35KV电网继电保护的设计
35kv线路继电保护设计

继电保护课程设计1、系统的等值电路图1.1 两台变压器的等值阻抗计算 电压百分数的计算:()()1(13)(12)(23)11%%%%17.510.5 6.510.7522k k k k U U U U ---=+-=+-=()()2(12)(23)(13)11%%%%10.5 6.517.50.2522k k k k U U U U ---=+-=+-=-()()3(13)(23)(12)11%%%%17.5 6.510.5 6.7522k k k k U U U U ---=+-=+-=变压器的等值阻抗计算:11%10.751000.1710010063k B T TN U S X S =•=•= 22%0.251000.00410010063k B T TN U S X S -=•=•=- 33% 6.751000.1110010063k B T TN U S X S =•=•= 1.2 系统的等值电路图系统的等值电路图如图1-1所示:图1-1 系统的等值电路图2、线路短路计算分别进行最大运行方式和最小运行方式下各条线路发生对称三相短路,单相接地短路,两相接地短路和两相短路。
2.1 各线路阻抗参数及计算公式经过查手册得:LGJ-400型线路=0x 0.396Ω/km ,LGJ-300型线路=0x 0.404Ω/km ,LGJ-150型线路=0x 0.425Ω/km ,LGJ-120型线路=0x 0.435Ω/km 。
利用计算公式:0x x l =• 2.2 各线路阻抗参数计算数值 2.2.1各线路阻抗参数计算数值各线路阻抗参数计算数值如下表2.1所示:2.2.2各线路阻抗参数标幺值计算数值标幺值计算为:2*BBU S x x ⋅= 计算数值如下表 2.2所示:(其中110 1.05115.5B U =⨯=Kv )表2.2 各线路阻抗标幺值计算数值L-3 L-4 L-5 L-6110KV0.18 0.15 0.23 0.102.3 三相短路计算2.3.1最大运行方式下短路电流计算 如图2-1所示发生(3)d 点短路时113B d L BS I X X U ε=•+。
35kv继电保护课程设计

35kv继电保护课程设计35kV继电保护课程设计引言:35kV继电保护是电力系统中的重要组成部分,主要用于检测电力系统中的故障并采取相应的保护措施,以确保电力系统的安全稳定运行。
本文将以35kV继电保护课程设计为主题,探讨继电保护的原理、工作方式以及常见的故障保护方案。
一、35kV继电保护的原理继电保护是通过电流、电压等信号的变化来判断电力系统是否发生故障,并及时采取保护措施。
35kV继电保护系统由电流互感器、电压互感器、继电器等组成。
当电力系统中发生故障时,电流和电压会发生异常变化,继电保护系统通过检测这些变化来判断故障类型和位置,并发出保护信号。
二、35kV继电保护的工作方式35kV继电保护系统采用了多级保护的工作方式,即根据故障的严重程度和位置,分为主保护、备用保护和辅助保护等级。
主保护是最重要的保护等级,用于检测电力系统中的主要故障,并及时切除故障部分,保护电力系统正常运行。
备用保护作为主保护的补充,当主保护出现故障时起到替代保护的作用。
辅助保护用于检测电力系统中的次要故障,并采取相应的保护措施,以防止次要故障扩大影响整个电力系统。
三、35kV继电保护的常见故障保护方案1. 过流保护:过流保护是最常见的故障保护方案之一,主要用于检测电力系统中的短路故障。
当电流超过额定值时,过流保护会立即切除故障部分,以保护电力设备的安全运行。
2. 零序保护:零序保护是用于检测电力系统中的接地故障的保护方案。
当电力系统中发生接地故障时,零序保护会检测到电流和电压的不平衡情况,并发出保护信号,切除故障部分。
3. 过电压保护:过电压保护是用于检测电力系统中过电压情况的保护方案。
当电压超过额定值时,过电压保护会发出保护信号,切除故障部分,以保护电力设备的安全运行。
4. 欠电压保护:欠电压保护是用于检测电力系统中欠电压情况的保护方案。
当电压低于额定值时,欠电压保护会发出保护信号,切除故障部分,以保护电力设备的安全运行。
35KV变电所继电保护的设计2

1 绪论1.1变电站继电保护的发展变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。
电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全厂(所)电气设备的选择、配电装置的布置,继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。
继电保护发展现状,电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断注入新的活力,因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段。
随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。
国内外继电保护技术发展的趋势为:计算机化,网络化,保护、控制、测量、数据通信一体化和人工智能化。
2 设计概述:2.1设计依据:(1)继电保护设计任务书。
(2)国标GB50062-92《电力装置的继电保护和自动装置设计规范》。
(3)《电力系统继电保护》(山东工业大学)。
2.2设计规模:本设计为35KV降压变电所。
主变容量为6300KVA,电压等级为35/10KV。
2.3设计原始资料:2.3.1 35KV供电系统图,如图1所示。
2.3.2系统参数:电源I短路容量:SIDmax=200MVA;电源Ⅱ短路容量:SⅡDmax =250MVA;供电线路:L1=L2=15km,L3=L4=10km,线路阻抗:XL=0.4Ω/km。
图1 35KV系统原理接线图2.3.3 35KV变电所主接线图,如图2所示S Ⅱ SIDL8图2 35KV变电所主接线图2.3.4 10KV母线负荷情况,见下表:3 主接线方案的选择3.1 主接线设计要求电气主接线主要是指在发电厂、变电所、电力系统中,为满足预定的功率传送和运行等要求而设计的,表明高压电气设备之间互相连接关系的传送电能的电路。
电路中的高压电气设备包括发电机、变电器、母线、断路器、隔离刀闸、线路等。
继电保护35kv课程设计

继电保护35kv课程设计一、课程目标知识目标:1. 理解35kV继电保护的基本原理,掌握主要设备的构造与功能;2. 掌握35kV继电保护系统的配置要求,能够正确解读相关技术参数;3. 了解35kV继电保护装置的操作流程,掌握常见故障的判断和处理方法。
技能目标:1. 能够独立完成35kV继电保护装置的选型,并进行参数设置;2. 能够运用所学知识,对35kV继电保护系统进行故障分析和处理;3. 能够熟练操作35kV继电保护设备,提高实际操作能力。
情感态度价值观目标:1. 培养学生对电力系统继电保护工作的兴趣,激发学习热情;2. 增强学生的安全意识,树立正确的操作观念,严格遵守操作规程;3. 培养学生的团队合作精神,提高沟通与协作能力。
本课程针对高年级学生,结合学科特点,注重理论与实践相结合。
通过本课程的学习,使学生掌握35kV继电保护的相关知识,具备一定的故障分析和处理能力,同时培养他们的安全意识、团队合作精神和职业素养。
课程目标明确,便于教学设计和评估,有助于提高学生的专业素养和实际操作能力。
二、教学内容1. 继电保护基本原理:讲解继电保护的作用、分类及其工作原理,重点阐述35kV系统常用的保护原理,如过电流保护、差动保护等。
参考教材章节:第三章 继电保护的基本原理与分类。
2. 35kV继电保护设备:介绍35kV系统中主要继电保护设备的构造、性能参数及功能,如电流互感器、电压互感器、继电器等。
参考教材章节:第四章 继电保护设备。
3. 35kV继电保护系统配置:分析35kV继电保护系统的配置要求,包括保护装置的选择、参数设置、系统调试等。
参考教材章节:第五章 继电保护系统的配置与调试。
4. 35kV继电保护装置操作与故障处理:详细讲解35kV继电保护装置的操作流程,分析常见故障现象及处理方法。
参考教材章节:第六章 继电保护装置的操作与故障处理。
5. 实践操作:安排学生进行35kV继电保护装置的选型、参数设置、故障处理等实际操作,提高学生的动手能力。
35kv电网变压器继电保护课程设计

前言继电保护在发电、供电和用电中起着极为重要,是保证电网安全可靠运行和人们生产生活用电的关键。
它的设置、整定、维护和试验水平将直接影响供电的可靠性、质量及用电设备的安全。
继电保护装置是反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。
即当电力系统中电气元件发生故障时,能自动、迅速、有选择的将故障元件从电力系统中切除,避免故障元件继续遭到破坏,使非故障元件迅速恢复正常运行。
继电保护装置应符合可靠性、选择性、灵敏性和速动性的要求。
由于电子技术、计算机技术与通信技术的发展,使继电保护装置的各种性能有了很大的提高,更好的确保了电力系统的运行,保证了人们正常的生产生活。
可见,继电保护性能的好坏关系到了每一个人,不容忽视!中文摘要本次设计是为35kv电网变压器继电保护配置。
根据对继电保护装置的任务、原理及选择要求进行分析总结,选取气体保护,差动保护为主保护,线路电流速断保护和变压器的过负荷保护为后备保护。
对主保护及后备保护的保护原理进行了分析,以及对变压器发生故障时保护的动作情况进行了描述。
关键词:继电保护,瓦斯保护,差动保护,过负荷保护目录前言............................................................................................................................................... I V 中文摘要. (V)1继电保护详细内容................................................................................................................. - 1 -1.1 继电保护的任务.......................................................................................................... - 1 -1.2 对继电保护的基本要求.............................................................................................. - 1 -1.3 继电保护的基本原理.................................................................................................. - 1 -1.4 继电保护装置的分类.................................................................................................. - 3 -1.5 保护装置装设原则...................................................................................................... - 3 - 2变压器保护选定..................................................................................................................... - 5 -2.1选定继电保护方案....................................................................................................... - 5 -2.2 变压器保护的选定...................................................................................................... - 5 -2.2.1 变压器的瓦斯保护............................................................................................. - 5 -2.2.2 变压器气体保护(瓦斯保护)的原理及组成................................................. - 6 -2.2.3 气体保护的工作原理......................................................................................... - 7 -2.2.4瓦斯保护原理电路.............................................................................................. - 8 -2.2.5变压器瓦斯保护的范围...................................................................................... - 9 -2.2.6瓦斯继电器的整定.............................................................................................. - 9 -2.3 变压器的纵差动保护.................................................................................................. - 9 -2.3.1工作原理.............................................................................................................. - 9 -2.3.2差动保护的整定计算........................................................................................ - 12 -2.3.4 变压器的过负荷............................................................................................. - 13 - 3整定计算............................................................................................................................... - 15 -3.1 AB线路的三段式电流速断保护整定计算............................................................... - 15 -3.2变压器(容量为5.6MV A)的差动保护整定计算 .................................................. - 16 -3.3变压器的过负荷保护................................................................................................. - 17 - 结论.......................................................................................................................................... - 20 - 参考文献.................................................................................................................................. - 21 -1继电保护详细内容1.1 继电保护的任务电力系统动行中,各种电气设备可能出现故障和不正常运行状态。
某35kV变电站继电保护设计

1 前言在如今随着科学的发展,电力系统的能否安全稳定运行,会直接影响国民经济和社会发展。
电力系统一旦发生自然或人为故障,如果不能及时有效控制,就会失去稳定运行,使电网瓦解,并造成大面积停电,给社会带来灾难性的后果。
继电保护(包括安全自动装置)是保障电力设备安全和防止及限制电力系统长时间大面积停电的最基本、最重要、最有效的技术手段。
许多实例表明,继电保护装置一旦不能正确动作,就会扩大事故,酿成严重后果。
因此,加强继电保护的设计和整定计算,是保证电网安全稳定运行的重要工作。
为满足电网对继电保护提出的可靠性、选择性、灵敏性、速动性的要求,充分发挥继电保护装置的效能,必须合理的选择保护的整定值,以保持各保护之间的相互配合关系。
做好电网继电保护定值的整定计算工作是保证电力系统安全运行的必要条件。
继电保护装置的基本任务是:自动,迅速,有选择性将系统中故障部分切除,使故障元件损坏程度尽量可能降低,并保证该系统无故障部分迅速恢复正常运行。
反映电器元件的不正常运行状态,并根据运行维护的具体条件和设备的承受能力,发出信号,减负荷或者延时跳闸。
2继电保护的介绍2.1继电保护结构原理继电保护主要利用电力系统中元件发生短路或异常情况时的电气量,电流、电压、功率、频率等的变化,构成继电保护动作的原理,也有其他的物理量,如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高。
大多数情况下,不管反应哪种物理量,继电保护装置都包括测量部分和定值调整部分、逻辑部分、执行部分。
继电保护原理结构方框图如下:图2.1继电保护原理结构方框图2.2继电保护的基本组成测量比较部分:测量所要保护的电气元件上的电气参数并与标准值比较。
逻辑判断部分:由以上比较结果判断系统是在正常运行状态,还是发生故障或是在不正常运行状态。
执行部分:根据判断出的运行状态去动作或不动作。
2.3继电保护的基本要求在技术上必须满足选择性、速动性、灵敏性、可靠性四个基本要求。
35KV变电站继电保护初步设计

目录第一章本课程设计的重要任务 (1)第二章课程设计任务书 (2)第三章课程设计内容及过程 (4)1 变电所继电保护和自动装置规划 (4)1.1系统分析及继电保护规定: (4)1.2本系统故障分析: (4)1.3 10kv线路继电保护装置: (4)1.4主变压器继电保护装置设立: (4)1.5变电所的自动装置: (5)1.6本设计继电保护装置原理概述: (5)2 短路电流计算 (6)2.1系统等效电路图: (6)2.2基准参数选定: (7)2.3阻抗计算(均为标幺值): (7)2.4短路电流计算: (7)3 主变继电保护整定计算及继电器选择 (8)3.1瓦斯保护: (8)3.2纵联差动保护: (8)3.3过电流保护: (10)3.4过负荷保护:.................................................................... 错误!未定义书签。
3.5冷却风扇自起动: ............................................................ 错误!未定义书签。
第四章课程设计总结............................................................................ 错误!未定义书签。
参考文献 ................................................................................................ 错误!未定义书签。
第一章本课程设计的重要任务(1)本设计为35KV降压变电所。
主变容量为6300KVA,电压等级为35/10KV;(2)搜集原始资料;(3)完毕对本系统的故障分析;(4)对10kv线路继电保护装置、主变压器继电保护装置设立、变电所的自动装置的设计;(5)对短路电流的整定与计算;(6)主变继电保护整定计算及继电器选择;(7)完毕设计报告。
35Kv输电线路的继电保护设计

35Kv输电线路的继电保护设计在电力系统中,35kV输电线路扮演着重要的角色,负责将发电厂产生的电能传输到各个用电点。
然而,由于外部环境、设备老化等原因,输电线路可能会出现故障,导致电力系统的不稳定甚至瘫痪。
为了确保电力系统的安全稳定运行,35kV输电线路的继电保护设计至关重要。
本文将深入探讨35kV输电线路继电保护的设计原则、方法和应用。
首先,我们需要了解什么是继电保护。
继电保护是电力系统中一种自动保护装置,它通过检测电力系统中的异常信号,如电流、电压、功率等,来判断系统是否存在故障。
一旦检测到故障,继电保护会发出信号,触发断路器等设备,切断故障点与系统的连接,从而保护电力系统的安全运行。
在35kV输电线路的继电保护设计中,我们需要遵循以下原则:1. 快速响应:继电保护应能够迅速响应输电线路的故障,切断故障点与系统的连接,避免故障扩大。
2. 准确判断:继电保护应能够准确判断输电线路的故障类型和位置,避免误判和漏判。
3. 可靠操作:继电保护应具备高度可靠性,确保在任何情况下都能正常工作。
4. 易于维护:继电保护应具备易维护性,便于日常检查、调试和更换。
在35kV输电线路的继电保护设计中,常用的方法包括电流保护、电压保护、距离保护和差动保护等。
这些方法各自有其特点和适用场景。
1. 电流保护:电流保护是通过检测输电线路中的电流变化来判断故障的存在。
当电流超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。
2. 电压保护:电压保护是通过检测输电线路中的电压变化来判断故障的存在。
当电压超过或低于设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。
3. 距离保护:距离保护是通过检测输电线路中的阻抗变化来判断故障的存在。
当阻抗超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。
4. 差动保护:差动保护是通过比较输电线路两端的电流和电压差异来判断故障的存在。
当差动电流或差动电压超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1 概述 (1)1.1继电保护的基本要求 (1)1.235KV电网继电保护的设计原则 (1)1.2.1 35kV线路保护配置原则 (1)1.2.2 35kV母线保护配置原则 (1)1.2.3 35kV断路器保护配置原则 (2)2计算书 (3)2.1短路电流 (3)2.235KV电网三相短路电流计算 (3)2.2.1在最大运行方式下三相短路电流的计算 (3)2.2.2在最小运行方式下两相短路电流的计算 (8)2.3继电保护整定计算 (13)2.3.1对保护2进行整定计算 (13)2.3.2对保护4进行整定计算 (15)2.3.3对保护6进行整定计算 (16)2.3.4对保护5进行整定计算 (18)2.3.5对保护3进行整定计算 (19)2.3.6对保护1进行整定计算 (20)3说明书 (22)3.1短路电流数据表 (22)3.2方向元件的设置 (23)3.3整定原则 (23)3.4继电保护配置 (23)4 总结和体会 (25)5致谢 (26)6 参考文献 (27)附录: (28)1 概述1.1继电保护的基本要求对继电保护装置有哪些基本要求要求是:选择性、快速性、灵敏性、可靠性。
⑴选择性:系统中发生故障时,保护装置应有选择地切除故障部分,非故障部分继续运行;⑵快速性“短路时,快速切除故障这样可以①缩小故障范围,减少短路电流引起的破坏;②减少对用记的影响;③提高系统的稳定性;⑶灵敏性:指继电保护装置对保护设备可能发生的故障和正常运行的情况,能够灵敏的感受和灵敏地作,保护装置的灵敏性以灵敏系数衡量。
⑷可靠性:对各种故障和不正常的运方式,应保证可靠动作,不误动也不拒动,即有足够的可靠。
1.2 35KV电网继电保护的设计原则1.2.1 35kV线路保护配置原则(1)每回35kV线路应按近后备原则配置双套完整的、独立的能反映各种类型故障、具有选相功能全线速动保护(2)每回35kV线路应配置双套远方跳闸保护。
断路器失灵保护、过电压保护和不设独立电抗器断路器的500kV高压并联电抗器保护动作均应起动远跳。
(3)根据系统工频过电压的要求,对可能产生过电压的500kV线路应配置双套过电压保护。
(4)装有串联补偿电容的线路,应采用双套光纤分相电流差动保护作主保护。
(5)对电缆、架空混合出线,每回线路宜配置两套光纤分相电流差动保护作为主保护,同时应配有包含过负荷报警功能的完整的后备保护。
(6)双重化配置的线路主保护、后备保护、过电压保护、远方跳闸保护的交流电压回路、电流回路、直流电源、开关量输入、跳闸回路、起动远跳和远方信号传输通道均应彼此完全独立没有电气联系。
(7)双重化配置的线路保护每套保护只作用于断路器的一组跳闸线圈。
(8)线路主保护、后备保护应起动断路器失灵保护。
1.2.2 35kV母线保护配置原则(1)每条500kV母线按远景配置双套母线保护,对500kV一个半断路器接线方式,母线保护不设电压闭锁元件。
(2)双重化配置的母线保护的交流电流回路、直流电源、开关量输入、跳闸回路均应彼此完全独立没有电气联系。
(3)每套母线保护只作用于断路器的一组跳闸线圈。
(4)母线侧的断路器失灵保护需跳母线侧断路器时,通过起动母差实现。
1.2.3 35kV断路器保护配置原则(1)一个半断路器接线的500kV断路器保护按断路器单元配置,每台断路器配置一面断路器保护屏(柜)。
(2)当出线设有隔离开关时,应配置双套短引线保护。
(3)重合闸沟三跳回路在断路器保护中实现。
(4)断路器三相不一致保护应由断路器本体机构完成。
(5)断路器的跳、合闸压力闭锁和压力异常闭锁操作均由断路器本体机构实现,分相操作箱仅保留重合闸压力闭锁回路。
(6)断路器防跳功能应由断路器本体机构完成。
2计算书2.1短路电流在三相系统中可能发生的短路有:1、三相短路f(3)2、两相短路f(2)3、两相接地短路f(1,1)。
三相短路也称为对称短路,系统各相与正常运行时一样仍处于对称状态。
其它类型的短路都是不对称的路。
电力系统的运行经验表明,在各种类型的短路中,单相短路占大多数,两相短路较少,三相短路机会最少。
从短路计算方法来看,一切不对称短路的计算在采用对称分量法后,都归结为对称短路的计算。
短路计算的目的:1选择有足够机械稳定度和热稳定度的电气设备为了合理的配置各种继电保护和自动装置并正确整定其参数,必须对电力网中发生的各种短路进行计算和分析.在这些计算中不但要知道故障支路中的电流值,还必须知道在网络中的分布情况.有时还要知道系统中某些节点的电压值2在设计和选择发电厂和电力系统电气主接线时,为了比较各种不同方案的接线图,确定是否需要采取限制短路电流的措施,都要进行必要的短路电流计算。
3进行电力系统暂态稳定计算,研究短路对用户工作的影响等,也包含有一部分短路计算.4在实际工作中,根据一定的任务进行短路计算时必须首先确定计算条件.所谓计算条件是指短路发生时系统的运行方式,短路的类型和发生地点,以及短路发生后所采取的措施.2.2 35KV电网三相短路电流计算2.2.1在最大运行方式下三相短路电流的计算最大运行方式:两电站的六台机组全部投入运行,中心变电所在地110KV母线上的系统等值标么电抗为0.225。
城关变电所总负荷为240A(35KV侧),由金河电站供给110KA、青岭电站供给130KA。
剩余的110A经中心变电所送入系统。
(一)系统化简35KV电网结构示意图如下图1所示:图1 35KV电网结构示意图将图1电网进行电抗转换,转换的各电抗标幺值如下图2所示。
图2根据题意已知系统各部分电抗标幺值分别为:X1=0.225 X2=0.55 X3=0 X4=0.35 X5=0.55 X6=0 X7=0.35 X8=1.168 X9=0.292 X10=1 X11=1 X12=X13=X14=X15=0.333 X16=0.876 X17=X18=0.75 X19=0.7 X20=X21=4将城关变电所排除,由其它电抗标幺值合并整理得到图3。
图3将青岭发电站发电机电抗标幺值合并: X22=X20//X21=(44)(44)⨯+=2金河发电站发电机的电抗标幺值合并: X23=X24=(0.3330.333)(0.3330.333)⨯+=0.1665将青岭电站和金河电站线路上各电抗标幺值合并整理,如下图4所示。
图4青岭电站线路电抗标幺值合并得:X25=X9+X16+X19+X22=0.292+0.876+0.75+2=3.918 金河电站线路电抗标幺值合并得:X26=(X10+X23)//(X11+X24)=(1.1665)//(1.1665)=0.583因为X3=X6=0,所以20MVA 变压器处电抗标幺值等值电路如图5所示。
图5将20MVA 变压器电抗标幺值X2和X5合并得: X27=X2//X5=(0.550.55)(0.550.55)⨯+=0.275将20MVA 变压器电抗标幺值X4和X7合并得: X28=X4//X7= (0.350.35)(0.350.35)⨯+=0.175系统电抗合并整理后如图6所示。
图6以中心变电短路点K1为基准合并系统电抗值: X29=X1+X27=0.225+0.275=0.5X30=X8+X25+(825)26X XX⨯=1.168+3.918+(1.168 3.918)0.583⨯=12.935X31=X8+X26+(826)25X XX⨯=1.168+0.583+(1.1680.583)3.918⨯=1.925将系统进行星型---三角形等值转换如图7所示。
图7最后化简的电抗:(2829)322829(30//31)X XX X X X X⨯=++(0.1750.5)0.1750.50.727(12.935//1.925)⨯=++=(2830)332830(29//31)X XX X X X X⨯=++(0.17512.935)0.17512.93518.812(0.5//1.925)⨯=++=(2831)342831(29//30)X XX X X X X⨯=++(0.175 1.925)0.175 1.925 2.8(0.5//12.935)⨯=++=(二)三相短路电流的计算取基准功率BS=1000MV⋅A,基准电压BV=avV。
由此可算出基准电流:5.0233115BBBI KAV===⨯对于系统:基准条件下的电流标幺值3211.376BIX*==系统三相短路电流3.max1.367 5.02 6.862x B BI I I KA*=⨯=⨯=青岭电站:发电机的额定容量8e S MW =,选取发电机基准容量80B S MW = 计算电抗标幺值818.812 1.88180e js j B S X X S **=⨯=⨯= 由水轮机运算曲线数字表查得额定电流标幺值0.56e I *=电站三相短路电流3.max 80.560.3091.73 1.738.376e q e P S I I KA U *=⨯=⨯=⨯(式中Up 为电网线电压平均值)金河电站:发电机的额定容量12e S MW = 计算电抗标幺值122.80.4280e js j B S X X S **=⨯=⨯= 由水轮机运算曲线数字表查得额定电流标幺值 2.627e I *= 电站三相短路电流3.max 122.627 2.1751.73 1.738.376e j e P S I I KA U *=⨯=⨯=⨯2.2.2在最小运行方式下两相短路电流的计算最小运行方式:两电站都只有一台机组投入运行,中心变电所110KV母线上的系统等值标么电抗为0.35城关变电所总负荷为105A(35KV侧),由金河电站供给40A、青岭电站供给65A。
剩余的15A经中心变电所送入系统。
(一)系统化简1、两相短路电流正序电抗化简:将图1电网进行电抗转换,转换的各电抗标幺值如下图8所示。
图8根据题意已知系统各部分电抗标幺值分别为:X1=0.35 X2=0.55 X3=0 X4=0.35 X5=0.55 X6=0 X7=0.35 X8=1.168 X9=0.292 X10=1 X12=0.333 X16=0.876 X19=0.75 X20=4将金中线、青中线、中心变电站的标幺电抗合并,如图9所示。
图9合并各部分电抗:212//50.55//0.550.275X X X === 224//70.35//0.350.175X X X === 239161920 5.918X X X X X =+++= 241012 1.333X X X =+=图10合并各部分电抗:251210.625X X X =+= (823)(1.168 5.918)26823 1.168 5.91812.27124 1.333X X X X X X ⨯⨯=++=++= (824)(1.168 1.333)27824 1.168 1.333 2.764235.918X X X X X X ⨯⨯=++=++=(2225)282225(26//27)X X X X X X X ⨯=++(0.1750.625)0.1750.6250.848(12.271//2.764)⨯=++=(2226)292226(25//27)X X X X X X X ⨯=++(0.17512.271)0.17512.27117.559(0.625//2.764)⨯=++=(2227)302227(25//26)X X X X X X X ⨯=++(0.175 2.764)0.175 2.764 3.752(0.625//12.271)⨯=++=2、两相短路电流负序电抗化简:最小运行方式下转换的负序电抗标么值如图11所示。