证明数列不等式的常用放缩方法技巧精减版

合集下载

数列不等式放缩技巧

数列不等式放缩技巧

数列不等式放缩技巧何谓放缩?就是当要证明不等式A<B 成立时,可以将它的一边放大或缩小,寻找一个中间量,如将A 放大成C ,即A<C ,后证C<B ,这种证法便称为放缩法,简称放缩。

在高考数列不等式中,常常伴随着类似1()ni i a f n =∑<形式的不等式证明,这类式子无法通过求和化简或数学归纳法证明,然而通过适当的放缩技巧,却能快速使问题简单化。

【知识技巧】1、放缩的几种形式:①构造特殊数列求和进行放缩; 技巧积累: (1)21111=(2(1)1n n n n n n ---<≥);22211411==214121214n n n n n ---+-<()(2)n n n -+<+221(3))1(21)1(2--<<-+n n nn n(4) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n (5)111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n 11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n (6))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rr n r (7)25)1(123112111)11(<-++⨯+⨯++<+n n nn②应用基本不等式或函数单调性放缩;③加强命题,转化为数学归纳法证明题(注意点:形式、方向、首项)。

2、放缩的注意事项1111)2(1)(1)n n n n ⎡⎤=-⎢⎥-+⎣⎦,n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-这类数列由于可以裂项求和,所以在证明不等式1()ni i a f n =∑<时,大可不必放缩;②放与缩要注意形式、方向和首项,要注意放缩度的把握。

不等式的放缩技巧

不等式的放缩技巧

数列型不等式放缩技巧八法证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一 利用重要不等式放缩1.均值不等式法例1 设求证.)1(3221+++⋅+⋅=n n S n .2)1(2)1(2+<<+n S n n n 解析 此数列的通项为.,,2,1,)1(n k k k a k =+=,,2121)1(+=++<+<k k k k k k )21(11∑∑==+<<∴nk n nk k S k 即.2)1(22)1(2)1(2+<++<<+n n n n S n n n 注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式,若放成则得,就放2b a ab +≤1)1(+<+k k k 2)1(2)3)(1()1(21+>++=+<∑=n n n k S nk n 过“度”了! ②根据所证不等式的结构特征来选取所需要的重要不等式,这里na a n a a a a a a nnnnn n22111111++≤++≤≤++其中,等的各式及其变式公式均可供选用。

3,2=n例2 已知函数,若,且在[0,1]上的最小值为bxa x f 211)(⋅+=54)1(=f )(x f ,求证:(02年全国联赛山东预赛题)21.2121)()2()1(1-+>++++n n n f f f 简析 )2211()()1()0(22114111414)(⨯->++⇒≠∙->+-=+=n f f x x f xx x x.2121)21211(41)2211()2211(112-+=+++-=⨯-++⨯-++-n n n n n例3 已知为正数,且,试证:对每一个,b a ,111=+ba *∈N n .(88年全国联赛题)1222)(+-≥--+n n n n n b a b a 简析 由得,又,故111=+b a b a ab +=42)11)((≥++=++abb a b a b a ,而,4≥+=b a ab nn nr r n r n n n n n n b C b a C b a C a C b a +++++=+-- 110)(令,则nnnb a b a n f --+=)()(=,因为,倒序相加得)(n f 1111----++++n n n r r n r n n n ab C b a C b a C in ni n C C -==,)(2n f )()()(111111b a ab C b a b a C ab b a C n n n n r n r r r n r n n n n -------+++++++ 而,则1211112422+------=⋅≥≥+==+==+n nnn n n rn r rrn n n b a b a ab b a b a ab b a=)(2n f ))(22())((11r r n r n r n r r n r n r n n r n n b a b a b a b a C C C -----+-=+++++,所以,即对每一个,⋅-≥)22(n 12+n )(n f ⋅-≥)22(n n 2*∈N n .1222)(+-≥--+n n n n n b a b a 例4 求证.),1(221321N n n n C C C C n n nnnn∈>⋅>++++- 简析 不等式左边=++++nn n n n C C C C 32112222112-++++=-n n =,原结论成立.nn n 122221-⋅⋅⋅⋅⋅> 212-⋅n n 2.利用有用结论例5 求证.12)1211()511)(311)(11(+>-++++n n 简析 本题可以利用的有用结论主要有:法1 利用假分数的一个性质可得)0,0(>>>++>m a b ma mb ab>-⋅⋅122563412n n =+⋅⋅n n 212674523 )12(212654321+⋅-⋅⋅n nn 即⇒12)122563412(2+>-⋅⋅n n n .12)1211()511)(311)(11(+>-++++n n法2 利用贝努利不等式的一个)0,1,2,(1)1(≠->≥∈+>+*x x n N n nx x n 特例(此处)得12121)1211(2-⋅+>-+k k 121,2-==k x n =-+∏⇒-+>-+=)1211(121212111k k k k n k .1212121+=-+∏=n k k n k 注:例5是1985年上海高考试题,以此题为主干添“枝”加“叶”而编拟成1998年全国高考文科试题;进行升维处理并加参数而成理科姊妹题。

利用放缩法证明数列型不等式

利用放缩法证明数列型不等式

1 n(n 1)
1 n
-
1 n1
Sn
(1 1
1) 2
(1 2
1) 3
(1 n
1) n1
1
1 n
1
1
小结:可求和先求和,先裂项后放缩。
(2)先放缩后裂项
变式1.已知数列an 的通项公式为an
1 n2
, 且an 的前n项和为Sn,
求证 : Sn 2.
解析: an
1 n2
1 n(n 1)
(n 2)
3 2
.
解析 : 3n
-
2n
(1
2)n
2n
1
C
1 n
2
C
2 n
22
C
n n
2n
2n
C
2 n
22
2n(n
1)
(n 3)
1
1
1 1 1
3n
- 2n
2n(n 1)
2
(n
1)
n
(n 3)
当n
1时 ,S1
1
3 2
当n
2时 ,S 2
1
1 5
3 2
当n
3时 ,Sn
1
1 5
1 2
(1 2
1) 3
1 2
1
3 2
当n
2时 ,Sn
1
1 31
1 32
1 33
1 3n1
1
(1
1 3n
1 1
)
3 2
(1
1 3n
)
3 2
3
小结:先放缩构造成等比数列,再求和,最后二次放缩.
3.二项式定理放缩

放缩法证明数列不等式讲义

放缩法证明数列不等式讲义

利用放缩法证明数列不等式讲义姓名 班级放缩法的注意问题以及解题策略:1.对于“和式”数列不等式,若能够直接求和,则考虑先求和,再证不等式;若不能或很难求和, 则可考虑使用放缩法证明不等式。

而对于“和式”数列不等式,放缩的最主要目的是通过放缩, 把原数列变为可求和、易求和的数列.2、明确放缩的方向:是放大还是缩小。

若要证明小于某值,则放大;若要证明大于某值,则缩小。

3、放缩的项数:不一定对所有项进行放缩,有时从第一项开始,或从第二项,或从第三项等开始。

4.常见的放缩方法有:增加(减少)某些项; 增大(减少)分子(分母); 增大(减小)被开方数;增大(减小)底数(指数); 利用不等式的性质或重要不等式; 利用函数的单调性等.5、放缩法的常见技巧及常见的放缩式: (1)若0,,t a t a a t a >+>-< (2) 1n n -<,21n n n >+-,111n n +->-,2(1)n n n n +>=(3)若,,a b m R +∈,则,a a a a m b b m b b +><+,11n n n n -<+,212221n n n n +>- (4)1111111112321111nn n n n n n n n +++⋅⋅⋅+≤++⋅⋅⋅+=<+++++++或11111111123222222n n n n n n n n n +++⋅⋅⋅+≥++⋅⋅⋅+==+++ (5)111111123n n n n n n n+++⋅⋅⋅+>++⋅⋅⋅+== (6)21111111(1)1(1)(1)1n n n n n n n n n n-=<<=->++--(7)2)n<≥(9)<<<=(11)舍掉(或加进)一些项,如:121321||||||||(2)n n na a a a a a a a n--≤-+-++-≥(12)1112(21)212n n n n=---(13)1211222211(2)(21)(21)(21)(21)(22)(21)(21)2121n n n nn n n n n n n n nn---=<==-≥---------⎛⎫=<==<6、常见的数列不等式大多与数列求和或求积有关,其基本结构形式有如下4种:①形如1niia k=<∑(k为常数);②形如1()niia f n=<∑;③形如1()niia f n=<∏;④形如1niia k=<∏(k为常数).途径1.放缩为等差等差⨯1,后用裂项,有些数列不一定从第一项就开始放缩例1:(1)求证:2131211222<++++n(2)求证:2222111171234n++++<途径2:放缩为等比数列,并不一定从第一项起就开始放缩。

不等式放缩技巧十法

不等式放缩技巧十法

不等式放缩技巧十法一、Cauchy-Schwarz不等式:Cauchy-Schwarz不等式是不等式放缩的基础。

对于任意实数a1,a2, …, an和b1, b2, …, bn,有如下不等式成立:(a1^2 + a2^2 + … + an^2)(b1^2 + b2^2 + … + bn^2) ≥ (a1b1+ a2b2 + … + anbn)^2Cauchy-Schwarz不等式可以解决很多不等式问题,如证明两个序列的和的平方大于等于两个序列平方的和。

二、Holder不等式:Holder不等式是Cauchy-Schwarz不等式的推广形式。

对于任意实数a1, a2, …, an和b1, b2, …, bn以及p, q满足1/p + 1/q = 1(其中p,q为正实数),有如下不等式成立:(,a1,^p + ,a2,^p + … + ,an,^p)^(1/p) * (,b1,^q + ,b2,^q + … + ,bn,^q)^(1/q) ≥ ,a1b1 + a2b2 + … + anbn Holder不等式是Cauchy-Schwarz不等式的推广形式,不仅适用于实数,也适用于复数,可以使用Holder不等式解决更多类型的不等式问题。

三、Schur不等式:Schur不等式是不等式放缩中的重要不等式。

对于任意非负实数a, b, c和非负实数r,有如下不等式成立:a^r(a-b)(a-c)+b^r(b-a)(b-c)+c^r(c-a)(c-b)≥0Schur不等式在证明其他不等式时经常被使用,尤其在三角形不等式的证明中发挥着重要作用。

四、AM-GM不等式:AM-GM不等式是代数平均-几何平均不等式的缩写,对于任意非负实数a1, a2, …, an,有如下不等式成立:(a1 + a2 + … + an)/n ≥ (a1*a2*…*an)^(1/n)AM-GM不等式是解决不等式问题中常用的一种方法,可以将最大化或最小化转化为相加或相乘的形式。

数列不等式放缩技巧

数列不等式放缩技巧

数列不等式放缩技巧何谓放缩?就是当要证明不等式A<B成立时,可以将它的一边放大或缩小,寻找一个中间量,如将A放大成C,即A<C,后证C<B,这种证法便称为放缩法,简称放缩。

在高考数列不等式中,常常伴随着类似形式的不等式证明,这类式子无法通过求和化简或数学归纳法证明,然而通过适当的放缩技巧,却能快速使问题简单化。

【知识技巧】1、放缩的几种形式:①构造特殊数列求和进行放缩;技巧积累:(1);(2)(3)(4)(5)(6)(7)②应用基本不等式或函数单调性放缩;③加强命题,转化为数学归纳法证明题(注意点:形式、方向、首项)。

2、放缩的注意事项①熟练掌握裂项技巧,如:,这类数列由于可以裂项求和,所以在证明不等式时,大可不必放缩;②放与缩要注意形式、方向和首项,要注意放缩度的把握。

③可以只对数列的一部分进行放缩法,保留一些项不变(多为前几项)。

【例题讲解】1、通项公式的放缩1、(2013广东理)设数列的前项和为.已知,,.(Ⅰ) 求的值;(Ⅱ) 求数列的通项公式;(Ⅲ) 证明:对一切正整数,有.2、求证:3、(2012广东理)设数列{an}的前n项和为Sn,满足,n∈N﹡,且a1,a2+5,a3成等差数列.(1)求a1的值;(2)求数列{an}的通项公式.(3)证明:对一切正整数n,有.2、递推式的放缩1、已知,求证:当时,2、已知数列满足:,.求证:证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:.令,所以,两式相减得:,所以,所以,故得.3、加强命题1、数列中,,对任何,都有。

(1)求通项公式;(2)证明:对任何,4、利用不等式或函数放缩1.设,求证解析: 此数列的通项为,,即2、设,如图,已知直线及曲线:,上的点的横坐标为().从上的点作直线平行于轴,交直线于点,再从点作直线平行于轴,交曲线于点.的横坐标构成数列.(Ⅰ)试求与的关系,并求的通项公式;(Ⅱ)当时,证明;(Ⅲ)当时,证明.解析:(过程略).证明(II):由知,∵,∴.∵当时,,∴.证明(Ⅲ):由知.∴恰表示阴影部分面积,显然④∴.【课后练习】1、(2014广东文)设各项为正数的数列的前和为,且满足(1)求的值;(2)求数列的通项公式;(3)证明:对一切正整数,有2、(2014新课标2理)已知数列满足=1,.(Ⅰ)证明是等比数列,并求的通项公式;(Ⅱ)证明:.3、已知,,求证:.4、已知数列中,。

解决数列放缩问题的六大技巧

解决数列放缩问题的六大技巧

解决数列放缩问题的六大技巧本篇主要目标是聚焦于数列放缩,常见的方法有六种,具体我将在文中以实例详细说明.类型1.利用单调性放缩例1.已知数列{}n a 满足11a =,131n n a a +=+(1)设12n n b a =+,证明:{}n b 是等比数列,并求{}n b 的通项公式;(2)证明:12211113nb b b ≤+++< .解析:(1)∵131n n a a +=+,则111322n n a a +⎛⎫+=+ ⎪⎝⎭,即13n n b b +=,又∵111322b a =+=,所以{}n b 是首项为32,公比为3的等比数列,∴32n n b =,故{}n b 的通项公式为32nn b =.(2)由(1)知123n n b =,即1n b ⎧⎫⎨⎩⎭是首项为23,公比为13的等比数列,∴121221133111222111333313nnnn b b b ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦+++=+++==- ⎪⎝⎭- ,又∵数列113n⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭单调递增,∴11111133n⎛⎫⎛⎫-≤-< ⎪ ⎪⎝⎭⎝⎭,故12211113nb b b ≤+++< .类型2.先求和再放缩先求和再放松实质上是一类很常见的题目,这类放缩实质在考察数列求和,放缩的结果也很松,下面通过两个例子简单说明即可,分别是利用裂项相消求和与错位相减求和后放缩.例2.记n S 为数列{}n a 的前n 项和,已知11=a ,{}n n S a 是公差为13的等差数列.(1)求{}n a 得通项公式;(2)证明:121112+++< na a a .解析:(1)111==S a ,所以111=S a ,所以{}n n S a 是首项为1,公差为13的等差数列,所以121(1)33+=+-⋅=n n S n n a ,所以23+=n n n S a .当2n 时,112133--++=-=-n n n n n n n a S S a a ,所以1(1)(1)--=+n n n a n a ,即111-+=-n n a n a n (2n );累积法可得:(1)2+=n n n a (2n ),又11=a 满足该式,所以{}n a 得通项公式为(1)2+=n n n a .(2)121111112[]1223(1)+++=+++⨯⨯+ n a a a n n 111112(1)2231=-+-++-+ n n 12(1)21=-<+n .注:111111().n n n n a a d a a ++=-,则:1223111111111......()n n n a a a a a a d a a ++⇒+++=-.可以看到,裂项后一定可以得到一个估计.例3.已知等比数列{}()n a n N*∈为递增数列,且236324,522==+aa a a a .(1)求数列{}n a 的通项公式;(2)设()42n nn b n N a *-=∈,数列{}n b 的前n 项和为n S ,证明:6n S <.解析:(1)由题意,()2251123111522a q a q a q a q a q⎧=⎪⎨=+⎪⎩,解得11212a q ⎧=⎪⎪⎨⎪=⎪⎩或122a q =⎧⎨=⎩,因为等比数列{}()n a n *∈N 为递增数列,所以122a q =⎧⎨=⎩,所以1222n nn a -=⨯=.(2)由(1)知数列{}n b 的前n 项和为:0111322212n n n S -=++-+ ①,112123212122223n n n n n S --=++-++ ②,两式相减可得:1112111112121232212312222211122212n n n n n n n n n S --⎛⎫=+⎛⎫- ⎪--+⎝⎭=+=+++-⎝-⎪⎭-- ,所以12362n n n S -+=-,又因为*n N ∈,所以12302n n -+>,所以123662n n n S -+=-<.类型3.先放缩通项再求和(公众号:凌晨讲数学)这一类是数列放缩问题的常考类型,相较于类型2而言,这一部分对放缩对象的处理需要一定的技巧,因而对很多学生来说具有挑战性,是数列放缩中的难点.此节中,我将分为如下几个点展开:第一,将通项放缩为可裂项的结构,然后裂项求和;第二,将通项放缩为等比结构(等差比结构)然后错位相减求和,总之,处理的基本原则就是将不可求和放缩成可求和再求和放缩.当然,下面的这些常见的裂项公式与放缩公式需要注意.1.常见的裂项公式:(公众号:凌晨讲数学)例如:n n n n n )1(11)1(12-<<+或者12112-+<<++n n nn n 等2.一个重要的指数恒等式:n 次方差公式123221()().n n n n n n n a b a b a a b a b ab b ------=-+++++ 这样的话,可得:1)(-->-n nnab a b a ,就放缩出一个等比数列.3.糖水不等式:设0,0>>>c m n ,则cn cm n m ++<.下面来看上面这些基本的放缩结构的应用.例4.(2013年广东)设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N .(1)求2a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有1211174n a a a +++< .解析:(2)当2n ≥时,32112233n n S na n n n +=---,()()()()321122111133n n S n a n n n -=-------两式相减得()()()2112213312133n n n a na n a n n n +=----+---整理得()()111n n n a na n n ++=-+,即111n n a a n n +-=+,又21121a a-=故数列n a n ⎧⎫⎨⎬⎩⎭是首项为111a =,公差为1的等差数列,所以()111n a n n n =+-⨯=,所以2n a n =.(公众号:凌晨讲数学)(3)当1n =时,11714a =<;当2n =时,12111571444a a +=+=<;当3n ≥时,()21111111n a n n n n n=<=---,此时222121111111111111111434423341n a a a n n n ⎛⎫⎛⎫⎛⎫+++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭11171714244n n =++-=-<,综上,对一切正整数n ,有1211174n a a a +++<下面我们再看将通项放缩成等比(等差比数列)再求和完成放缩证明.例5.(2014全国2卷)已知数列{}n a 满足1a =1,131n n a a +=+.(1)证明{}12n a +是等比数列,并求{}n a 的通项公式;(2)证明:1231112na a a ++<…+.解析:(1)证明:由131n n a a +=+得1113()22n n a a ++=+,又11322a +=,所以1{}2n a +是首项为32,公比为3的等比数列,1322n n a +=,因此{}n a 的通项公式为312n n a -=(2)由(1)知1231nn a =-,因为当1n ≥时,13123n n --≥⨯,所以1113123n n -≤-⨯于是12-112311-1111111313311-13332321-3n n n n a a a a ++++<++++==< (.所以123111132n a a a a ++++< .注:此处13123nn --≥⨯便是利用了重要的恒等式:n 次方差公式:123221()().n n n n n n n a b a b a a b a b ab b ------=-+++++ 当然,利用糖水不等式亦可放缩:13133132-=<-n n n ,请读者自行尝试.类型4.基于递推结构的放缩1.nnn a a a +=+11型:取倒数加配方法.例6.(2021浙江卷)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则()A.100332S <<B.10034S <<C.100942S <<D.100952S <<解析:由211111124n n n a a a ++⎛⎫==+-⎪⎪⎭2111122n a +⎛⎫∴<++⎪⎪⎭12<根据累加法可得,11122n n -+≤+=,当且仅当1n =时取等号,12412(1)311n n n n a n a a a n n n ++∴≥∴=≤=++++.一方面:252111)1(41002>⇒+-+>+>S n n n a n .另一方面113n n a n a n ++∴≤+,由累乘法可得6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭,即100332S <<.故选:A.2.二次递推型:r qa pa a n n n ++=+21.12121211+++++=-⇒+=-⇒++=n n n n n nn n n nn a a r pa a qa r pa qa a r qa pa a ,然后裂项即可完成放缩,我们以2015浙江卷为例予以说明.例7.(2015浙江卷)已知数列{}n a 满足1a =12且1n a +=n a -2n a (n ∈*N )(1)证明:112nn a a +≤≤(n ∈*N );(2)设数列{}2n a 的n 项和为n S ,证明112(2)2(1)n S n n n ≤≤++(n ∈*N ).分析:=-⇒=-++n n n n n a a a a a 11121211[1,2]1n n n n n na a a a a a +==∈--,累加,则可证得.解析:(1)由题意得210n n n a a a +-=-≤,即1n n a a +≤,故12n a ≤.由11(1)n n n a a a --=-得1211(1)(1)...(1)0n n n a a a a a --=--->,由102n a <≤得211[1,2]1n n n n n n a a a a a a +==∈--,即112n n a a +≤≤.(2)由题意得21n n n a a a +=-,所以11n n S a a +=-①,由1111n n n n a a a a ++-=和112n n a a +≤≤得11112n n a a +≤-≤所以11112n n n a a +≤-≤,因此*111()2(1)2n a n N n n +≤≤∈++②由①②得:*11()2(2)2(1)n S n N n n n ≤≤∈++.类型5.数列中的恒成立例8.已知数列{}n a 中,11a =,满足()*1221N n n a a n n +=+-∈.(1)求数列{}n a 的通项公式;(2)设n S 为数列{}n a 的前n 项和,若不等式240nn S λ⋅++>对任意正整数n 恒成立,求实数λ的取值范围.解析:(1)()()1211221n n a n a n ++++=++,所以{}21n a n ++是以12114a +⨯+=为首项,公比为2的等比数列,所以1121422n n n a n -+++=⨯=,所以1221n n a n +=--.(2)()()()231122325221n n n S a a a n +⎡⎤=+++=-+-++-+⎣⎦()()23122235721n n +=+++-+++++ ()()222212321122242n n n n n n +-++=--=---,若240nn S λ⋅++>对于*N n ∀∈恒成立,即22222440n n n n λ+⋅+---+>,可得22222nn n n λ+⋅>+-即2242nn n λ+>-对于任意正整数n 恒成立,所以2max242n n n λ⎡⎤+>-⎢⎥⎣⎦,令()242n nn n b +=-,则21132n n n n b b ++--=,所以1234b b b b <>>>⋯,可得()222max222422n b b +⨯==-=-,所以2λ>-,所以λ的取值范围为()2,-+∞.类型6.利用导数产生数列放缩1.由不等式1ln -≤x x 可得:+∈<+<+N n nn n ,1)11ln(11.例9.(2017全国3卷)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1(1)222n m ++⋅⋅⋅+<,求m 的最小值.解析:(2)由(1)知当(1,)x ∈+∞时,1ln 0x x -->,令112n x =+得11ln(1)22n n +<,从而221111111ln(1ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=-<.故2111(1)(1)(1)222n e ++⋅⋅⋅+<,而23111(1)(1)(1)2222+++>,所以m 的最小值为3.2,.两个正数a 和b 的对数平均定义:(),(,)ln ln ().a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩对数平均与算术平均、几何平均的大小关系:(,)2a bL a b +≤≤(此式记为对数平均不等式,取等条件:当且仅当a b =时,等号成立.进一步,在不等式左端结合均值不等式可得:当0b a >>时211ln ln b a b a a b->-+,即111ln ln ()2b a b a a b-<+-.令,1a n b n ==+,则111ln(1)ln ()21n n n n +-<++,所以111ln(1)ln (21n n n n +-<++①.(,)L a b<1ln ln ln 2ln (1)a ab x x x b x ⇔-⇔⇔<->其中,接下来令t =2>11(1)n ln n >+,1(n ln n+>②.例10.已知函数(1)()ln(1)1x x f x x xλ+=+-+.(1)若0x ≥时,()0f x ≤,求λ的最小值;(2)设数列{}n a 的通项111123n a n =++++ ,证明:21ln 24n n a a n-+>.解析:(1)综上可知,λ的最小值时12.(2)由上述不等式①,所以111ln(1)ln (21n n n n +-<++,111ln(2)ln(1)()212n n n n +-+<+++,111ln(3)ln(2)(223n n n n +-+<+++…,111ln 2ln(21)(2212n n n n--<+-.将以上各不等式左右两边相加得:1122221ln 2ln (2123212n n n n n n n n-<+++++++++- ,即111211ln 22123214n n n n n n<+++++++++- ,故11211ln 212324n n n n n +++++>+++ ,即21ln 24n n a a n-+>.例12.已知函数()ax x f x xe e =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设*n N ∈(1)ln n ++⋯+>+.1()n ln n+>,进一步求和可得:11231((...(1)12nnk k k n ln ln ln n k n==++>=⨯⨯⨯=+∑,...(1)ln n ++.。

证明数列不等式的常用放缩方法技巧精减版

证明数列不等式的常用放缩方法技巧精减版

证明数列不等式的常用放缩方法技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能 全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素 材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进 行恰当地放缩;其放缩技巧主要有以下几种:.-T 2⑴添加或舍去一些项,如:a ⑵将分子或分母放大(或缩小)1 1例2. a n (一)",前n 项和为S n ,求证:Sn —3 2先放缩再求和1) n⑶利用基本不等式,如: ig3 ig5 (lg3 lg5)2 ⑷二项式放缩:2n (1 1)n 2n c ° c n c ; c 0 n 2 c n n 22 2c n , 2n 2 n(n C 0 c1)(n 2)(5)利用常用结论:I . 1的放缩:k 1的放缩⑴ k 2 k 1 k(k 1) k .. 1 k(k 1)(程度大)IV . 右的放缩⑵ 1 k 2 1 (k 1)(k)(程度小)1的放缩(3): k 2 1 k 7 2G 1 )(程度更小)2k 1,n(n 1)山尸ig4 ;2分式放缩还可利用真(假) 分数的性质 :b —(b a 0,m 0)和b —(a b 0,m 0) a a m a a m记忆口诀“小者小,大者大”。

解释:看b ,若b 小,则不等号是小于号,反之亦然.W .构造函数法 构造单调函数实现放缩。

例: f(x) — (x 0),从而实现利用函数单调性质的放缩:1 xf(a b) f(a b)。

先求和再放缩例 1. a n ,前n 项和为S n ,求证: n (n 1)S n 111(一)放缩后裂项相消 例 3•数列{a n } , an ( 1)n n ,其前 n 项和为Sn ,求证:S2n(二)放缩后转化为等比数列。

{b n }满足:3 1,b n 例4. b n 2 (n 2)b n 3 (1) 用数学归纳法证明: 1b nT n(2) bi 3 b 23 b s bn ,求证: T n三、裂项放缩例 5.(1) 2 k 1 4k 2-的值; 1求证:例 6.(1) 1 1 1 7 32 52 (2n 1)2 6 1 1 1 1 16 36 4n 2 2 1 1■,7n 1 1) 1 L L 求证: 求证: 1 4 求证:1 2(2n 1) 丄 4n 丄 £(j 2n 1 1)/n1 (n 2) 例7.求证: (n 1)(2n 1) 6n例 8.已知 a n 4n 2n ,T 2n ,求证:T T Ta i a 2 a n四、分式放缩姐妹不等式:b a 0,m 0)和b a a m a记忆口诀”小者小,大者大” 解释:看b ,若b 小,则不等号是小于号,反之亦然.例9.姐妹不等式:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

证明数列不等式的常用放缩方法技巧
证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: ⑴添加或舍去一些项,如:a a >+12;n n n >+)1(
⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:4lg 16lg 15lg )25lg 3lg (5lg 3lg 2=<=+<⋅;2)1()1(++<+n n n n
⑷二项式放缩: n n n n n n C C C +++=+=Λ10)11(2,1210+=+≥n C C n n n ,
2
222210++=++≥n n C C C n n n n )2)(1(2≥->n n n n (5)利用常用结论:
Ⅰ.
的放缩 Ⅱ. 21k
的放缩(1) :
2111(1)(1)k k k k k <<+-(程度大) Ⅲ. 21k 的放缩(2):22111111()1(1)(1)211k
k k k k k <==+-+--+(程度小) Ⅳ. 2
1k 的放缩(3):221
4112()412121k k k k <=+--+(程度更小) Ⅴ. 分式放缩还可利用真(假)分数的性质:)0,0(>>>++>m a b m a m b a b 和)0,0(>>>++<m b a m
a m
b a b
记忆口诀“小者小,大者大”。

解释:看b ,若b 小,则不等号是小于号,反之亦然.
Ⅵ.构造函数法 构造单调函数实现放缩。

例:()(0)1x f x x x
=≥+,从而实现利用函数单调性质的放缩:()()f a b f a b +≤+。

一. 先求和再放缩
例1.)
1(1+⋅=
n n a n ,前n 项和为S n ,求证:1<n s
例2.n n a )31(= , 前n 项和为S n ,求证:2
1<n s
二. 先放缩再求和 (一)放缩后裂项相消
例3.数列
{}n a ,11(1)n n a n +=-,其前n 项和为n s
,求证:
22n s <
(二)放缩后转化为等比数列。

例4. {}n b 满足:2111,(2)3n n n b b b n b +≥=--+
(1) 用数学归纳法证明:n b n ≥
(2)
1231111...3333n n T b b b b =
++++++++,求证:12n T <
三、裂项放缩 例5.(1)求∑=-n k k 12142的值; (2)求证:35112<∑=n k k .
例6.(1)求证:)2()12(2167)
12(151311222≥+->-++++n n n Λ
(2)求证:n
n 412141361161412-≤++++Λ (3)求证:)112(2131211)11(2-+<++++<-+n n
n Λ
例7.求证:3
5191411)12)(1(62<++++≤++n n n n Λ
例8.已知n n n a 24-=,n n n
a a a T +++=Λ212,求证:2
3321<++++n T T T T Λ.
四、分式放缩
姐妹不等式:)0,0(>>>++>m a b m a m b a b 和)0,0(>>>++<m b a m a m b a b
记忆口诀”小者小,大者大”
解释:看b ,若b 小,则不等号是小于号,反之亦然. 例9. 姐妹不等式:12)1
211()511)(311)(11(+>-++++n n Λ和
1
21)211()611)(411)(211(+<+---n n Λ也可以表示成为 12)
12(5312642+>-⋅⋅⋅⋅⋅⋅⋅n n n ΛΛ和121
2642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n n n ΛΛ
例10.证明:.13)2
311()711)(411)(11(3+>-++++n n Λ
五、均值不等式放缩
例11.设.)1(3221+++⋅+⋅=n n S n Λ求证.2)1(2)1(2
+<<+n S n n n
例12.已知函数bx a x f 211)(⋅+=,a>0,b>0,若5
4)1(=f ,且)(x f 在[0,1]上的最大值为21, 求证:.2121)()2()1(1
-+>++++n n n f f f Λ
六、二项式放缩
n n n n n n C C C +++=+=Λ10)11(2,1210+=+≥n C C n n n ,
例13.设N n n ∈>,1,求证)
2)(1(8)32(++<n n n .
例14. n n a 32⋅= , 试证明:.121111424n n n a a a +++<+L ≤
七、部分放缩(尾式放缩)
例15.求证:
74123112311311<+⋅+++⨯++-n Λ
例16. 设++=a n a 2
11.2,131≥++a n a a Λ求证:.2<n a
八、函数放缩
例17.求证:)(665333ln 44ln 33ln 22ln *N n n n n n
∈+-<++++Λ.
例18.求证:)2()
1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n αααααααΛ
例19. 求证:n n n 1211)1ln(113121+++<+<++++ΛΛ
九、借助数列递推关系
例20. 若1,111+=⋅=+n a a a n n ,求证:)11(211121-+≥+++n a a a n Λ
例21.求证:1222642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n n
n ΛΛΛ
十、分类放缩 例22.求证:2
12131211n n >-++++Λ。

相关文档
最新文档