优先级调度算法实验报告
先来先服务,时间片调度,优先级调度算法实验报告

先来先服务,时间片调度,优先级调度算法实验报告实验报告1. 引言进程调度是操作系统中非常重要的一部分,它决定了进程在CPU上执行的顺序和时间长度。
在本次实验中,我们通过实现先来先服务调度算法、时间片调度算法和优先级调度算法,并对其性能进行比较,来深入了解各种调度算法的工作原理及优缺点。
2. 先来先服务调度算法先来先服务调度算法按照进程到达的先后顺序进行调度。
当一个进程到达时,如果CPU空闲,则将其分配给CPU进行执行;如果CPU 正在执行其他进程,则该进程将等待直到CPU空闲。
优点是简单易实现,适用于长作业。
缺点是可能出现饥饿现象,即低优先级的进程可能会一直等待高优先级进程的执行。
3. 时间片调度算法时间片调度算法将CPU的执行时间划分为固定长度的时间片,每个进程在一个时间片内执行,当时间片用完后,系统将切换到下一个进程执行。
该算法确保每个进程都有公平的执行时间,避免了饥饿现象。
然而,对于CPU利用率较高的情况下,可能会导致进程频繁地切换,增加了上下文切换的开销。
4. 优先级调度算法优先级调度算法根据进程的优先级来进行调度,优先级较高的进程将具有更高的执行优先级。
当多个进程同时到达CPU时,系统将选择优先级最高的进程先执行。
该算法可以分为静态优先级调度和动态优先级调度两种方式。
优点是可以根据进程的重要性灵活调整执行顺序。
缺点是可能导致优先级低的进程长时间等待,造成饥饿现象。
5. 实验结果与分析我们通过模拟多个进程的到达和执行过程,在不同的场景下比较了先来先服务调度算法、时间片调度算法和优先级调度算法的性能。
实验结果显示,在长作业的情况下,先来先服务调度算法表现较好;在要求公平性的场景下,时间片调度算法比较适合;而对于需要根据优先级来调度的场景,优先级调度算法可以更好地满足需求。
6. 结论不同的进程调度算法在不同的场景下有各自的优劣。
先来先服务调度算法简单易实现,适用于长作业;时间片调度算法保证了公平性,适用于要求公平的场景;而优先级调度算法则可以根据进程的重要性进行调度。
操作系统实验报告——调度算法

操作系统实验报告——调度算法1. 实验目的本实验旨在探究操作系统中常用的调度算法,通过编写代码模拟不同的调度算法,了解它们的特点和应用场景。
2. 实验环境本次实验使用的操作系统环境为Linux,并采用C语言进行编码。
3. 实验内容3.1 调度算法1:先来先服务(FCFS)FCFS调度算法是一种简单且常见的调度算法。
该算法按照进程到达的先后顺序进行调度。
在本实验中,我们使用C语言编写代码模拟FCFS算法的调度过程,并记录每个进程的等待时间、周转时间和响应时间。
3.2 调度算法2:最短作业优先(SJF)SJF调度算法是一种非抢占式的调度算法,根据进程的执行时间来选择下一个要执行的进程。
在本实验中,我们使用C语言编写代码模拟SJF算法的调度过程,并计算每个进程的等待时间、周转时间和响应时间。
3.3 调度算法3:轮转调度(Round Robin)Round Robin调度算法是一种经典的时间片轮转算法,每个进程在给定的时间片内依次执行一定数量的时间。
如果进程的执行时间超过时间片,进程将被暂时挂起,等待下一次轮转。
在本实验中,我们使用C语言编写代码模拟Round Robin算法的调度过程,并计算每个进程的等待时间、周转时间和响应时间。
4. 实验结果分析通过对不同调度算法的模拟实验结果进行分析,可以得出以下结论:- FCFS算法适用于任务到达的先后顺序不重要的场景,但对于执行时间较长的进程可能会导致下一个进程需要等待较久。
- SJF算法适用于任务的执行时间差异较大的场景,能够提高整体执行效率。
- Round Robin算法适用于时间片相对较小的情况,能够公平地为每个进程提供执行时间。
5. 实验总结本次实验通过模拟不同调度算法的实际执行过程,深入了解了各种调度算法的原理、特点和适用场景。
通过对实验结果的分析,我们可以更好地选择合适的调度算法来满足实际应用的需求。
在后续的学习中,我们将进一步探索更多操作系统相关的实验和算法。
操作系统优先调度算法实验报告

scanf("%d",&a);
printf("\nPlease input the process name,arrive time and run time:\nFor example: 1 2 1\n");
for(i=0;i<a;i++)
注意:
实验报告将记入实验成绩;
每次实验开始时,交上一次的实验报告,否则将扣除此次实验成绩。
********************************************
name arrive run rest state
3 4 3 1 running
********************************************
name arrive run rest state
为考虑进程所需时间小于时间片大小的情况,如:进程运行完一次时间片时间中断后,但下一个进程的提交时间要迟很多,这时候就会浪费很多时间等待,这是该程序还需改进的地方。
另外,本实验中的RR算法的时间片大小固定,所以实际是属于基本轮转法,还有种是时间片长短是变化的,即改进轮转法。在基本轮转法中,时间片大小的设置是关键。时间片设得太短会导致过多的进程切换,降低了CPU效率;而设得太长又可能引起对短的交互请求的响应变差。据悉,通常,时间片的长度为几十毫秒到几百毫秒,而将时间片设为100毫秒通常是一个比较合理的折衷。
5.实验环境:实验用的软硬件环境(配置)。
6.实验方案设计(思路、步骤和方法等):这是实验报告极其重要的内容。概括整个实验过程。
先来先服务调度和最短作业优先调度算法实验报告

先来先服务调度和最短作业优先调度算法实验报告实验报告一、实验目的本实验旨在通过编写代码实现先来先服务调度算法和最短作业优先调度算法,以深入理解和掌握这两种调度算法的原理和实现方法。
二、实验方法和原理1.先来先服务调度算法(FCFS)2.最短作业优先调度算法(SJF)最短作业优先调度算法是根据作业所需的运行时间进行调度的。
当一个作业到达并获得CPU后,系统会选择剩余运行时间最短的作业进行处理,这样可以最大化地提高系统的吞吐量。
三、实验过程与结果1.先来先服务调度算法的实现我们先定义一个作业类Job,其中包含作业名称、到达时间和运行时间等属性。
首先根据到达时间对作业队列进行排序,然后按照顺序执行作业,记录每个作业的开始时间、结束时间和周转时间等指标。
下面是先来先服务调度算法的代码实现部分:```pythonclass Job: = namedef fcfs_scheduler(jobs):for job in sorted_jobs:#创建作业队列jobs =Job("Job1", 0, 3),Job("Job2", 1, 4),Job("Job3", 2, 2),Job("Job4", 4, 1)#调度作业fcfs_scheduler(jobs)#输出结果for job in jobs:```运行以上代码,会得到作业的开始时间、结束时间和周转时间等信息。
2.最短作业优先调度算法的实现最短作业优先调度算法需要知道每个作业的运行时间,而这个信息在实际情况中是未知的。
因此,我们可以先按到达时间对作业队列进行排序,然后在每个时间片中选择剩余运行时间最短的作业进行执行。
下面是最短作业优先调度算法的代码实现部分:```pythondef sjf_scheduler(jobs):while True:if not remaining_jobs:break#创建作业队列jobs =Job("Job1", 0, 3),Job("Job2", 1, 4),Job("Job3", 2, 2),Job("Job4", 4, 1)#调度作业sjf_scheduler(jobs)#输出结果for job in jobs:```运行以上代码,会得到相应的作业调度结果。
进程的调度实验报告(3篇)

第1篇一、实验目的通过本次实验,加深对操作系统进程调度原理的理解,掌握先来先服务(FCFS)、时间片轮转(RR)和动态优先级(DP)三种常见调度算法的实现,并能够分析这些算法的优缺点,提高程序设计能力。
二、实验环境- 编程语言:C语言- 操作系统:Linux- 编译器:GCC三、实验内容本实验主要实现以下内容:1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、服务时间、优先级、状态等信息。
2. 实现三种调度算法:FCFS、RR和DP。
3. 创建一个进程队列,用于存储所有进程。
4. 实现调度函数,根据所选算法选择下一个执行的进程。
5. 模拟进程执行过程,打印进程执行状态和就绪队列。
四、实验步骤1. 定义PCB结构体:```ctypedef struct PCB {char processName[10];int arrivalTime;int serviceTime;int priority;int usedTime;int state; // 0: 等待,1: 运行,2: 完成} PCB;```2. 创建进程队列:```cPCB processes[MAX_PROCESSES]; // 假设最多有MAX_PROCESSES个进程int processCount = 0; // 实际进程数量```3. 实现三种调度算法:(1)FCFS调度算法:```cvoid fcfsScheduling() {int i, j;for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;if (processes[i].usedTime == processes[i].serviceTime) { processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); }for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(2)RR调度算法:```cvoid rrScheduling() {int i, j, quantum = 1; // 时间片for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;processes[i].serviceTime--;if (processes[i].serviceTime <= 0) {processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); } else {processes[i].arrivalTime++;}for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(3)DP调度算法:```cvoid dpScheduling() {int i, j, minPriority = MAX_PRIORITY;int minIndex = -1;for (i = 0; i < processCount; i++) {if (processes[i].arrivalTime <= 0 && processes[i].priority < minPriority) {minPriority = processes[i].priority;minIndex = i;}}if (minIndex != -1) {processes[minIndex].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[minIndex].processName);processes[minIndex].usedTime++;processes[minIndex].priority--;processes[minIndex].serviceTime--;if (processes[minIndex].serviceTime <= 0) {processes[minIndex].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[minIndex].processName); }}}```4. 模拟进程执行过程:```cvoid simulateProcess() {printf("请选择调度算法(1:FCFS,2:RR,3:DP):");int choice;scanf("%d", &choice);switch (choice) {case 1:fcfsScheduling();break;case 2:rrScheduling();break;case 3:dpScheduling();break;default:printf("无效的调度算法选择。
操作系统优先级调度算法实验报告

操作系统优先级调度算法实验报告一、引言在操作系统中,进程调度是指将进程从就绪队列中选取一个最优的进程分配给CPU执行的过程。
优先级调度算法是一种常用的调度算法,根据进程的优先级来确定执行顺序。
本次实验旨在通过实例验证优先级调度算法的正确性和性能。
二、实验内容本次实验主要包括以下几个步骤:1.设计一个简单的操作系统,包括进程控制块(PCB)、就绪队列、等待队列等基本数据结构。
2.设计并实现优先级调度算法,包括进程创建、进程调度和进程结束等功能。
3.设计测试用例,并根据测试结果分析算法的正确性和性能。
三、实验设计1.数据结构设计(1)进程控制块(PCB):用于描述进程的属性和状态,包括进程ID、优先级、状态等信息。
(2)就绪队列:存放已经创建且处于就绪状态的进程。
(3)等待队列:存放因等待资源而暂停运行的进程。
2.优先级调度算法设计(1)进程创建:根据用户输入的优先级创建进程,并将进程添加到就绪队列中。
(2)进程调度:根据进程的优先级从就绪队列中选取一个进程,将其从就绪队列中移除,并将其状态设为运行。
(3)进程结束:当一个进程运行完成或被中断时,将其从就绪队列或等待队列中移除。
四、实验过程1.初始化操作系统,包括创建就绪队列和等待队列等数据结构。
2.设计测试用例,包括优先级相同和不同的进程。
3.执行测试用例,观察进程的执行顺序和调度性能。
4.根据测试结果分析算法的正确性和性能,包括是否按照优先级从高到低进行调度,以及调度过程中的上下文切换次数等指标。
五、实验结果与分析经过多次测试,实验结果如下:1.优先级相同的进程可以按照先来先服务的原则进行调度,无需进行优先级调度,因为它们具有相同的优先级。
2.优先级不同的进程可以按照优先级从高到低的顺序进行调度,优先级高的进程先执行,优先级低的进程后执行。
3.调度过程中的上下文切换次数与进程的切换次数相关,当优先级较高的进程频繁抢占CPU时,会导致上下文切换的次数增加,降低系统的性能。
操作系统最高响应比优先调度算法实验报告

操作系统最高响应比优先调度算法实验报告一、实验目的1.了解操作系统中调度算法的概念和特点;2.掌握最高响应比优先调度算法的原理和实现;3.通过实验验证最高响应比优先调度算法在不同场景下的性能表现。
二、实验原理最高响应比优先调度算法是一种比较常见的作业调度算法,主要用于提高作业的响应速度和用户体验。
该算法的原则是根据作业的响应比来决定作业的调度顺序,响应比越高,优先级越高。
响应比(Response Ratio)定义为:响应比=(等待时间+服务时间)/服务时间其中,等待时间指的是作业等待运行的时间,服务时间指的是作业需要运行的时间。
在最高响应比优先调度算法中,每次从就绪队列中选择响应比最高的作业进行调度,直到所有作业都完成。
三、实验过程1.设计实验场景,包括作业数、服务时间和到达时间等参数;2.实现最高响应比优先调度算法的调度程序;3.根据参数设置,将作业按照到达时间的先后顺序放入就绪队列;4.按照最高响应比优先调度算法的原则,选择响应比最高的作业进行调度;5.更新作业的等待时间和响应比,并记录作业的调度顺序;6.统计作业的平均等待时间和平均响应时间,并输出结果。
四、实验结果在实验中,我们设置了5个作业,服务时间分别为3、4、2、5、1,到达时间分别为0、1、2、3、4按照最高响应比优先调度算法的原则,调度顺序为作业3、作业1、作业2、作业4、作业5、计算得到的平均等待时间为(0+7+1+10+3)/5=4.2,平均响应时间为(3+7+3+14+1)/5=5.6五、实验总结通过本次实验,我们了解了最高响应比优先调度算法的原理和实现过程。
该调度算法能够有效提高作业的响应速度和用户体验,但在实际应用中也存在一些问题,比如容易出现饥饿现象,即一些低响应比的作业可能一直得不到调度。
在选择调度算法时,需要根据实际情况和需求来进行权衡和选择,最高响应比优先调度算法适用于对响应时间要求较高的场景,但在其他场景下可能不适用。
调度算法的实验报告

一、实验目的1. 理解操作系统调度算法的基本原理和概念。
2. 掌握几种常见调度算法的原理和实现方法。
3. 分析不同调度算法的性能特点,为实际应用提供参考。
二、实验内容本次实验主要涉及以下几种调度算法:先来先服务(FCFS)、最短作业优先(SJF)、优先级调度(Priority Scheduling)、最高响应比优先(HRRN)和时间片轮转(Round Robin)。
1. 先来先服务(FCFS)调度算法FCFS调度算法按照进程到达就绪队列的顺序进行调度,先到达的进程先执行。
该算法简单易实现,但可能导致长作业等待时间过长,从而降低系统吞吐量。
2. 最短作业优先(SJF)调度算法SJF调度算法优先选择执行时间最短的进程进行调度。
该算法可以最大程度地减少平均等待时间和平均周转时间,但可能导致长作业等待时间过长。
3. 优先级调度(Priority Scheduling)算法优先级调度算法为每个进程设置一个优先级,优先选择优先级高的进程进行调度。
该算法可以满足高优先级作业的需求,但可能导致低优先级作业长时间等待。
4. 最高响应比优先(HRRN)调度算法HRRN调度算法为每个进程设置一个响应比,优先选择响应比高的进程进行调度。
响应比是作业的等待时间与作业所需时间的比值。
该算法综合考虑了作业的等待时间和所需时间,是一种较为公平的调度算法。
5. 时间片轮转(Round Robin)调度算法时间片轮转调度算法将CPU时间划分为固定的时间片,按照进程到达就绪队列的顺序,每次只允许一个进程运行一个时间片。
如果进程在一个时间片内无法完成,则将其放入就绪队列的末尾,等待下一次调度。
该算法可以平衡各个进程的执行时间,但可能导致进程响应时间较长。
三、实验步骤1. 编写一个进程调度程序,实现上述五种调度算法。
2. 生成一个包含多个进程的作业队列,每个进程具有到达时间、所需运行时间和优先级等信息。
3. 分别采用五种调度算法对作业队列进行调度,并记录每个进程的执行情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
优先级调度算法实验报告院系:****************学院班级:***********姓名:***学号:************一、实验题目:优先级调度算法二、实验目的进程调度是处理机管理的核心内容。
本实验要求用高级语言编写模拟进程调度程序,以便加深理解有关进程控制快、进程队列等概念,并体会和了解优先级算法的具体实施办法。
三、实验内容1.设计进程控制块PCB的结构,通常应包括如下信息:进程名、进程优先数(或轮转时间片数)、进程已占用的CPU时间、进程到完成还需要的时间、进程的状态、当前队列指针等。
2.编写优先级调度算法程序3.按要求输出结果。
四、实验要求每个进程可有三种状态;执行状态(RUN)、就绪状态(READY,包括等待状态)和完成状态(FINISH),并假定初始状态为就绪状态。
(一)进程控制块结构如下:NAME——进程标示符PRIO/ROUND——进程优先数NEEDTIME——进程到完成还需要的时间片数STATE——进程状态NEXT——链指针注:1.为了便于处理,程序中进程的的运行时间以时间片为单位进行计算;2.各进程的优先数或,以及进程运行时间片数的初值,均由用户在程序运行时给定。
(二)进程的就绪态和等待态均为链表结构,共有四个指针如下:RUN——当前运行进程指针READY——就需队列头指针TAIL——就需队列尾指针FINISH——完成队列头指针五、实验结果:六、实验总结:首先这次实验的难度不小,它必须在熟悉掌握数据结构的链表和队列的前提下才能完成,这次实验中用了三个队列,就绪队列,执行队列和完成队列,就绪队列中的优先级数是有序插入的,当进行进程调度的时候,需要先把就绪队列的队首节点(优先级数最大的节点)移入执行队列中,当执行进程结束后,判断该进程是否已经完成,如果已经完成则移入完成队列,如果没有完成,重新有序插入就绪队列中,这就是这次实验算法的思想。
附录(算法代码):#include <stdio.h>#include <stdlib.h>#include <string.h>typedef struct node{char name[20]; /*进程的名字*/int prio; /*进程的优先级*///int cputime; /*CPU执行时间*/int needtime; /*进程执行所需要的时间*/char state; /*进程的状态,W--就绪态,R--执行态,F--完成态*/struct node *next; /*链表指针*/}PCB;PCB *ready=NULL,*run=NULL,*finish=NULL; /*定义三个队列,就绪队列,执行队列和完成队列*/int num;void GetFirst(); /*从就绪队列取得第一个节点*/void Output(); /*输出队列信息*/void InsertPrio(PCB *in); /*创建优先级队列,规定优先数越小,优先级越高*/ void InsertTime(PCB *in); /*时间片队列*/void InsertFinish(PCB *in); /*时间片队列*/void PrioCreate(); /*优先级输入函数*///void TimeCreate(); /*时间片输入函数*/void Priority(); /*按照优先级调度*///void RoundRun(); /*时间片轮转调度*/void main(){printf("优先数调度算法\n");printf("请输入要创建的进程数目:");scanf("%d",&num);PrioCreate();Priority();Output();}void GetFirst() /*取得第一个就绪队列节点*/{run = ready;if(ready!=NULL){run ->state = 'R';ready = ready ->next;run ->next = NULL;}}void Output() /*输出队列信息*/{PCB *p;p = ready;printf("进程名\t优先级\t需要时间\t进程状态\n");while(p!=NULL){printf("%s\t%d\t%d\t\t%c\t\n",p->name,p->prio,p->needtime,p->state);p = p->next;}p = finish;while(p!=NULL){printf("%s\t%d\t%d\t\t%c\t\n",p->name,p->prio,p->needtime,p->state);p = p->next;}p = run;while(p!=NULL){printf("%s\t%d\t%d\t\t%c\t\n",p->name,p->prio,p->needtime,p->state);p = p->next;}}void InsertPrio(PCB *in) /*创建优先级队列,规定优先数越小,优先级越低*/ {PCB *fst,*nxt;fst = nxt = ready;if(ready == NULL) /*如果队列为空,则为第一个元素*/{in->next = ready;ready = in;}else /*查到合适的位置进行插入*/{if(in ->prio >= fst ->prio) /*比第一个还要大,则插入到队头*/{in->next = ready;ready = in;}else{while(fst->next != NULL) /*移动指针查找第一个别它小的元素的位置进行插入*/{nxt = fst;fst = fst->next;}if(fst ->next == NULL) /*已经搜索到队尾,则其优先级数最小,将其插入到队尾即可*/{in ->next = fst ->next;fst ->next = in;}else /*插入到队列中*/{nxt = in;in ->next = fst;}}}}void InsertFinish(PCB *in) /*将进程插入到完成队列尾部*/{PCB *fst;fst = finish;if(finish == NULL){in->next = finish;finish = in;}else{while(fst->next != NULL){fst = fst->next;}in ->next = fst ->next;fst ->next = in;}}void PrioCreate() /*优先级调度输入函数*/{PCB *tmp;int i;printf("输入进程名字,进程所需时间和优先级数:\n");for(i = 0;i < num; i++){if((tmp = (PCB *)malloc(sizeof(PCB)))==NULL){perror("malloc");exit(1);}scanf("%s",tmp->name);getchar(); /*吸收回车符号*/scanf("%d",&(tmp->needtime));getchar();scanf("%d",&(tmp->prio));// tmp ->cputime = 0;tmp ->state ='W';//tmp ->prio = 20 - tmp->needtime; /*设置其优先级,需要的时间越多,优先级越低*/InsertPrio(tmp); /*按照优先级从高到低,插入到就绪队列*/}}void Priority() /*按照优先级调度,每次执行一个时间片*/{int flag = 1;GetFirst();while(run != NULL) /*当就绪队列不为空时,则调度进程如执行队列执行*/ {Output(); /*输出每次调度过程中各个节点的状态*/while(flag){run->prio -= 3; /*优先级减去三*///run->cputime++; /*CPU时间片加一*/run->needtime--;/*进程执行完成的剩余时间减一*/if(run->needtime == 0)/*如果进程执行完毕,将进程状态置为F,将其插入到完成队列*/{run ->state = 'F';// run->count++; /*进程执行的次数加一*/InsertFinish(run);flag = 0;}else /*将进程状态置为W,入就绪队列*/{run->state = 'W';//run->count++; /*进程执行的次数加一*///InsertTime(run);//再次插入就绪队列尾部InsertPrio(run);flag = 0;}}flag = 1;GetFirst(); /*继续取就绪队列队头进程进入执行队列*/ }。