF中,BF=4,∠BE=故选:C.【点睛】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,灵活运用勾股定理是解题的关键.16.C【分析】根据题意画出图形,再根据图形求解即可.【详解】解:(1)当C在线段AB延长线上时,如图1,∠M、N分别为AB、BC的中点,∠BM=12AB=30,BN=12BC=20;∠MN=50.(2)当C在AB上时,如图2,同理可知BM =30,BN =20,∠MN =10;所以MN =50或10,故选C .【点睛】本题考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况.17.B【分析】4点时,分针与时针相差四大格,即120°,根据分针每分钟转6°,时针每分钟转0.5°,则40分钟后它们的夹角为40×6°﹣4×30°﹣40×0.5°.【详解】4点40分钟时,钟表的时针与分针形成的夹角的度数=40×6°﹣4×30°﹣40×0.5°=100°.故选B .【点睛】本题考查了钟面角:钟面被分成12大格,每大格30°;分针每分钟转6°,时针每分钟转0.5°.18.D【分析】根据题意结合图形列出方程组,解方程组即可.【详解】解:由题意得,1290,2120∠+∠︒⎧⎨∠-∠︒⎩==,解得135,255.∠︒⎧⎨∠︒⎩==. 故选:D .【点睛】本题考查的是余角和补角的概念和性质,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.19.A【分析】先根据∠CED =50°,DE ∠AF ,即可得到∠CAF =50°,最后根据∠BAC =60°,即可得出∠BAF 的大小.【详解】∠DE ∠AF ,∠CED =50°,∠∠CAF =∠CED =50°,∠∠BAC =60°,∠∠BAF=60°﹣50°=10°,故选:A.【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键.20.D【分析】先求出∠ABC,再延长CE,交AB于点G,结合平行线的性质表示出∠BCE,然后根据三角形内角和定理表示∠CED,再根据角平分线得定义表示出∠CEB,最后根据三角形内角和定理得出答案.【详解】在∠ABC中,∠CAB=40°,∠ACB=90°,∠∠ABC=50°.延长CE,交AB于点G,∠MN BA∥,∠EGBα∠=,∠ACM=∠BAC=40°,∠∠ACE=α-40°,∠∠BCE=90°-(α-40°)=130°-α.∠∠CEA=180°-∠CAE-∠ACE,∠∠CED=180°-∠CEA=∠CAE+∠ACE=20°+(α-40°)=α-20°.∠EF平分∠CED,∠∠CEF=111022CEDα∠=-︒,∠∠CEB=1110706022αα-︒+︒=+︒,∠∠EBC=11180(60)(130)10 22ααα︒-+︒-︒-=-︒.故选:D.【点睛】本题主要考查了角平分线的定义,三角形内角和定理,平行线的性质,将待求角转化到适合的三角形是解题的关键.21.55°##55度【分析】根据将∠AOB 绕点O 按逆时针方向旋转40°后得到∠COD ,可得∠BOD = 40° 即可得∠AOD =∠BOD +∠AOB = 55°.【详解】∠将∠AOB 绕点O 按逆时针方向旋转40°后得到∠COD .∠∠BOD = 40°,∠∠AOB = 15°∠∠AOD =∠BOD +∠AOB = 40°+ 15°= 55°,故答案为:55°.【点睛】本题考查三角形的旋转变换,解题的关键是掌握旋转的性质.22. 90°##90度 180°##180度【分析】根据互余,互补的定义即可得到结果.【详解】若∠A 与∠B 互余,则∠A +∠B =90°;若∠A 与∠B 互补,则∠A +∠B =180°.故答案为:90°,180°【点睛】解答本题的关键是熟记和为90°的两个角互余,和为180°的两个角互补. 23.110【分析】根据角平分线可得270AOC AOD ∠=∠=︒,再利用补角的性质求解即可得.【详解】解:∵OD 平分AOC ∠,35AOD ∠=︒,∴223570AOC AOD ∠=∠=⨯︒=︒,∵AOC ∠与BOC ∠是邻补角,∴180AOC BOC ∠+∠=︒,∴18070110BOC ∠=︒-︒=︒.故答案为:110.【点睛】题目主要考查角平分线的计算及补角的性质,理解题意,结合图形求角度是解题关键.24.50【分析】先求出∠BOD ,根据平角的性质即可求出∠AOC .【详解】∠OE 是∠DOB 的角平分线,当∠DOE =20°∠∠BOD =2∠DOE =40°∠OC ∠OD ,∠∠AOC =180°-90°-∠BOD =50°故答案为:50.【点睛】此题主要考查角度求解,解题的关键是熟知角平分线的性质、直角的性质. 25.四【详解】试题解析:设该棱柱为n 棱柱,根据题意得:3n =12.解得:n =4.所以该棱柱为四棱柱,故答案是:四.26.2【分析】根据中位线的性质可得EF BC ∥,EF =12BC =5,则有∠CBD =∠BDE ,AE =BE =12AB =3,再根据BD 平分∠ABC ,有∠ABD =∠CBD ,即有∠ABD =∠BDE ,则可得DE =BE =3,问题得解.【详解】∠EF 是∠ABC 的中位线,∠EF BC ∥,EF =12BC =5,E 点为AB 中点, ∠∠CBD =∠BDE ,AE =BE =12AB =3. ∠BD 平分∠ABC ,∠∠ABD =∠CBD ,∠∠ABD =∠BDE ,∠DE =BE =3.∠DF =EF −DE =EF −BE =5−3=2.故答案为:2.【点睛】本题考了三角形中位线的性质、角平分线的性质以及等角对等边的知识,求出DE =BE 是解答本题的关键.27.3434'︒【分析】直接利用互余两角的关系,结合度分秒的换算得出答案.【详解】解:∠5526α∠=︒',∠α∠的余角为:9055263434'=︒'︒-︒.故答案为:3434'︒.【点睛】此题主要考查了余角的定义和度分秒的转换,正确把握相关定义是解题关键. 28.两点确定一条直线【分析】由于两点确定一条直线,所以在墙上固定一根木条至少需要两根钉子.【详解】在墙上固定一根木条至少需要两根钉子,依据的数学道理是两点确定一条直线. 故答案为两点确定一条直线.【点睛】当木工师傅锯木板时,他会用墨盒在木板上弹出墨线,这样会使木板沿直线锯下;在正常情况下,射击时只要保证瞄准的一只眼在两个准星确定在直线上,才能射中目标等等;它们都是运用了“两点确定一条直线”的直线的性质.29. 棱, 侧棱;【分析】由棱柱的组成部分的定义直接填空即可.【详解】在棱柱中,任何相邻的两个面的交线都叫做棱,相邻的两个侧面的交线叫做侧棱. 故答案为棱;侧棱.【点睛】熟记面与面相交成线,在棱柱中,任何相邻的两个面的交线都叫做棱. 30.31°【分析】要求AEC ∠的度数,根据平行线的性质,只需求得2∠的度数.显然结合平行线的性质以及角平分线的定义就可解决.【详解】解://AB CD ,CE 平分ACD ∠交AB 于E ,118A ∠=︒,1112(180)(180118)3122A ∴∠=∠=︒-∠=︒-︒=︒, 231AEC ∴∠=∠=︒,故答案为:31°.【点睛】本题考查的是角平分线的性质及平行线的性质,比较简单,需同学们熟练掌握.31.70︒##70度【分析】根据三角形外角的定义和性质可知ADC A ABD ∠=∠+∠,利用轴对称的性质求出A ∠与ABD ∠的大小并进行计算即可. 【详解】解:AOB 与COB △关于边OB 所在的直线成轴对称∴20A C ∠=∠=︒,2ABD ABO ∠=∠,根据三角形外角的性质可知:在AOB 中,452025ABO BOD A ∠=∠-∠=︒-︒=︒222550ABD ABO ∴∠=∠=⨯︒=︒∴ 在ABD △中,205070ADC A ABD ∠=∠+∠=︒+︒=︒.故答案为:70︒.【点睛】本题考查轴对称的性质和三角形外角的性质,熟练运用三角形的外角性质进行计算是本题的解题关键.32.∠∠∠【分析】根据平行线的判定与性质即可逐一进行证明.【详解】解:∠∠230∠=︒,∠190260∠=︒-∠=︒,∠60AED ∠=︒,∠1AED ∠=∠,∠AC DE ∥;所以∠正确;∠∠BC AD ∥,∠345B ∠=∠=︒,∠290345∠=︒-∠=︒;所以∠正确;∠如图,∠445,60EGF GEF ∠=∠=︒∠=︒,∠4560105GFA ∠=︒+︒=︒,∠1GFA C ∠=∠+∠,∠45C ∠=︒,∠160∠=︒.所以∠正确.∠∠123290∠+∠=∠+∠=︒,∠21239090180BAE CAD ∠+∠=∠+∠+∠+∠=︒+︒=︒,∠BAE CAD ∠+∠随着2∠的变化不会发生变化;所以∠错误;所以其中正确的是∠∠∠.故答案为:∠∠∠.【点睛】本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并熟练运用.33.2或8【分析】由已知C 是线段AB 中点,AB=10,求得BC'= 5,进一步分类探讨:E 在BC 内;E 在BC 的延长线上;由此画图得出答案即可.【详解】C 是线段AB 的中点, AB= 10,BC= AB= 5,如图,当E 在BC 内,CE= BC- BE= 5- 3=2;∠如图,E 在BC 的延长线上,CE= BC+ BE= 5+3=8 ;所以CE= 2或8;故本题答案为:2或8.【点睛】解决本题的关键突破口是分类讨论,本题考查了学生综合分析的能力,要求学生掌握线段中点的意义,线段的和与差.34.153cm 【分析】根据线段的比例,可得线段的长度,根据线段的和差,可得答案.【详解】∠AC :CD :DB=1:2:3,设AC=a ,CD=2a ,DB=3a ,∠AB=AC+CD+DB=a+2a+3a=6a=8,解得:a=43, ∠AC=43,DB=3×43=4, ∠M 、N 分别为AC 、DB 的中点, ∠AM=12AC=23,BN=12DB=2, ∠MN=AB-AM-BN=8-23-2=513(cm ). 故答案为:153cm 【点睛】本题考查了与线段中点有关的计算,根据比例关系列出方程求出各线段的长是关键.35. 30° 30° 角平分线定义 ∠CON 12BOC ∠ α 【分析】对于(1),根据角平分线定义得12COM AOC ∠=∠,12CON BOC ∠=∠,再结合12MON COM CON AOB ∠=∠+∠=∠,可得答案; 对于(2),仿照(1),根据12MON COM CON AOB ∠=∠-∠=∠求解; 对于(3),仿照(2)解答即可.(1)因为OM 平分∠AOC ,ON 平分∠BOC , 所以12COM AOC ∠=∠,12CON BOC ∠=∠, 所以11603022MON COM CON AOB ∠=∠+∠=∠=⨯︒=︒. 故答案为:30°.(2) 因为OM 平分∠AOC ,ON 平分∠BOC , 所以12COM AOC ∠=∠,12CON BOC ∠=∠, 所以11603022MON COM CON AOB ∠=∠-∠=∠=⨯︒=︒. 故答案为:30°.(3)因为OM 平分∠AOC ,ON 平分∠BOC , 所以12COM AOC ∠=∠,12CON BOC ∠=∠(依据的角平分线定义), 所以111222MON COM CON AOC BOC α∠=∠-∠=∠-∠=. 故答案为:角平分线定义,∠CON ,12BOC ∠,α. 【点睛】本题主要考查了角的和差的计算,角平分线定义,掌握角平分线定义是解题的关键.36.10+【分析】根据含30°角的直角三角形的性质求出DE 、根据勾股定理求出AE ,根据线段垂直平分线的性质、三角形的周长公式计算,得到答案.【详解】解:∠60BAC ∠=︒,AD 是角平分线,∠30DAE ∠=︒,在Rt DAE 中,20,30AD DAE =∠=︒, ∠1102DE AD ==,由勾股定理得:AE =∠AD 的垂直平分线交AC 于点F ,∠FA FD =,∠DEF 的垂直10DE EF FD DE EF FA DE AE =++=++=+=+故答案为:10+【点睛】本题考查的是直角三角形的性质、勾股定理、线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.37.35︒或55︒【分析】分OC 在AOB ∠的内部和外部进行讨论,运用角平分线性质及角的和差进行运算即可.【详解】解:∠AOB 90∠=,OE 平分,AOB ∠ ∠∠BOE=12∠AOB=45°∠20,BOC ∠=OF 平分BOC ∠ ∠∠FOC=∠FOB =12∠BOC=10°当OC 在AOB ∠的内部时,如图∠∠EOF=∠BOE-∠BOF=45-10=35︒︒︒当OC 在AOB ∠的外部时,如图∠∠EOF=∠BOE+∠BOF=45+10=55︒︒︒故答案为:35︒或55︒【点睛】本题考查了角平分线的定义,先求出∠BOC 的度数,再求出∠FOC 的度数,最后求出答案,有两种情况,以防漏掉.38.L M N >>【分析】根据连接两点的所有线中,线段最短的性质解答.【详解】∠AB+AE >BE ,CD+DE >CE ,∠AB+AE+CD+DE >BE+CE ,即l >m ,又BE+CE >BC ,即m >n ,∠L M N >>.【点睛】本题考查了知识点两点之间线段最短,解题的关键是熟记性质.39. (1)4 (2)116或1742. 【分析】(1)画出符合题意的图形,由18,2AB AC BC ==,求解BC ,再利用线段的和差关系求解EC 即可得到答案;(2)根据AC=2BC ,AB=2DE ,线段DE 在直线AB 上移动,满足关系式32AD EC BE +=,再分六种情况讨论,∠当DE 在点A 左侧时,∠当A 在DE 之间时,∠当DE 在线段AC 上时,∠当C 在DE 之间时,∠当D 在CB 之间时,∠当D 在B 的右边时,可以设CE=x ,DC=y ,用含x 和y 的式子表示,,AD EC BE 的长,从而得出x 与y 的等量关系,即可求出 CD AB的值. 【详解】解:(1)如图,18AB DB ==,2,AC BC = 163BC AB ∴==, 8DE =,1886 4.EC AB DE BC ∴=--=--=(2)∠AC=2BC ,AB=2DE ,满足关系式32AD EC BE +=, ∠当DE 在点A 左侧时,如图,设CE=x ,DC=y , 则DE y x =-,∠()()242,33AB y x AC AB y x =-==-,()12222,333BC y x y x =-=-∠41,33AD DC AC x y =-=- ∠2133BE BC CE y x =+=+ ∠7133AD EC x y +=- ∠32AD EC BE +=, ∴ ()23,AD EC BE += ∠7121233333x y y x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 解得,811x y =, ∠ ()11.826211CD y y AB y x y y ===-⎛⎫- ⎪⎝⎭ ∠当A 在DE 之间时,如图,设,,CE x CD y == 则DE y x =-, 同理可得:11.6CD AB = ∠当DE 在线段AC 上时,设,,CE x CD y == 则DE y x =-,,222,DE y x AB DE y x ∴=-==-24422,,33333AC AB y x BC y x ∴==-=- 1411,,3333AD AC CD y x AD CE y x ∴=-=-+=- 21+,33BE BC CE y x ==+ AD CE ∴+<,BE32AD EC BE +=, AD CE ∴+>,BE∴ 不合题意舍去;∠当C 在DE 之间时,如图,设CE=x ,DC=y , 则DE=x+y ,∠()()242,,33AB x y AC AB x y =+==+ ()()112333BC AB x y x y ==+=+, ∠41,33AD AC DC x y =-=+ ∠7133AD EC x y +=+ ∠21,33BE BC CE y x =-=- ∠32AD EC BE += ∴ ()23,AD EC BE += ∠7121233333x y y x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭, 解得,417x y =, ∠ ()174242217CD y y AB x y y y ===+⎛⎫+ ⎪⎝⎭. ∠当D 在CB 之间时,设,,CD y CE x == 则,222,DE x y AB DE x y =-==- 4422,,3333AC x y BC x y ∴=-=- 4112,,3333AD AC CD x y BE CE BC x y ∴=+=-=-=+ 71,33AD CE x y ∴+=- ∠32AD EC BE += ∴ ()23,AD EC BE += 同理可得:8,11x y = 与图形条件x >y 不符舍去, ∠当D 在B 的右边时,设,,CD y CE x == 则,222,DE x y AB DE x y =-==-4422,,3333AC x y BC x y ∴=-=- 4112,,3333AD AC CD x y BE CE BC x y ∴=+=-=-=+ 71,33AD CE x y ∴+=- ∠32AD EC BE += ∴ ()23,AD EC BE += 同理可得:8,11x y =与图形条件x >y 不符,舍去, 综上:CD AB 的值为:116或1742. 故答案为116或1742. 【点睛】本题考查的是线段的和差关系,二元一次方程思想,与线段相关的动态问题,分类讨论的思想,掌握以上知识是解题的关键.40.(1)圆柱(2)长方形、圆形或梯形(3)168π平方厘米或224π平方厘米【分析】(1)由图形旋转性质可知旋转后得到的几何体是圆柱;(2)用一个平面截圆柱,从不同角度截取的形状不同;(3)分情况讨论,找出圆柱的底面半径和高,即可求解.【详解】(1)解:由图形旋转性质可知,绕长方形的一边所在直线旋转一周后所得立方体为柱体、底面为圆,因此得到的几何体是圆柱.故答案为圆柱.(2)解:用一个平面截圆柱,截面形状可能为长方形、圆形或梯形.(3)解:分情况讨论,若绕BC 边旋转,则所得圆柱的表面积为:228286=224S S S 侧底平方厘米;若绕CD 边旋转,则所得圆柱的表面积为:226268=168S S S 侧底平方厘米.故旋转得到的几何体的表面积为168π平方厘米或224π平方厘米.【点睛】本题考查了点、线、面、体,截几何体,圆柱的表面积计算等知识点,解题关键是理解点动成线、线动成面、面动成体.41.【解析】略42.(1)70BOD ∠=︒(2)40AOB ∠=︒ (3)()12αβ+;12θ【分析】(1)根据角平分线的定义得出40BOC AOB ∠=∠=︒,30DOC DOE ∠=∠=︒,再根据角度之间的关系求出BOD ∠的度数即可;(2)先根据角平分线的定义,30COD ∠=︒,得出260COE COD ∠=∠=︒,根据140AOE ∠=︒,求出80AOC ∠=︒,根据角平分线的定义即可得出答案; (3)根据角平分线的定义得出1122BOC AOC ∠=∠=︒,1122COD COE ∠=∠=︒,根据角度之间的关系得出()12BOD ∠=+︒;根据角平分线的定义得出12BOD AOE ∠=∠. 【详解】(1)解:∠OB 为AOC ∠的平分线,OD 是COE ∠的平分线,∠40BOC AOB ∠=∠=︒,30DOC DOE ∠=∠=︒,∠403070BOD BOC DOC ∠=∠+∠=︒+︒=︒.(2)解:∠OD 是COE ∠的平分线,30COD ∠=︒,∠260COE COD ∠=∠=︒,∠140AOE ∠=︒,∠80AOC AOE COE ∠=∠-∠=︒,∠OB 为AOC ∠的平分线,∠4120AOB AOC ∠=∠=︒. (3)解:∠OB 为AOC ∠的平分线,OD 是COE ∠的平分线,AOC α∠=︒,COE β∠=︒,∠1122BOC AOC ∠=∠=︒,1122COD COE ∠=∠=︒, ∠()111222BOD BOC COD ∠=∠+∠=︒+︒=+︒; ∠OB 为AOC ∠的平分线,OD 是COE ∠的平分线,∠1BOC AOB 2∠=∠,12COD COE ∠=∠, ∠BOD BOC COD ∠=∠+∠1122AOC COE =∠+∠ ()12AOC COE =∠+∠ 12AOE =∠ 12=. 故答案为:()12αβ+;12θ. 【点睛】本题主要考查了角平分线的定义,几何图形中的角度计算,解题的关键是熟练掌握角平分线的定义,数形结合.43.(1)2BC cm =;(2)16AB cm =【分析】(1)先求出AC ,根据BC=AB-AC ,即可求出BC ;(2)求出BC=2CN, AC=2CM,把MN=CN+MC=8cm 代入求出即可.【详解】解: (1) ∠点M 是线段AC 的中点,∠AC=2AM,∠AM=5cm,∠AC=10cm,∠AB=12cm ,∠BC=AB-AC=12-10=2cm,(2)∠点M 是线段AC 的中点,点N 是线段BC 的中点.∠BC=2NC ,AC=2MC,∠MN=NC+MC=8cm ,∠AB=BC+AC=2NC+2MC==2(NC+MC)=2MN=28⨯cm=16cm .【点睛】本题考查了两点之间的距离的应用,主要考查学生的观察图形的能力和计算能力.44【分析】由AB=3,AD=4,BF=5长宽高三种长度不同,蚂蚁走的折面不同,距离也不同,要按不同的棱展开两个面,(1)长方形沿着棱ND展开,(2)长方形沿着棱DC展开,(3)长方形沿着棱BC展开,用勾股定理求出对角线的长度,再比较取最短者.【详解】∠AB=3,AD=4,BF=5∠MC =BF=AE=5,BC=AD=MF=4,MN= CD=AB=3(1)长方形沿着棱ND展开如图∠所示时,在Rt∆AEM中AM2=AE2+EM2= AE2+(NE+MN)2=52+(3+4)2=25+49=74,(2)长方形沿着棱DC展开如图∠所示时,AM2=AB2+( BC+CM)2=32+(4+5)2=9+81=90,(3)长方形沿着棱BC展开如图∠所示时,AM2=MF2+( AB+BF)2=42+(3+5)2=16+64=80,∠ AM=∠【点睛】本题考查蚂蚁所走最短路径问题,涉及长方体的侧面展开问题,要会分析最短路径涉及几个面展开,展开后走的哪条路径为最短,分别求出经比较才能解决问题.45.(1)145°(2)∠MEN=2∠MFN,证明见解析(3)1∠MEN+∠MFN=180°,证明见解析2【分析】分析:(1)过E作EH∠AB,FG∠AB,根据平行线的性质得到结论;(2)根据三角形的外角的性质得,平行线的性质,角平分线的定义即可得到结论;(3)根据平行线的性质得到∠MGE∠∠ENC,根据角平分线的定义得到∠MGE∠∠ENC∠2∠FNG∠∠AME∠2∠1∠∠E∠∠MGE∠∠E∠2∠FNG,根据三角形的外角的性质和四边形的内角和即可得到结论.(1)解:如图1,过E作EH∠AB,FG∠AB。

立体图形的认识练习题

立体图形的认识练习题下面是根据题目"立体图形的认识练习题"所写的文章:立体图形的认识练习题在数学学科中,立体图形是一个重要的概念,它不仅在几何学中有广泛的应用,也在日常生活中随处可见。

通过认识立体图形,我们可以更好地理解空间结构,提高空间想象力和逻辑思维能力。

下面是一些立体图形的认识练习题,帮助大家更好地掌握立体图形的性质和特点。

题目一:判断真假1. 正方体是一种四面相等的立体图形,对还是错?2. 圆锥是一种没有面的立体图形,对还是错?3. 一个长方体有六个面,对还是错?4. 球体是一种没有顶点的立体图形,对还是错?5. 正四面体是一种四个面都是正三角形的立体图形,对还是错?题目二:选择题1. 下列哪个不是平面图形?A. 正方形B. 圆形C. 圆锥D. 圆球2. 下列哪个立体图形没有棱?A. 球体B. 正方体C. 圆锥D. 正八面体3. 下列哪个是四面体?A. 圆柱体B. 圆锥体C. 正方体D. 正四面体4. 下列哪个不是多面体?A. 正六面体B. 正二十面体C. 圆柱体D. 正十二面体5. 下列哪个是圆锥的底面?A. 正方形B. 正三角形C. 正五边形D. 正六边形答案:题目一:判断真假1. 正确:正方体是一个有六个面,且每个面都是正方形的立体图形。

2. 错误:圆锥是一种其中一个面是圆形,其余面是三角形的立体图形。

3. 正确:长方体有六个面,包括顶面、底面和四个侧面。

4. 错误:球体是一种曲面,没有顶点和面。

5. 正确:正四面体是一个有四个三角形面的立体图形。

题目二:选择题1. C. 圆锥是一个立体图形,不是平面图形。

2. A. 球体是一个没有棱的立体图形。

3. D. 正四面体是一个四个面都是三角形的立体图形。

4. C. 圆柱体是一个只有三个面的立体图形。

5. A. 圆锥的底面可以是圆形,不限于其他形状。

通过这些认识立体图形的练习题,相信大家对于立体图形的性质和特点有了更深入的了解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1题图

社谐



第3题图
4.1.1立体图形与平面图形(二)
基础练习
1.如图是一个小正方体的展开图,把展开图折叠成小正方体
后,有“建”字一面的相对面上的字是( )
A.和
B.谐
C.社
D.会 2.下面左边是用八块完全相同的小正方体搭成
的几何体,从上面看该几何体得到的图是( )
A B C D
3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是
( )
A. 正方体、圆柱、三棱柱、圆锥
B. 正方体、圆锥、三棱柱、圆柱
C. 正方体、圆柱、三棱锥、圆锥
D. 正方体、圆柱、四棱柱、圆锥
4.下列各图形中, 不是正方体的展开图(填序号).
D
C
B
A
① ② ③ ④
拓展提高
5.(根据下列语句,画出图形. ⑴已知四点A 、B 、C 、D.
① 画直线AB ;
② 连接AC 、BD ,相交于点O ; ③ 画射线AD 、BC ,交于点P. 6.
如图,是由7块正方体木块堆成的物体,请说出图⑴、图⑵、图⑶分别是从哪一个方向看得到的?



Welcome To Download !!!
欢迎您的下载,资料仅供参考!。

相关文档
最新文档