晶体缺陷11 断裂
晶体结构缺陷的类型

二 按缺陷产生旳原因分类
晶体缺陷
辐照缺陷 杂质缺陷
电荷缺陷 热缺陷 非化学计量缺陷
1. 热缺陷
定义:热缺陷亦称为本征缺陷,是指由热起伏旳原因所产生 旳空位或间隙质点(原子或离子)。
类型:弗仑克尔缺陷(Frenkel defect)和肖特基缺陷 (Schottky defect)
T E 热起伏(涨落) 原子脱离其平衡位置
面缺陷旳取向及分布与材料旳断裂韧性有关。
面缺陷-晶界
晶界示意图
亚晶界示意图
晶界: 晶界是两相邻晶粒间旳过渡界面。因为相邻晶粒 间彼此位向各不相同,故晶界处旳原子排列与晶内不同, 它们因同步受到相邻两侧晶粒不同位向旳综合影响,而做 无规则排列或近似于两者取向旳折衷位置旳排列,这就形 成了晶体中旳主要旳面缺陷。
-"extra" atoms positioned between atomic sites.
distortion of planes
selfinterstitiallids
Two outcomes if impurity (B) added to host (A):
• Solid solution of B in A (i.e., random dist. of point defects)
OR
Substitutional alloy (e.g., Cu in Ni)
Interstitial alloy (e.g., C in Fe)
Impurities in Ceramics
本章主要内容:
§2.1 晶体构造缺陷旳类型 §2. 2 点缺陷 §2.3 线缺陷 §2.4 面缺陷 §2.5 固溶体 §2.6 非化学计量化合物
晶体缺陷知识点

晶体缺陷知识点晶体缺陷是固体材料中晶格出现的非理想性质,通常由于外界因素或内部原子位置错配引起。
晶体缺陷可以对材料的性质和行为产生显著影响,因此对晶体缺陷的认识和理解对于材料科学和工程领域至关重要。
本文将主要介绍晶体缺陷的类别、产生原因以及对材料性能的影响等相关知识点。
一、点缺陷点缺陷是晶体中最常见的缺陷之一,它包括空位、附加原子和原子间隙等。
空位是晶体中原子缺失的位置,它可能由于热振动、离子辐照或经历一系列化学反应等因素而形成。
附加原子是晶体中多余的原子,它可以是来自杂质或外界加入的额外原子。
原子间隙是晶体中原子之间的间隙空间,它的存在会导致晶体结构的变形和变化。
二、线缺陷线缺陷是晶体中延伸成线状的缺陷,包括位错和螺旋排列。
位错是晶体中原子错位或排列不当导致的线性缺陷,它可以通过晶体的滑移和或扩散过程产生。
螺旋排列是沿晶体某个轴线方向发生的原子错位,在某些晶体材料中常见。
三、面缺陷面缺陷是晶体中存在的平面或界面缺陷,包括晶界、层错和孪晶等。
晶界是晶体中两个晶粒的交界面,它由于晶体生长或晶体结构不匹配引起。
层错是晶体中原子层次错位排列的缺陷,通常发生在层状晶体结构中。
孪晶是晶体中两个晶粒具有相同的晶格方向但是镜像对称的缺陷。
四、体缺陷体缺陷是晶体中三维空间内存在的缺陷,主要包括孔洞和包裹物。
孔洞是晶体中的空隙空间,可以影响晶体的密度和物理性质。
包裹物是晶体中包裹其他原子或分子的空间,它可以是点状、线状或面状。
晶体缺陷的产生原因多种多样,包括热力学因素、机械应力和外部影响等。
温度和压力的变化可以导致晶体中原子位置发生偏移或畸变,进而产生缺陷。
机械应力也可以引起晶体的位错和断裂等缺陷。
此外,电磁辐射、化学环境和放射性衰变等因素也会影响晶体的结构和缺陷形成。
晶体缺陷对材料的性能和行为产生重要影响。
例如,点缺陷的存在可以改变材料的电导率、热导率和光学性能。
线缺陷和面缺陷可以导致晶体的强度和塑性发生变化,并影响晶体的断裂行为。
晶体的结构缺陷精简

形成原因
点缺陷
由于晶体中原子或分子的缺失、多余 或错位,导致局部的原子排列异常。 常见的点缺陷包括空位、间隙原子和 替位式杂质等。
线缺陷
面缺陷
晶体中原子或分子的平面排列异常, 如晶界、相界和表面等。
晶体中由于原子或分子的排列不连续 而形成的线性异常区域,如位错。
对晶体性质的影响
物理性质
晶体结构缺陷可以影响晶体的热 学、光学、电学和磁学等物理性 质。例如,金属导体的电阻率会
03
线缺陷
位错概念
位错
晶体中某处有一列或若干列原子 发生了有规律的错排或缺失,从 而使晶体结构发生畸变,这种畸 变可以延伸到相当远的区域,称
为位错。
位错线
位错延伸的方向称为位错线,其 运动方向与位错线垂直。
柏氏矢量
描述位错特征的矢量,其大小表 示位错的大小,方向表示位错线
的方向。
位错类型
刃型位错
肖脱基缺陷
总结词
肖脱基缺陷是由于晶体表面上的原子 迁移到内部而形成的表面空位。
详细描述
在晶体表面,原子由于热运动或其他 原因迁移到晶体内部,留下表面空位 。这种缺陷通常在高温或高真空条件 下形成。
间隙原子与空位
总结词
间隙原子和空位缺陷是由于原子或分子的位置偏离正常格点 而形成的。
详细描述
间隙原子是指原子进入晶格间隙位置,而空位则是在正常格 点位置上形成的空位。这两种缺陷对晶体的物理和化学性质 产生影响。
表面缺陷在半导体器件、光电 子器件、催化等领域有重要应 用,例如表面改性、表面增强 拉曼散射等。
05
体缺陷
沉淀与固溶体
沉淀
当晶体内部某些组分由于过饱和而析出,形成与基体不同的相,即为沉淀。
晶体结构缺陷

(6)带电缺陷
不同价离子之间取代如Ca2+取代Na+——Ca
· Na
Ca2+取代Zr4+——Ca”Zr
(7) 缔合中心 在晶体中除了单个缺陷外,有可能出现邻近两个缺陷
互相缔合,把发生 缔合的缺陷用小括号表示,也称复合缺陷。 在离子晶体中带相反电荷的点缺陷之间,存在一种有
利于缔合的库仑引力。 如:在NaCl晶体中,
Sr O(S ) Li2O Sr •. V O
Li
Li
O
(3) Al2O3固溶在MgO晶体中(产生正离子空位,生成置换型SS)
Al2O3
(
S
)
MgO
2
Al
•. Mg
VMg
3OO
(4) YF3固溶在CaF2晶体中(产生正离子空位,生成置换型SS)
2Y F (S ) CaF2 2Y •. V 6F
(1-4)
3MgO Al2O3 2MgAl Mgi•• 3OO
(1-5)
(1-5〕较不合理。因为Mg2+进入间隙位置不易发生。
33
写出下列缺陷反应式:
(1) MgCl2固溶在LiCl晶体中(产生正离子空位,生成置换型SS)
MgCl2 (S)
LiCl
Mg •. Li
VLi
2ClCl
(2) SrO固溶在Li2O晶体中(产生正离子空位,生成置换型SS)
3
HRTEM image of an edge of a zeolite beta crystallite(沸石)
STM图显示表面原子 存在的原子空位缺陷
4
自然界中理想晶体是不存在的 对称性缺陷?晶体空间点阵的概念似乎 不能用到含有缺陷的晶体中,亦即晶体 理论的基石不再牢固? 其实,缺陷只是晶体中局部破坏 统计学原子百分数,缺陷数量微不足道
晶体缺陷

一、概述1、晶体缺陷:晶体中原子(离子、分子)排列的不规则性及不完整性。
种类:点缺陷、线缺陷、面缺陷。
1) 由上图可得随着缺陷数目的增加,金属的强度下降。
原因是缺陷破坏了警惕的完整性,降低了原子间结合力,从宏观上看,即随缺陷数目增加,强度下降。
2) 随着缺陷数目的增加,金属的强度增加。
原因是晶体缺陷相互作用(点缺陷钉扎位错、位错交割缠结等),使位错运动的阻力增加,强度增加。
3) 由此可见,强化金属的方向有两个:一是制备无缺陷的理想晶体,其强度最高,但实际上很难;另一种是制备缺陷数目多的晶体,例如:纳米晶体,非晶态晶体等。
二、点缺陷3、点缺陷:缺陷尺寸在三维方向上都很小且与原子尺寸相当的缺陷(或者在结点上或邻近的微观区域内偏离晶体结构正常排列的一种缺陷),称为点缺陷或零维缺陷。
分类:空位、间隙原子、杂质原子、溶质原子。
4、肖特基空位:原子迁移到晶体表面或内表面正常结点位置使晶体内形成的空位。
5、弗仑克尔空位:原子离开平衡位置挤入点阵间隙形成数目相等的空位和间隙原子,该空位叫做弗仑克尔空位。
6、空位形成能EV:在晶体中取出一个原子放在晶体表面上(不改变晶体表面积和表面能)所需的能量。
间隙原子形成能远大于空位形成能,所以间隙原子浓度远小于空位浓度。
7、点缺陷为热平衡缺陷,淬火、冷变形加工、高能粒子辐照可得到过饱和点缺陷。
8、复合:间隙原子和空位相遇,间隙原子占据空位导致两者同时消失,此过程成为复合。
9、点缺陷对性能的影响:点缺陷使得金属的电阻增加,体积膨胀,密度减小;使离子晶体的导电性改善。
过饱和点缺陷,如淬火空位、辐照缺陷,还可以提高金属的屈服强度。
三、线缺陷10、线缺陷:线缺陷在两个方向上尺寸很小,另外一个方向上延伸较长,也称为一维缺陷。
主要为各类位错。
11、位错:位错是晶体原子排列的一种特殊组态;位错是晶体的一部分沿一定晶面与晶向发生某种有规律的错排现象;位错是已滑移区和未滑移区的分界线;位错是伯氏矢量不为零的晶体缺陷。
晶体结构缺陷

4)溶质原子:LM表达L溶质处于M位置,SX表达S溶质处 于X位置。 例:Ca取代了MgO晶格中旳Mg写作CaMg, Ca若填隙在MgO晶格中写作Cai。
5)自由电子及电子空穴:自由电子用符号e′表达。电子空 穴用符号h·表达。它们都不属于某一种特定旳原子全部, 也不固定在某个特定旳原子位置。
VO••
3OO
1 2
O2
例2:CaCl2溶解在KCl中:
产生K空位 ,合 理
CaCl2 KCl CaK• VK' 2ClCl
CaCl2 KCl CaK• Cli' ClCl
Cl-进入填隙位, 不合理
CaCl2 KCl Cai•• 2VK' 2ClCl
Ca进入填 隙位,不合
理
例3:MgO溶解到Al2O3晶格内形成有限置换型固溶体:
荷。为了保持电中性,会产生阴离子空位或间隙阳离子; 2、高价阳离子占据低价阳离子位置时,该位置带有正电
荷,为了保持电中性,会产生阳离子空位或间隙阴离子。
举例:
例1:TiO2在还原气氛下失去部分氧,生成TiO2-x旳反应能 够写为:
2TiO2
2TiT' i
VO••
3OO
1 2
O2
2Ti
4OO
2TiT' i
克罗格-明克符号系统
1、 缺陷符号旳表达措施 (以MX离子晶体为例) 1)空位:VM和VX分别表达M原子空位和X原子空位,V表达缺陷种类,
下标M、X表达原子空位所在位置。
VM〞=VM +2eˊ VX‥ = VX +2 h·
2)填隙原子:Mi和Xi分别表达M及X原子 处于晶格间隙位置 3)错放位置:MX表达M原子被错放在X位置上, 这种缺陷较少。
晶体缺陷

位错具有以下基本性质:
位错是晶体中原子排列的线缺陷,不是几何意义的线,是有 一定尺度的管道。 形变滑移是位错运动的结果,并不是说位错是由形变产生的, 因为即使是在一块生长看起来很完美的晶体中,其内部仍然存 在很多位错。 位错线可以终止在晶体的表面(或多晶体的晶界上),但不 能终止在一个完整的晶体内部。 在位错线附近有很大应力集中,附近原子能量较高,易运动。 位错主要有两种:刃型位错和螺型位错缺陷
三、面缺陷
面缺陷是指沿着晶格内或晶粒间某些面的两侧局部范围内所出 现的晶格缺陷。 面缺陷主要有同种晶体内的晶界,小角晶界,层错,以及异种 晶体间的相界等。
KTP晶体中的双晶界
Tb:YAB晶体的腐蚀坑形态--挛晶
Yb:YAB晶体的孪晶
TYb:YAB晶体的孪晶
面缺陷主要有以下几种: 平移界面: 晶格中的一部分沿着某一面网相对于另一部分滑 动(平移)。 堆跺层错: 晶体结构中周期性的互相平行的堆跺层有其固有 的顺序。如果堆跺层偏离了原来固有的顺序,周期性改变,则 视为产生了堆跺层错。 晶界:是指同种晶体内部结晶方位不同的两晶格间的界面,或 说是不同晶粒之间的界面。按结晶方位差异的大小可将晶界分 为小角晶界和大角晶界等。小角晶界一般指的是两晶格间结晶 方位差小于10度的晶界。 相界:结构或化学成分不同的晶粒间的界面称为相界。
四、体缺陷
体缺陷,是指在晶体中三维尺度上出现的周期性排列的紊乱,也就是在较 大的尺寸范围内的晶格排列的不规则。这些缺陷的区域基本上可以和晶体 或者晶粒的尺寸相比拟,属于宏观的缺陷,较大的体缺陷可以用肉眼就能 够清晰观察。 体缺陷有很多种类,常见的有包裹体、气泡、空洞、微沉淀等。这些缺陷 区域在宏观上与晶体其他位置的晶格结构、晶格常数、材料密度、化学成 分以及物理性质有所不同,好像是在整个晶体中的独立王国。 比如,空洞是在晶体中包含的较大的空隙区,微沉淀是指在晶体中出现的 分离相,是由某些超浓度的杂质所形成的,包裹体则是在晶体中包裹了其 他状态的成分,多为生长时原来的液体。
晶体中的缺陷

第三章晶体中的缺陷第一节概述一、缺陷的概念大多数固体是晶体,晶体正是以其特殊的构型被人们最早认识。
因此目前(至少在80年代以前>人们理解的“固体物理”主要是指晶体。
当然这也是因为客观上晶体的理论相对成熟。
在晶体理论发展中,空间点阵的概念非常重要。
空间点阵中,用几何上规则的点来描述晶体中的原子排列,并连成格子,这些点被称为格点,格子被称为点阵,这就是空间点阵的基本思想,它是对晶体原子排列的抽象。
空间点阵在晶体学理论的发展中起到了重要作用。
可以说,它是晶体学理论的基础。
现代的晶体理论基于晶体具有宏观平移对称性,并因此发展了空间点阵学说。
严格地说对称性是一种数学上的操作,它与“空间群”的概念相联系,对它的描述不属本课程内容。
但是,从另一个角度来理解晶体的平移对称性对我们今后的课程是有益的。
所谓平移对称性就是指对一空间点阵,任选一个最小基本单元,在空间三维方向进行平移,这个单元能够无一遗漏的完全复制所有空间格点。
考虑二维实例,如图3-1所示。
图3-1 平移对称性的示意图在上面的例子中,以一个基元在二维方向上平移完全能复制所有的点,无一遗漏。
这种情况,我们说具有平移对称性。
这样的晶体称为“理想晶体”或“完整晶体”。
图3-2 平移对称性的破坏如果我们对上述的格点进行稍微局部破坏,那么情况如何?请注意以下的复制过程,如图3-2所示。
从图中我们看出:因为局部地方格点的破坏导致平移操作无法完整地复制全部的二维点阵。
这样的晶体,我们就称之为含缺陷的晶体,对称性破坏的局部区域称为晶体缺陷。
晶体缺陷的产生与晶体的生长条件,晶体中原子的热运动以及对晶体的加工工艺等有关。
事实上,任何晶体即使在绝对零度都含有缺陷,自然界中理想晶体是不存在的。
既然存在着对称性的缺陷,平移操作不能复制全部格点,那么空间点阵的概念似乎不能用到含有缺陷的晶体中,亦即晶体理论的基石不再牢固。
幸运的是,缺陷的存在只是晶体中局部的破坏。
作为一种统计,一种近似,一种几何模型,我们仍然继承这种学说。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.裂纹在第二相处成核
含有析出物、夹杂物等第 二相粒子的基体在形变时, 由于它们之间不协调或质 点本身强度较弱、较脆, 引起粒子和基体界面剥离 或粒子本身被破坏,以至 形成空洞。在粒子周边由 于位错塞积而产生应力集 中,促进空洞发展。 断裂应力σf与第二相厚度D
17
结论:பைடு நூலகம்
刃型位错合并、堆积→应力
二是裂纹沿晶界的晶间断裂,断口呈颗粒状。
资料: 所谓解理面,一般都是晶面指数比较低的晶 面,如体心立方的(100)面。
7
脆性断裂
根据断裂前金属是否呈现有明显的塑性变形, 可将断裂分为韧性断裂与脆性断裂两大类。 通常以单向拉伸时的断面收缩率大于 5%者为 韧性断裂,而小于5%者为脆性断裂。
脆性断裂在断面外观上没有明显的塑性变形 迹象,直接由弹性变形状态过渡到断裂,断 裂面和拉伸轴接近正交,断口平齐。
9
位错塞积理论 位错反应理论 位错墙侧移理论 位错销毁理论
位错合并理论
10
1.位错塞积机理
位错沿某一滑移面移动受阻,在障碍物前塞积,产 生极大的应力集中,形成裂口。 多晶体中裂纹常在晶界处形核
位错塞积引起裂口胚芽示意图
11
2.位错反应机理
二位错发生反应生成不易移动的新位错,使 位错塞积,产生大的应力集中,形成裂口。
12
3.位错消毁理论
在两个滑移面间距h<10个原子层的滑移面上,有着不同号的 刃型位错,在切应力作用下,它们相遇、相消,产生孔穴,剩 余的同号位错进入穴中,造成严重的应力集中,形成裂口
13
4.位错墙侧移机理
刃型位错形成位错墙,同时引起滑移面弯折。在适当 外力下,位错墙发生侧移,促使滑移面上生成裂口。
飞机发动机涡轮叶片从损伤到断裂
断裂远比弹塑性失稳、磨损、腐蚀等,更具有危险性!
3
二、断裂的基本类型
按服役条件分类
按断裂应变分类
(1)韧性断裂 (2)脆性断裂 (1)正断 (2)切断
(1)过载断裂 (2)疲劳断裂 (3)蠕变断裂 (4)环境断裂
按断裂面取向分类
按断裂路径分类
(1)沿晶断裂 (2)穿晶断裂
8
三、裂纹形核的位错理论
金属发生脆性断裂,先要形成微裂纹。这些微
裂纹主要来自两个方面:
一是材料内部原有的,如实际金属材料内部的 气孔、夹杂、微裂纹等缺陷; 二是在塑性变形过程中,由于位错的运动和塞 积等原因而使裂纹形核。
随着变形的发展导致裂纹不断长大,当裂纹长
大到一定尺寸后,便失稳扩展,直至最终断裂。
14
5.位错合并机理
当位错塞积到足够数量时,塞积群顶端的两个位错靠 近,当近到一个原子间距时,合并一个大位错,好象 解理面间插入了两个原子面厚的楔,后面位错为使应 力松驰相继进入解理面间,增大楔厚,直至形成裂口
15
6.裂纹在滑移带相交处成核
滑移带相交处形成不完整的位错墙,其应力集中促进成核
16
集中→断裂源→达到σc条件 →裂口扩展→脆断
18
四、裂纹的位错模拟
不同类型的裂纹用不同性质的位错模拟 Ⅰ型(张开型)Ⅱ型(滑开型)Ⅲ型(撕开型) Ⅰ型裂纹的扩展(刃位错的攀移)
Ⅱ型裂纹的扩展(刃位错的滑移)
Ⅲ型裂纹的扩展(螺位错的滑移)
19
裂纹的三种受力型式用位错的三种塞积
情形来模拟
三种裂纹位错
20
裂纹的扩展看作位错群偶整体的向前运动,
利用已知的位错弹性性质找出裂纹扩展的重
要判据(应力强度因子K)
KI≥KIC裂纹失稳扩展
KI:表征裂纹尖端区域应力集中的程度
KIC:反映材料抵抗裂纹扩展的能力
21
4
5
穿晶断裂 ——断裂时裂纹发展穿过晶粒内部(韧断) 晶间断裂 ——断裂时裂纹发展沿着晶界 (脆断)
6
在单晶体试样中常表现为沿解理面的解理断 裂。 在多晶体试样中则可能出现两种情况:
一是裂纹沿解理面横穿晶粒的穿晶断裂,断 口可以看到解理亮面;若晶粒较粗,则可以 看到许多强烈反光的小平面 ( 或称刻面 ) ,这 些小平面就是解理面或晶界面,可叫做晶状 断口。
断 裂
断裂的概念 断裂的基本类型
裂纹生核的位错理论
裂纹扩展的位错模拟
1
一、断裂的概念
金属材料在变形超过其塑性极限而呈现完全 分开的状态。 材料受力时,原子相对位置发生了改变,当 局部变形量超过一定限度时,原于间结合力 遭受破坏,使其出现了裂纹,裂纹经过扩展 而使金属断开。
2
现象:扁担从弹性变形到塑性变形,再到断裂