时序逻辑电路-数字电子技术
王海光数字电子技术基础 第5章 时序逻辑电路

与触发器的对应关系,还应给出排序示范
图 ( 如 图 5.1.2 示 范 图 圆 圈 中 标 注 的 Q3Q2Q1 ),对含多个输入输出端的时序
电路,也应在示范图中标出(如图5.1.2中
指向线上标注的/Y)。
5.1.1 时序逻辑电路的人工分析
(5)电路功能判断说明。
对电路功能的判断应结合输入输出信号的具体物理含义来
5.1.1 时序逻辑电路的人工分析
*二、异步时序逻辑电路的分析
与同步时序电路不同的是,异步时序电路中的所有触发 器并非由同一时钟源触发,所以在根据电路的现态计算电路 的次态时,应特别注意各个触发器的时钟条件是否具备。只 有时钟条件具备的触发器才会按状态方程描述的逻辑关系转
换成次态,否则将维持现态不变。为此在分析异步时序电路
组合逻辑电路
Y1 Yj
Z Zk 存储电路
图5.0.1 时序逻辑电路结构示意框图
这四种信号之间的逻辑关系可用以下三个向量函数表示: 输出方程:Y(tn)=F1[X(tn),Q(tn)]
驱动方程:Z(tn)=F2[X(tn),Q(tn)]
状态方程: Q(tn+1)=F3[Z(tn),Q(tn)] 式中tn、tn+1是对电路进行考察的两个相邻的离散时间。
5.1.1 时序逻辑电路的人工分析
一、同步时序逻辑电路的分析 导出同步时序电路的状态转换表、状态转换图和时序波 形图,判断时序电路逻辑功能的通常步骤:
1.根据给定的时序电路列出电路的输出方程和驱动方程组。 2.将各个驱动方程代入对应触发器的特性方程得到整个时序 电路的状态方程组。 3.根据电路的状态方程组计算列出电路的状态转换表。 4.根据电路的状态转换表画出状态转换图或时序波形图。 5.根据状态转换图或时序波形图说明电路的逻辑功能,判断 电路能否自启动。
数字电子技术基础-第六章_时序逻辑电路(完整版)

T0 1
行修改,在0000 时减“1”后跳变 T1 Q0 Q0(Q3Q2Q1)
为1001,然后按
二进制减法计数
就行了。T2 Q1Q0 Q1Q0 (Q1Q2Q3 )
T3 Q2Q1Q0
50
能自启动
47
•时序图 5
分 频
10 分 频c
0
t
48
器件实例:74 160
CLK RD LD EP ET 工作状态 X 0 X X X 置 0(异步) 1 0 X X 预置数(同步) X 1 1 0 1 保持(包括C) X 1 1 X 0 保持(C=0) 1 1 1 1 计数
49
②减法计数器
基本原理:对二进 制减法计数器进
——74LS193
异步置数 异步清零
44
(采用T’触发器,即T=1)
CLKi
CLKU
i 1
Qj
j0
CLKD
i 1
Qj
j0
CLK0 CLKU CLKD
CLK 2 CLKU Q1Q0 CLK DQ1Q0
45
2. 同步十进制计数器 ①加法计数器
基本原理:在四位二进制 计数器基础上修改,当计 到1001时,则下一个CLK 电路状态回到0000。
EP ET 工作状态
X 0 X X X 置 0(异步)
1 0 X X 预置数(同步)
X 1 1 0 1 保持(包括C)
X 1 1 X 0 保持(C=0)
1 1 1 1 计数
39
同步二进制减法计数器 原理:根据二进制减法运算 规则可知:在多位二进制数 末位减1,若第i位以下皆为 0时,则第i位应翻转。
Y Q2Q3
数电知识点总结

数电知识点总结数电(数位电子)是一门研究数字电子技术的学科,涉及到数字电路、数字信号处理、数字系统等多个方面的知识。
数字电子技术已经成为现代电子工程技术的基础,并且在通信、计算机、控制、显示、测量等领域都有广泛的应用。
本文将从数字电路、数字信号处理和数字系统三个方面对数电的知识点进行总结。
1. 数字电路数字电路是将数字信号作为输入、输出,通过逻辑门、存储器等数字元器件完成逻辑运算和信息处理的电路。
数字电路是实现数字逻辑功能的基本组成单元,包括组合逻辑电路和时序逻辑电路两种类型。
1.1 组合逻辑电路组合逻辑电路是由若干逻辑门进行组合而成的电路,其输出仅取决于当前输入的组合,不受到电路内过去的状态的影响。
组合逻辑电路主要包括门电路(与门、或门、非门等)、编码器、译码器、多路选择器、加法器、减法器等。
常用的集成逻辑门有 TTL、CMOS、ECL、IIL 四种族类。
常见的集成逻辑门有 TTL、 CMOS、 ECL、 IIL 四种。
1.2 时序逻辑电路时序逻辑电路是组合电路与触发器相结合,结构复杂。
时序逻辑电路主要包括触发器、寄存器、计数器、移位寄存器等。
在传统的 TTL 集成电路中,触发器主要有 RS 触发器、 JK触发器、 D 触发器和 T 触发器四种。
在 CMOS 集成电路中一般用 T 触发器,D 触发器和 JK 触发器等。
2. 数字信号处理数字信号处理(DSP)是利用数字计算机或数字信号处理器对连续时间的信号进行数字化处理,包括信号的采样、量化和编码、数字滤波、谱分析、数字频率合成等基本处理方法。
数字信号处理已广泛应用于通信、音频、视频、雷达、医学影像等领域。
2.1 信号采样和量化信号采样是将连续时间信号转换为离散时间信号的过程,采样频率必须高于信号频率的两倍才能保证信号的完全重构。
信号量化是将采样得到的连续幅度信号转换为一个有限数目的离散的幅度值的过程,量化误差会引入信号失真。
2.2 数字滤波数字滤波是利用数字计算机对数字信号进行特定频率成分的增益或者衰减的处理过程。
数字电子技术第6章 时序逻辑电路

RD—异步置0端(低电平有效) 1 DIR—右移串行输入 1 DIL—左移串行输入 S0、S1—控制端 1 D0D1 D2 D3—并行输入
《数字电子技术》多媒体课件
山东轻工业学院
4、扩展:两片74LS194A扩展一片8位双向移位寄存器
《数字电子技术》多媒体课件
山东轻工业学院
例6.3.1的电路 (P276) 74LS194功能 S1S0=00,保持 S1S0=01,右移 S1S0=10,左移 S1S0=11,并入
(5)状态转换图
《数字电子技术》多媒体课件
山东轻工业学院
小结
1、时序逻辑电路的特点、组成、分类及描述方法; 2、同步时序逻辑电路的分析方法; 课堂讨论: 6.1,6.4
《数字电子技术》多媒体课件
山东轻工业学院
6.3 若干常用的时序逻辑电路
寄存器和移位寄存器 时序 逻辑电路 计数器 顺序脉冲发生器 序列信号发生器
移位寄存器不仅具有存储功能,且还有移位功能。 可实现串、并行数据转换,数值运算以及数据处理。 所谓“移位”,就是将寄存器所存各位数据,在每个移 位脉冲的作用下,向左或向右移动一位。
2、类型: 根据移位方向,分成三种:
左移 寄存器 (a) 右移 寄存器 (b) 双向 移位 寄存器 (c)
《数字电子技术》多媒体课件
学习要求 :
* *
自学掌握
1. 掌握寄存器和移位寄存器的概念并会使用; 2. 掌握计数器概念,熟练掌握中规模集成计数器74161 和74160的功能,熟练掌握用160及161设计任意进制计 数器的方法。
《数字电子技术》多媒体课件
山东轻工业学院
6.3.1寄存器和移位寄存器
一、寄存器
寄存器是计算机的主要部件之一, 它用来暂时存放数据或指令。
第6章_时序逻辑电路

数字电子技术(第5版)第6章时序逻辑电路1.(334)利用()可以把集成计数器设计成初态不为零的计数器。
答案.反馈置数法2.(318)时序逻辑电路由( ) 和( ) 两部分组成。
答案.组合电路存储电路3.(337)一个4位的扭环形计数器有()个状态。
答案. 84.(335)集成计数器的级联方式有()和()两种方式。
答案.异步同步5.(333)利用()和()可以改变集成计数器的计数长度。
答案.反馈归零法反馈置数法6.(332)一个模为24的计数器,能够记录到的最大计数值是()。
答案. 237.(331)计数器的模表示计数器的()计数长度。
答案.最大8.(329)构成时序电路的各触发器的时钟输入端都接在一起,这种时序电路称为()。
答案.同步时序电路9.(328)时序电路的输出不仅与电路的()有关,还与电路的()有关。
答案.现态输入信号10.(327)摩尔型时序电路的输出仅由电路的()决定,而与电路的( ) 无关。
(注:教材中没有讲述摩尔型电路的概念,故删去此题)答案.现态输入信号11.(326) 时序逻辑电路的功能描述有 ( ) 、 ( ) 、 ( ) 、 ( ) 。
答案. 逻辑方程式 状态表 状态图 时序图12.(330) 异步时序电路中的各触发器的状态转换 ( )同一时刻进行的。
答案. 不是在13.(336) 一个4位的环形计数器有( )个状态。
答案. 414.(325) 时序逻辑电路可分为 ( ) 和 ( ) 两大类。
答案. 同步时序电路 异步时序电路15.(354) 分析如图7307所示电路,说明其功能。
图7307输 入输 出CR LD T CT P CT CP 3D 2D 1D 0D 3Q 2Q 1Q 0QCO0 × × × × × × × × 000 10××↑3d 2d 1d 0d 3d 2d 1d 0d1111↑×××× 计数 110×××××× 保持 11××××××保持答案. 经分析知,采用了74LS160的同步置数功能。
数字电子技术时序逻辑电路

PPT文档演模板
数字电子技术时序逻辑电路
PPT文档演模板
图5-3 4位寄存器74LS175的逻辑图
数字电子技术时序逻辑电路
2. 移位寄存器 移位寄存器不仅具有存储的功能,而且还有移位功能,可以 用于实现串、并行数据转换。如图5-4所示为4位移位寄存器 的逻辑图。
PPT文档演模板
数字电子技术时序逻辑电路
5.1.2 异步时序逻辑电路的分析方法
异步时序电路的分析步骤:
① 写时钟方程; ② 写驱动方程; ③ 写状态方程; ④ 写输出方程。
PPT文档演模板
数字电子技术时序逻辑电路
[例5-2]试分析图示时序逻辑电路的逻辑功能,列出状态转换 表,并画出状态转换图。
PPT文档演模板
数字电子技术时序逻辑电路
解:图5-7所示电路为1个异步摩尔型时序逻辑电路。 写时钟方程:
数字电子技术时序逻辑电路
PPT文档演模板
图5-5 同步二进制加法计数器的数时字电序子图技术时序逻辑电路
PPT文档演模板
图5-8 同步4位二进制加法计数器74LS16数1字的电逻子技辑术图时序逻辑电路
表5-1 同步4位二进制加法计数器74LS161的功能表
PPT文档演模板
数字电子技术时序逻辑电路
写驱动方程:
写状态方程:
PPT文档演模板
数字电子技术时序逻辑电路
列状态转换表:
PPT文档演模板
数字电子技术时序逻辑电路
画状态转换图:
PPT文档演模板
数字电子技术时序逻辑电路
5.2 若干常用的时序逻辑电路 5.2.1寄存器
1. 基本寄存器
PPT文档演模板
图5-2 双2位寄存器74LS75的逻辑图
时序逻辑电路的分析方法

利用染色体畸变和基因
突变为指标监测环境污染 物的致突变作用
理生化变 化为指标
来监测环
单元1 时序逻辑电路的分析方法
一、生物监测的主要方法
《数字电子技术》
1.生物群落法(生态学方法) 利用生物群落组成和结构的变化及生态 系统功能的变化为指标监测环境污染。
(1)寻找指示生物
例如:蜗虫
水蚯蚓
(2)了解污染物对生物群落的影响
单元1 时序逻辑电路的分析方法
号作用前电路的输出状态有关。
时序逻辑电路 方框图
特点:(1)时序电路往往包含组合电路和存储电路两
部分,而存储电路是必不可少的。(2)存储电路输出 的状态必须反馈到输入端,与输入信号一起共同决定组 合电路的输出。
分类:同步时序逻辑电路:所有触发器的时钟端均连
在一起由同一个时钟脉冲触发,使之状态的变化都与输 入时钟脉冲同步。 异步时序逻辑电路:只有部分触发器的时钟端与输入时 钟脉冲相连而被触发,而其它触发器则靠时序电路内部 产生的脉冲触发,故其状态变化不同步。
时序图:在时钟脉冲序列作用下,电路状态、输出状态随时间变化的 波形图。
单元1 时序逻辑电路的分析方法
1.2 时序逻辑电路的分析方法
《数字电子技术》
[例1-1] 试分析电路的逻辑功能,并画出状态转换图和时序图。
解: 1、写方程式
(1)输出方程
(2)驱动方程
一单、元生1 时物序监逻辑测电的路主的分要析方方法法有哪些?
《数字电子技术》
[例1-1] 试分析电路的逻辑功能,并画出状态转换图和时序图。
解: 1、写方程式
(2)驱动方程
(3)状态方程
单元1 时序逻辑电路的分析方法
1.2 时序逻辑电路的分析方法
数字电子技术时序逻辑电路习题

5、画逻辑电路图
T1 = Q1 + XQ0 T0 = XQ0 + XQ0 Z = XQ1Q0
第43页/共55页
6、检查自启动
全功能状态转换表
现 入 现 态 次 态 现驱动入 现输出
Xn Q1n Q0nQ1n+1Q0n+1 T1 T0
Zn
1/0
0/0 0 0 0 0 1 0 1
0
现入 现态 次 态
X Q1 Q0 Q1 Q0 0 0 00 1 0 0 11 0 0 1 00 0
1 0 00 1 1 0 11 0 1 1 01 1 1 110 0
现驱动入 现输出
D1 D0 01 10 00
Z1 Z2
00 00 10
01 10 11 00
00 00 00 01
D1 = Q1Q0 + Q1Q0X
标题区
节目录
第14页/共55页
X/Z
S0 1/0
S1
1/1
0/0
S2
10101…
题6.2(1)的状态转移图
③ 状态间的转换关系
标题区
节目录
第15页/共55页
X/Z
0/0 S0 1/0
S1 1/0
1/1
11…
0/0
0/0
100…
S2
题6.2(1) 的原始状态转移图
标题区
节目录
第16页/共55页
(2) 解:① 输入变量为X、输出变量为Z;
S1 1/0
11…
0/0
1/1
0/0
100…
S2
题6.2(2) 的原始状态转移图
标题区
节目录
第19页/共55页
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 计算、列状态表
Q1n1 X Q1n Q0n Q0n1 Q0n Y X Q1n
2、时序电路逻辑功能的表示方法
时序电路的逻辑功能可用逻辑表达式、状态表、卡诺图、状态 图、时序图和逻辑图6种方式表示,这些表示方法在本质上是相 同的,可以互相转换。
逻辑表达式有:
输出方程
W Yji G Fij((X X 11 ,,X X22,, ,,X Xpp;;Q Q 1n 1n,,Q Q 2 n2 n,, ,,Q Q q nq n)) Qkn1Hk(W 1,W 2, ,W r;Q 1n,Q2 n, ,Qq n)
74LS74为双上升沿D触发器
CP为时钟输入端; D为数据输入端;
Q, Q 为互补输出端; R D 为直接复位端, 低电平有效; S D 为直接置位端, 低电平有效; R D 和 S D 用来设置初始状态。
74LS74管脚排列图
VC C 2RD 2D 2C P 2SD 2Q 2Q
14
8
输出方程
5 状态图、 状态表或 时序图
状态方程
3 4
计算
二、分析举例:
例
FF0
FF1
1J
Q0 1J
Q1
FF2 1J
&Y Q2
C1
C1
C1
1K
1K
1K
Q0
Q1
Q2
CP
1 时钟方程: C2P C1P C0P CP同钟步方时程序可电省路去的不时写。
写 输出方程: YQ1nQ2n
方 程 式
驱动方程:
J2 J1
7.3 计数器
7.4 寄存器和移位寄存器
*7.5 同步时序逻辑电路的设计
*7.6 数字系统一般故障的检查和排除
返回主目录
退出
输 入 X1 Xp
7.1 概述
1、时序电路的特点
…
…
Y1 输 出
组合电路
Ym
Q1 Qt …
存储电路
W1 … Wr
时序电路在任何时刻的稳定输出,不仅与该时刻的 输入信号有关,而且还与电路原来的状态有关。
16
9
CC40 27
1
8
1Q 1Q 1CP 1RD 1K 1J 1SD VSS
CMOS触发器管脚排列图
CC4027的功能表
输
入
输出
RD
SD CP J
KQ Q
1
0
×
×
0
1
0
1
×
×
1
0
1
1
×
×
1
1
0
0
10
0 Qn
Qn
0
0
10
10
1
0
0
11
01
0
0
0
11
1 Qn
Qn
第7章 时序逻辑电路
7.1 概述
7.2 时序逻辑电路的分析的方法
电 递增规律变化的,即:
路
000→001→011→111→110→100→000→…
功 能
所以这是一个用格雷码表示的六进制同步加法计数器。 当对第6个脉冲计数时,计数器又重新从000开始计数, 并产生输出Y=1。
X
FF0
FF1
&
Y
例 “1” 1T
Q0 =1 1T
Q1
C1
C1
CP
Q0
Q1
1 同步时序电路,时钟方程省去。
Q Q12nn 11 JJ12Q Q12nnK K12Q Q1n2nQ Q0n1nQ Q1n2nQ Q0n1nQ Q1n2nQ Q0n1n Q0n1J0Q0n K0Q0n Q2nQ0n Q2nQ0n Q2n
3 计算、列状态表
Q Q
n 2
n 1
1 1
Q
n 1
Q
n 0
Q
n 1 0
Q
n 2
Y
Q
n 2
74L S7 4
1
7
1RD 1D 1C P 1SD 1Q 1Q GND
CMOS触发器
CMOS触发器与TTL触发器一样,种类
繁多。常用的集成触发器有74HC74(D触 发器)和CC4027(JK触发)。 用时注意CMOS触发器电源电压为3~18V。
VD D 2Q 2Q 2CP 2RD 2K 2J 2SD
写பைடு நூலகம்
输出方程:YXQ1nXQ1n
输出与输入有关, 为米利型时序电路。
方
程 式
驱动方程: T1 X Q0n T0 1
2 求状态方程
T触发器的特性方程:
Qn1TQn
将各触发器的驱动方程代入,即得电路的状态方程:
Q Q10n n 1 T0T1 Q Q 0n1n 1 XQ 0nQ 0nQ 0nQ1n
*(2)根据输出分类
米利型时序电路 的输出不仅与现态有关,而且还决定于电路
当前的输入。
穆尔型时序电路 的其输出仅决定于电路的现态,与电路当前
的输入无关;或者根本就不存在独立设置的输出,而以电路 的状态直接作为输出。
7.2.1 同步时序逻辑电路的分析方法
一、基本分析步骤:
1
电路图
判断电路 逻辑功能
时钟方程、 2 驱动方程和
一句话说得合宜, 就如金苹果在银网子里。
箴言25:11
上次课主要内容
同步RS触发器 同步D触发器 同步JK触发器 边沿触发器 触发器之间的相互转换
1、在应用触发器时,要特别注意触发 形式,否则很容易造成整个数字系 统工作不正常。
2、边沿触发抗干扰能力强,且不存在 空翻,应用较广泛。
集成D触发器
Q1n Q0n
J0 Q2n
输出仅与电路现态有关, 为穆尔型时序电路。
K2 Q1n K1 Q0n K0 Q2n
2 求状态方程
JK触发器的特性方程:
J2 J1
Q1n Q0n
J0 Q2n
Qn1JQnKQn
K2 Q1n K1 Q0n K0 Q2n
将各触发器的驱动方程代入,即得电路的状态方程:
Q
n 1
Q Q
nn 11 22
nn 11 11
10 10
Q
nn 11 00
10
10
Y 0 10 10
现态
Q
n 2
Q
n 1
Q
n 0
000
001
010
011
100
101
110
111
次态
Q
n 1 2
Q
n 1
1
Q
n 1 0
001
011
101
111
000
010
100
110
输出
Y
0 0 0 0 1 1 0 0
i1,2, ,m j1,2, ,r k1,2, ,t
状态方程
激励方程
3、时序电路的分类
(1) 根据时钟分类
同步时序电路 中,各个触发器的时钟脉冲相同,即电路中有
一个统一的时钟脉冲,每来一个时钟脉冲,电路的状态只改 变一次。
异步时序电路 中,各个触发器的时钟脉冲不同,即电路中没
有统一的时钟脉冲来控制电路状态的变化,电路状态改变时, 电路中要更新状态的触发器的翻转有先有后,是异步进行的。
4 画状态图、时序图
排列顺序:
Q2nQ1nQ0n /Y
000→ /0001/→ 0 011
/1↑ ↓/0
100←110←111 /0 /0
/0
010
101
/1
(a) 有效循环
(b) 无效循环
状态图
CP
时 Q0 序 Q1 图
Q2
Y
5
有效循环的6个状态分别是0~5这6个十进制数字的格
雷码,并且在时钟脉冲CP的作用下,这6个状态是按