第2章 无线传输技术基础
网络通信技术发展与应用作业指导书

网络通信技术发展与应用作业指导书第1章网络通信基础 (4)1.1 网络通信概述 (4)1.1.1 基本概念 (4)1.1.2 发展历程 (4)1.1.3 通信模型 (4)1.2 网络通信协议 (4)1.2.1 TCP/IP协议 (4)1.2.2 HTTP协议 (4)1.2.3 FTP协议 (4)1.2.4 SMTP协议 (5)1.3 网络体系结构 (5)1.3.1 OSI模型 (5)1.3.2 TCP/IP模型 (5)1.3.3 五层模型 (5)第2章数据传输技术 (5)2.1 传输介质 (5)2.1.1 有线传输介质 (5)2.1.2 无线传输介质 (5)2.2 数据传输模式 (6)2.2.1 并行传输 (6)2.2.2 串行传输 (6)2.3 差错控制 (6)2.3.1 差错检测 (6)2.3.2 差错纠正 (6)2.3.3 流量控制 (6)2.3.4 数据压缩 (6)第3章网络拓扑结构 (6)3.1 星型拓扑 (6)3.1.1 结构特点 (7)3.1.2 应用场景 (7)3.2 环型拓扑 (7)3.2.1 结构特点 (7)3.2.2 应用场景 (7)3.3 总线型拓扑 (7)3.3.1 结构特点 (7)3.3.2 应用场景 (8)3.4 网状拓扑 (8)3.4.1 结构特点 (8)3.4.2 应用场景 (8)第4章局域网技术 (8)4.1 以太网 (8)4.1.2 技术标准 (8)4.1.3 发展历程 (8)4.2 交换式局域网 (9)4.2.1 概述 (9)4.2.2 技术特点 (9)4.2.3 常见交换机技术 (9)4.3 虚拟局域网 (9)4.3.1 概述 (9)4.3.2 技术原理 (9)4.3.3 应用场景 (9)4.3.4 管理与配置 (9)第5章广域网技术 (9)5.1 电话网络 (9)5.1.1 电话网络的体系结构 (10)5.1.2 电话网络的传输特性 (10)5.1.3 电话网络在广域网中的应用 (10)5.2 分组交换网络 (10)5.2.1 分组交换网络原理 (10)5.2.2 分组交换网络的分类 (10)5.2.3 分组交换网络在广域网中的应用 (10)5.3 帧中继 (10)5.3.1 帧中继的技术特点 (10)5.3.2 帧中继的工作原理 (10)5.3.3 帧中继在广域网中的应用 (10)5.4 ATM技术 (10)5.4.1 ATM技术的体系结构 (10)5.4.2 ATM技术的传输特性 (11)5.4.3 ATM技术在广域网中的应用 (11)第6章无线网络通信技术 (11)6.1 无线局域网 (11)6.1.1 概述 (11)6.1.2 技术标准 (11)6.1.3 应用场景 (11)6.2 无线城域网 (11)6.2.1 概述 (11)6.2.2 技术标准 (11)6.2.3 应用场景 (11)6.3 蓝牙技术 (11)6.3.1 概述 (11)6.3.2 技术特点 (11)6.3.3 应用场景 (11)6.4 移动通信技术 (12)6.4.1 概述 (12)6.4.3 应用场景 (12)第7章网络互联技术与设备 (12)7.1 路由器 (12)7.1.1 路由器概述 (12)7.1.2 路由器的工作原理 (12)7.1.3 路由器的分类与功能 (12)7.2 交换机 (12)7.2.1 交换机概述 (12)7.2.2 交换机的工作原理 (12)7.2.3 交换机的分类与功能 (13)7.3 网关 (13)7.3.1 网关概述 (13)7.3.2 网关的工作原理 (13)7.3.3 网关的分类与功能 (13)7.4 防火墙 (13)7.4.1 防火墙概述 (13)7.4.2 防火墙的工作原理 (13)7.4.3 防火墙的分类与功能 (13)第8章网络管理技术 (13)8.1 网络管理概述 (13)8.2 SNMP协议 (14)8.3 CMIP协议 (14)8.4 网络管理工具 (14)第9章网络安全技术 (14)9.1 加密技术 (14)9.1.1 基本概念 (15)9.1.2 分类 (15)9.1.3 常用算法 (15)9.2 鉴别与授权 (15)9.2.1 基本概念 (15)9.2.2 方法 (15)9.2.3 应用 (15)9.3 入侵检测与防御 (15)9.3.1 基本原理 (15)9.3.2 方法 (15)9.3.3 应用 (16)9.4 防病毒技术 (16)9.4.1 基本原理 (16)9.4.2 方法 (16)9.4.3 应用 (16)第10章网络通信技术的发展与应用 (16)10.1 物联网技术 (16)10.2 云计算与大数据 (16)10.4 未来网络通信技术的发展趋势与应用前景 (17)第1章网络通信基础1.1 网络通信概述网络通信是现代信息技术领域的核心内容,它涉及数据在不同地理位置的计算机或设备之间的传输。
无线传输方式简介

1.2
3G无线传输
比较常见的无线传输方式
LOGO
1.2.6
3G标准有 CDMA2000,WCDMA,TD-SCDMA,WiMAX等,3G服 务能够同时传送声音及数据信息,速率一般在几百kbps以上。 3G和2G一样,同样需要大面积的网络覆盖,依赖数以万计的基站来 支撑起的网络。这种网络的部署与实施,价格也是极其高昂的。 CDMA2000,WCDMA,和TD-SCDMA我们在日常中经常会接触到, 这里不再详细阐述。现在,支持WiMAX的终端也已在市场上出现,因此 简单介绍下WiMAX。 WiMAX作 为一种 面向“最后一公里” 接入地标准,尤其 在现今全球缺乏统 一宽带无线接入标 准之际,有重要现 实意义与战略价值。
无 线 传 输 技 术 简 介
LOGO
内容大纲
LOGO
1 2 3 4
撰写本文的目的 比较常见的无线传输方式 各传输技术的简单比较 学习总结和疑问
1.1
撰写本文的目的
LOGO
目前,随着通讯技术的发展,无线传输 技术的使用已经渗透到社会的各个角落。我 公司作为一家从事无线传输技术的高新技术 公司,因此从业务方面的的需要考虑出发, 通过网络搜集了目前较为常见的无线传输技 术,通过对比分析,旨在对相关技术做简单 的介绍以及希望能对公司从事的技术有进一 步较为深入的了解。
功率小 低 高 可自组网, 无限扩展
小规模接入组 长距离通信或控 短距离,大数据 工业控制、 长距离通信或控制 网 制 量,高速传输 医疗等
1.3.2
2.4G频段技术的应用
在上面的表格里,可以看到Zigbee是工业应用中组建近距离控制网络方面有先 天性的优势,在工作于2.4G频段的传输技术中,Zigbee比与其他的蓝牙和wifi相比, Zigbee,具备其他二者不具备的网络扩展性,网络节点数也远远大于蓝牙的8个节点 和wifi的50个节点,达到65000多个节点,在加上安装使用简单,使用成本低,联网 所需时间段等的特征,也就不能理解在工业现场控制应用中首先考虑Zigbee实施组 网是很有竞争力的。
无线局域网WIFI基础知识概述

简单接入、低带 宽
技术演进时间
更高带宽:802.11a/g速率达到54Mbps,802.11n可达600Mbps(采用MIMO技术,目前处 于草案2.0版本)。
更广覆盖范围:从802.11a/g的100m到802.11n的500~1000m。
更强的障碍物穿透能力:可以使用于多堵墙壁的商务住宅、复杂房间结构的写字楼等环境中。
WLAN标准- 802.11b
1999年9月IEEE 802.11b被正式批准,该标准规定WLAN工作频段在2.4-
2.4835 GHz,数据传输速率达到11Mbps, 传输距离控制在50-150英尺。该标
准是对IEEE 802.11的一个补充,采用补偿编码键控调制方式,采用点对点模式 和基本模式两种运作模式,在数据传输速率方面可以根据实际情况在11 Mbps、 5.5 Mbps、2 Mbps、1 Mbps等不同速率间自动切换,它改变 了WLAN设计状 况,扩大了WLAN的应用领域。 IEEE 802.11b已成为主流的WLAN标准,被多数厂商所采用,所推出的产品广
家庭射频(HomeRF)技术是无绳电话技术(数字式增强型无绳电
话或者简称为DECT:Digital Enhanced Cordless Telephone)和 无线局域网(WLAN)技术相互融合发展的产物,工作于2.4GHz
ISM频段,采用数字跳频扩频技术
无线局域网主要技术
1990年IEEE 802标准化委员会成立IEEE 802.11无线局域网标准工
疗等专用频段,是公开的;而工作于5.725-5.850 GHz频带需要执照的。而
且IEEE802.11a卡片价格昂贵也大大的限制了该技术的发展一些公司更加看好 当时最新混合标准――IEEE802.11g。
通信基础知识

第一章概述通信的目的是为了信息的传递。
携带信息的信号可分为模拟信号(如话音)和数字信号(计算机输出的信号)。
信息的传递由通信系统来完成。
1.1通信系统的组成通信系统由硬件和软件组成。
硬件包括终端、传输和交换三大部分。
●终端:包括普通电话、移动电话、计算机、数据终端、可视电话、会议电视终端等。
●传输系统:信息传递的通道,一般叫信道。
●交换系统:完成接入交换节点链路的汇集、转接和分配。
●通信系统软件:为能更好完成信息的传递和转接交换所必须的一整套协议、标准,包括网络结构、网内信令、协议和借口以及技术体制、接口标准等。
注释1.2通信系统的分类按照系统所传输的信号来分类,则系统可分为模拟通信系统和数字通信系统。
●模拟通信系统:用模拟信号传递消息的系统。
●数字通信系统:用数字信号传递消息的系统。
由于光纤通信的普及和集成工艺的发展,数字通信系统具有抗干扰能力强,数字信号可再生,可综合各种业务,便于和计算机系统连接,易于集成等优点,所以逐渐取代了模拟通信系统。
1.3标准化组织标准可以被看作是将不同厂商制造的硬件和软件连接起来以便协调工作的“粘接剂”。
在美国和其他许多国家,全国的标准化组织定义了多种物理特性和操作特性的规范,以便厂商生产与通信公司的线路设施及其他制造商的产品兼容的设备。
在全球范围内,标准化组织颁布了一系列与通信有关的建议。
这些建议虽不是强制性的,但在全球的通信设备和设施的开发过程中具有很强的影响力,并已被数百个大型企业和通信公司采纳。
下面介绍几个重要的组织。
1.I TUITU——International Telecommunications Union国际电信联盟。
ITU的前身是CCITT(国际电报电话咨询委员会),1994年更名,它由联合国的一个机构主办,属政府间组织。
总部设在日内瓦,直接负责制定数据通信标准,由15个工作组组成。
ITU-T是其电信标准局。
2.I SOISO——International Organization for Standardization国际标准化组织。
第2章无线传输技术基础1

接入控制
我们知道,以太网的接入控制协议是CSMA/CD, 无线局域网却不能简单地搬用 CSMA/CD 协议这 里主要有两个原因。 CSMA/CD 协议要求一个站点在发送本站数据 的同时,还必须不间断地检测信道,但在无线 局域网的设备中要实现这种功能就花费过大。 即使我们能够实现碰撞检测的功能,并且当我 们在发送数据时检测到信道是空闲的,在接收 端仍然有可能发生碰撞。
卫星微波
通信卫星实际上一个微波接力站,用于将两个或多个 称为地球站或地面站的地面微波发送器/接收器连接起 来。 卫星使用上下行两个频段:接收一个频段(上行)上的 传输信号,放大或再生信号后,再在另一个频段(下行) 上将其发送出去。
卫星传输的最佳频率范围为1GHz~10GHz。 特点
第2章 无线传输技术基础
主要内容
2.1 无线传输媒体
2.1.1 电磁波频谱 2.1.2 无线网络中射频传输面临的挑战 2.1.3 电磁波的传播方式
2.1 无线传输媒体
传输媒体是数据传输系统中发送器和接收器之间 的物理路径。 传输媒体可分为导向的(guided)和非导向的 (unguided)两类。
无线电的频谱管理
造成无线信号损伤的一个原因是干扰,随着微波应 用的不断增多,传输区域重叠,干扰始终是一个威 胁。因此,频带的分配需要严格控制。 无线电管理是国家通过专门机关,对无线电频谱资 源和卫星轨道资源的研究、开发、使用所实施的, 以实现合理、有效利用无线电频谱和卫星轨道资源 的行为、全过程。
天波;质量随一天的时间、 无线电业余爱好者;国际广播, 季节和频率而变化 军事通信;长距离通信
VHF(高频)
30MHz~ 300MHz
10m~1m
无线网络技术导论第二版课后习题答案

填空选择:第一章绪论填空:1. 局域网城域网广域网2. LAN MAN WAN3. ARPAnet4. 数据链路层网络层5. ALOHANET6. 可以让人们摆脱有线的束缚,跟便捷,更自由地进行沟通7. 协议分层8. 协议9. 应用程序、表示层、会话层、传输层、网络层、链路层 10. 应用层、传输层、网络互连层、主机至网络层 11. MAC协议单选:1-3 D A C 多选:1 AC 2 ABC 判断:1-4 T F F F第二章无线传输基础填空:1、电磁波2、FCC3、全向的4、天线5、定向6、地波7、衍射8、快速或慢速平面的9、Christian Doppler 10、数据 11、信号12、传输 13、模拟 14、ASK FSK PSK 15、扩频技术 16、大于 17、DSSS FHSS THSS 单选: 1-5 A C C CD 6-7 A B 多选:1 ACD2 ABCD3 BCD4 ABC5 AB6 ABC 判断:1-5 F T T T T 6-10 F T T T F 10-14 F T T T第三章无线局域网填空:1、美国电气电子工程师协会2、标准发布3、标准(猜的)4、 IEEE5、基站或接入点6、基础机构集中式拓扑7、 BSSID8、介质9、 MAC10、媒体访问控制11、物理层数据链路层 12、 11Mbit/s 13、 b14、多载波调制技术 15、 16、 11 17、 csma 18、 sta服务 19、物理20、联结重新联结解除联结分布集成 21、竞争22、 mac协议 23、多个无线网络整体网络 24、四地址 25、、27、动态频率选择传输功率控制 28、发送功率控制过程29、无线局域网中关于快速服务集切换的内容 30、 600Mps31、 32、 WPA 33、 WAPI34、认证框架和可拓展认证/标准安全 35、 WEP36、企业模式单选:1-5 D D C B C 6-10 A B C D A 11-15 C D D D B16-20 B B B C A 21-25 A B A A A 26-30 D A D C D 31-35 C D A C A 36-39 C A C B 多选:1 AC2 CD3 BC4 BC5 AB6 CD7 AB8 AC9 AC 10 ABC 11 ABC 12 BC 13 AC 14 ABC 15 ABC16 AC 判断:1-5 T F T T T 6-10 T F T F T第四章无线个域网填空: 1. 302. IEEE3.4. 无线个人区域网5. 蓝牙6. 基带7. 1 MHz 带宽 8. 散布式网络 9. 超宽带UWB 10. 协议栈 11. 250 kb/s12. 全功能设备,只具有部分功能的设备 13. 设备对象单选: 1-5 C A C D A 6-10 B D A(不确定)A D 11-12 A A多选:判断:1-3 F F T第五章无线城域网填空:1、 2、回程 3、 4、固定宽带无线5、 6、 7、 8、 9、6GHZ 10、2~11GHZ 单选:1 -5 D B B C A 6-8 D B C多选:ABC判断:1、F 2、T第六章无线广域网填空:1、IEEE 2、250km/h 3、OFDM MIMO 4、纯IP第七章移动ad hoc网络填空:1、移动Ad Hoc2、移动Ad Hoc网络单选:B第八章无限传感器网络填空:1、移动Ad Hoc网络(或者分布式网络系统)2、传感器模块、处理器模块、无线通信模块、能量供应模块第九章无线mesh网络填空:1. 移动Ad hoc网络2. 无线多选: ABC 判断: T第十章无线网络与物联网填空:1.感知层,网络层和应用层2.无线城市简答题:第一章绪论1、简述计算机网络的发展过程答:计算机网络发展过程可分为四个阶段。
无线网络技术复习

无线网络技术第1章绪论1、无线网络分类❖从无线网络覆盖范围看系统内部互连/无线个域网无线局域网无线城域网/广域网❖从无线网络的应用角度看,还可以划分出无线传感器网络无线Mesh网络无线穿戴网络无线体域网等,这些网络一般是基于已有的无线网络技术,针对具体的应用而构建的无线网络。
2、无线局域网的分类❖第一类是有固定基础设施的:预先建立起来的、能够覆盖一定地理范围的一批固定基站,采用802.11标准的WLAN。
如蜂窝移动电话。
最小构件是基本服务集(BSS),一个BSS包括一个基站和若干个移动站。
❖第二类是无固定基础设施的:没有预先建好的固定接入点(AP),而是由一些处于平等状态的移动站之间相互通信组成临时网络。
自组织网络/移动Ad hoc网络。
服务范围有限,一般也不与外界的其他网络连接。
3、网络协议层次设计应注意的问题❖分层时应注意使每一层的功能非常明确,层数适当。
层数太少,会使每一层协议太复杂层数太多,会在描述和综合各层功能时太过分散❖标识发送方和接收方的机制❖数据传输的规则——单向、双向、多逻辑信道❖差错控制问题❖报文到达顺序问题❖流量控制问题❖报文的拆分、传输、重组问题❖多路复用和多路解复用问题❖路由选择4、协议和服务的关系❖协议:控制两个对等实体进行通信的规则的集合。
❖服务:由下层向上层通过层间接口(服务访问点,SAP)提供的功能。
❖协议与服务的关系:协议是水平的,服务是垂直的服务是某一层内完成的能够被高一层利用的功能两个对等实体(服务用户)通过协议进行通信,目的是为上一层提供服务5、无线网络的协议模型研究的重点是什么?第2章无线传输技术基础1、相关概念(1)传输媒体可分为导向的(guided)和非导向的(unguided)两类。
(2)天线发射的信号重要属性:方向性。
(3)无线传输的两种基本构造类型定向结构:发射天线将电磁波聚集成波束后发射出去,因此,发射和接收天线必须精确校准。
全向结构:发送信号沿所有方向传播,并能够被多数天线接收到。
通信网基础课后答案

第一章通信网概述1.1简述通信系统模型中各个组成部分的含义,并举例说明。
答:通信系统的基本组成包括:信源,变换器,信道,噪声源,反变换器和信宿六部分。
信源:产生各种信息的信息源。
变换器:将信源发出的信息变换成适合在信道中传输的信号。
信道:按传输媒质分有线信道和无线信道,有线信道中,电磁信号或光电信号约束在某种传输线上传输;无线信道中,电磁信号沿空间传输。
反变换器:将信道上接收的信号变换成信息接收者可以接收的信息。
信宿:信息的接收者。
噪声源:系统内各种干扰。
1.2现代通信网是如何定义的?答:由一定数量的节点和连接这些节点的传输系统有机地组织在一起的,按约定信令或协议完成任意用户间信息交换的通信体系。
适应用户呼叫的需要,以用户满意的效果传输网内任意两个或多个用户的信息。
1.3试述通信网的构成要素及其功能。
答:通信网是由软件和硬件按特定方式构成的一个通信系统。
硬件由:终端设备,交换设备和传输系统构成,完成通信网的基本功能:接入、交换和传输;软件由:信令、协议、控制、管理、计费等,它们完成通信网的控制、管理、运营和维护,实现通信网的智能化。
1.4分析通信网络各种拓扑结构的特点。
(各种网络的拓扑结构图要掌握)答:基本组网结构:Ø网状网:优点:①各节点之间都有直达线路,可靠性高;②各节点间不需要汇接交换功能,交换费用低;缺点:①各节点间都有线路相连,致使线路多,建设和维护费用大;②通信业务量不大时,线路利用率低。
如网中有N个节点,则传输链路数H=1/2*N(N-1)。
Ø星形网:优点:①线路少,建设和维护费用低;②线路利用率高;缺点:①可靠性低,②中心节点负荷过重会影响传递速度。
如网中有N个节点,则传输链路数H=N-1。
Ø环形网:同样节点数情况下所需线路比网状网少,可靠性比星形网高。
如网中有N个节点,则传输链路数H=N。
Ø总线形网:优点:①节点接入方便②成本低,缺点:①传输时延不稳定②若传输总线损坏,整个网络会瘫痪。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传输端和接收端之间插入的人们不希望有的额外
信号
热噪声(电子热搅动产生,是温度的函数,无法消除)
互调噪声(不同频率信号共享传输媒介时) 串扰(微波天线接收了并不想要的信号)
脉冲噪声(由不规则的脉冲或短期的噪声尖峰组成,
对模拟数据影响不大,是数字数据的主要错误源)
大气吸收(atmospheric
低于1G,存在自然噪声和电子设备干扰,高于
10G,衰减严重。 上行频带为5.925~6.425GHz,下行频带为 3.7~4.2GHz,统称为4/6G频段 1G~10GHz最佳频段已饱和,干扰严重,因此新 的12/14GHz,20/30GHz频段逐步的到利用,衰减 更加严重,但带宽更大,接收器更小,更便宜。
和传输信号的特性。 导向媒体:取决于媒体性质 非导向媒体:更多取决于传输信号的特性 (低频全向、高频有向波束)
发送和接收都通过天线实现 定向传输发射和接收天线必须校准 非定向传输沿所有方向传播,能被多数天线接收
电信用的电磁波频谱
感兴趣的3个频段
微波:1GHz~100GHz,可实现高方向性的波束, 而且非常适用于点对点的传输,也可用于卫星通信。 无线电广播频段:30MHz~1GHz,适用于全向应 用。 红外线频谱段:3×1011Hz~2×1014Hz,适于本地 应用,在有限的区域(如一个房间)内对于局部的点 对点及多点应用非常有用。
VLF(甚低频) 3k~300K LF(低频)
MF(中频) HF(高频) VHF(高频) 300k~3M 3M~30M
30M~300M 直线 直线 直线
UHF(特高频) 300M~3G SHF(超高频) 3G~30G EHF
30G~300G 直线
无线传播类型
2.4 直线传输系统中的损伤
模拟信号带来信号质量降低,数字信号带来位差 错 衰减和衰减失真(attenuation and attenuation distortion)
特点
卫星通信距离远,一个地面站发送到另一个地面
站接收,约有1/4s传播延迟。在差控和流控方面, 也带来一系列问题。 卫星微波是广播设施,许多站点可以向卫星发送 信息,同时从卫星上传送下来的信息也会被众多 站点接收。
2.1.3 广播无线电波
广播无线电波是全向性的,不要求使用碟形天线,天线也无 须严格地安装到一个精确地校准位置上。 无线电波(Radio) 是笼统术语,频率范围为3KHz~300GHz。 非正式术语广播无线电波(broadcast radio) 包括调频无线电 频段(FM)和VHF、UHF电视频段:30MHz~1GHz。 不同于低频电磁波,高于30M可透过大气电离层,因此相距 很远的发送器不会受大气反射而互相干扰。 也不同于高频微波,受下雨衰减小。 广播无线电波损伤的一个主要来源是由于物体反射形成的多 路径干扰。
2.7.1 数据、信号和传输的模拟与数字之分
模拟(analog)和数字(digital)大致分别与连续 (continuous)和离散(discrete)相对应 。数据、信号 和传输经常使用这两个术语。 数据(data)定义为传达某种意义或信息的实体 信号(signal)是数据的电气或电磁表示 传输(transmission)是通过信号的传播和处理进行数 据通信的过程
理想的辐射模式
向量长度决定功率强度
2.2.2 天线类型
偶级天线
半波偶极天线(赫兹天线):由等长度两个同一
直线上的导线组成,由一个小的供电间隙分开。
射模式 可通过复杂天线配置产生有向光束
在一个维上具有全向辐射模式,另两个维具有8字形辐
¼波垂直天线(马可尼天线)
抛物反射天线:常见于汽车无线电,便携无
反射(R)、散射(S)和衍射(D)
存在随时间变化的多径脉冲中的两个脉冲
衰退类型
移动环境中的衰退效果可以分为快速或慢速
衰退效果也可以分为平面的或选择性的。
平面衰退(flat fading)或称非选择性的衰退,接收
到的信号的所有频率成分同时按相同的比例波动。 选择性衰退(selective fading)无线电信号的不同 光谱成分的影响是不相等的。
模拟数据和数字数据
模拟数据在一段时间内具有连续的值,例如,
声音和视频是连续变化的强度样本。 数字数据的值是离散的,例如文本和整数。
话音和音乐的声音频谱
模拟信号和数字信号
数据以电磁信号的方式从一点传播至另一点
模拟信号(analog
典型的数字微波性能
波段/GHz 2 带宽/MHz 7 数据率/Mb/s 12
6
11
30
40
90
135
18
220
274
地面微波(续1)
微波传输的主要损耗来源于衰减。 微波(以及无线电广播频段)的损耗公式 4d L 10 lg 微波的损耗随距离的平方而变化 ,双绞线和同轴电 缆则随距离呈指数变化,因此微波中继器可放在较 远的地方,一般为10km~100km 损伤的另一个原因是干扰,随着微波应用的不断增 多,传输区域重叠,干扰始终是一个威胁。因此, 频带的分配需要严格控制。
天线的有效面积与天线尺寸和形状相关 天线增益与有效面积的关系: 4
G
A
2
e
4
f A c
2
2
e
2.3 传播方式
由天线辐射出去的信号以三种方式传播:
地波(ground wave):地波传播或多或少要沿着地球
的轮廓前行,且可传播相当远的距离,较好地跨越 可视 的地平线 天波(sky wave):天波信号可以通过多个跳跃,在电 离层和地球表面之间前后反弹地穿行 直线LOS(line of sight) :当要传播的信号频率在 30MHz以上时,天波与地波的传播方式均无法工作, 通信必须用直线方式。
多普勒效应(续)
多普勒效应不仅仅适用于声波,它也适用于
所有类型的波,包括光波、电磁波。 在无线移动通信中,当移动台移向基站时, 频率变高,远离基站时,频率变低,所以在 移动通信中要充分考虑多普勒效应。 尤其是高速移动宽带接入网络(如IEEE802.20) 必须考虑多普勒效应。
2.7 信号编码技术
2.2 天线
天线是实现无线传输最基本的设备。天线可看作一 条电子导线或导线系统,该导线系统或用于将电磁 能辐射到太空或用于将太空中的电磁能收集起来。 电磁能和电能相互转化 双向通信中,同一天线既可用于发送也可用于接收
2.2.1 辐射模式
一个天线辐射出去的功率是全方位的,然而并 非在所有方向上辐射出的功率都是相等的。 描述天线性能特性的常用方法是辐射模式,它 是作为空间协同函数的天线的辐射属性的图形化表 示。
多径(multi
absorption)
path)在固定天线Fra bibliotek间可较好控制多径 在移动电话通信中,多经影响极为重要
折射(refraction)
2.5 移动环境中的衰退
通信系统所面临的最具挑战性的技术问 题是移动环境中的衰退现象。在移动环境中, 两个天线中的一个相对于另一个在移动,各 种障碍物的相对位置会随时间而改变,由此 会产生比较复杂的传输结果。
线电
简单(偶级)天线
偶级天线散射模式
抛物线反射天线
常用于地面微波和卫星
2.2.3 天线增益
天线增益(antenna gain)是天线定向性的度量。
功率总量固定的情况下,与由理论的全向天线(各向同性
天线)在各个方向所产生的输出相比,天线增益定义为在 一特定方向上的功率输出。 增加一个方向的辐射需要降低其他方向的辐射。 天线增益的目的不是增加输出功率,是为了定向性
2.1.4 红外线
红外线传输不能超过视线范围,距离短
红外线传输无法穿透墙体。微波系统中遇到
的安全性和干扰问题在红外线传输中都不存 在。 红外线不需要频率分配许可。
2.1.5 光波
频率更高的光波,主要指非导向光波,而非
用于光纤的导向光波。 提供非常高的带宽,成本也很低,相对容易 安装,而且与微波不同,不要求FCC许可。 激光的强度(非常窄的一束光)是它的弱点,不 易瞄准。 激光束不能穿透雨或者浓雾,白天太阳的热 量是气流上升也会激光束产生偏差。
信号强度随着跨越媒体的距离而降低
接收的信号必须有足够强度,使电子线路能够检测解释信号 与噪声相比,信号必须维持足够高的水平 高频下的衰减更为严重
自由空间损耗(free
space loss)
信号随距离发散,离天线越远,接收信号功率越
低 随着频率增加,自由空间的损耗也增加 可通过天线增益进行损耗补偿
第2章 无线传输技术基础
内容提要
2.1 无线传输媒体 2.2 天线 2.3 传播方式 2.4 直线传输系统中的损伤 2.5 移动环境中的衰退 2.6 多普勒效应 2.7 信号编码技术 2.8 扩频技术 2.9 差错控制技术
2.1 无线传输媒体
传输媒体(transmission medium)是数据传输系统 中发送器和接收器之间的物理路径。 传输媒体可分为导向的(guided)和非导向的 (unguided)两类。
对导向媒体而言,电磁波被引导沿某一固定媒体前进,
例如双绞线、同轴电缆和光纤。 非导向媒体的例子是大气和外层空间,它们提供了传输 电磁波信号的手段,但不引导它们的传播方向,这种传 输形式通常称为无线传播(wireless transmission)
数据传输特性和质量取决于传输媒体的性质
频带
频率范围
传播 典型应用 特性
地波 某些家庭控制系统
ELF(极低频) 30~300Hz