完整word版单相交流调压电路Matlab仿真
单相桥式全控整流电路MATLAB仿真实验报告(上)

单相桥式全控整流电路MATLAB仿真一、单相桥式全控整流电路(电阻性负载)1.电路结构与工作原理(1)电路结构如图1-1所示为典型单相桥式全控整流电路,共用了四个晶闸管,两只晶闸管接成共阳极,两只晶闸管接成共阴极,每一只晶闸管是一个桥臂,桥式整流电路的工作方式特点是整流元件必须成对以构成回路,负载为电阻性。
idR图1-1(2)工作原理1)在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。
因此在0~α区间,4个晶闸管都不导通。
假如4个晶闸管的漏电阻相等,则U t1.4= U t2.3=1/2u2。
2)在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。
3)在u2负半波的(π~π+α)区间,在π~π+α区间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管VT1、VT4承受反向电压也不导通。
4)在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿b→VT3→R→VT2→α→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(u d=-u2)和电流,且波形相位相同。
表1-1 各区间晶闸管的导通、负载电压和晶闸管端电压情况2.建模图1-3 单相桥式全控整流电路(电阻性负载)3.仿真结果分析1) α=30º,R=1Ω,period=0.02s,peakamplitude=10V,frequency=50HZ,phase delay(secs)1=1/600,phase delay(secs)2=1/600 +0.01;图1-4α=30°单相双半波可控整流仿真结果(电阻性负载)2) α=30º,R=1Ω,period=0.02s,peakamplitude=10V,frequency=50HZ,phase delay(secs)1=1/300,phase delay(secs)2=1/300 +0.01;图1-5α=60°单相双半波可控整流仿真结果(电阻性负载)3) α=30º,R=1Ω,period=0.02s,peakamplitude=10V,frequency=50HZ,phase delay(secs)1=1/200,phasedelay(secs)2=1/200 +0.01;图1-6α=90°单相双半波可控整流仿真结果(电阻性负载)4.小结尽管整流电路的输入电压U2是交变的,但负载上正负两个半波内均有相同的电流流过,输出电压一个周期内脉动两次,由于桥式整流电路在正、负半周均能工作,变压器二次绕组正在正、负半周内均有大小相等、方向相反的电流流过,消除了变压器的电流磁化,提高了变压器的有效利用率。
(完整word版)基于matlab的单相交流调压电路的设计与仿真

目录前言 (2)1。
主电路设计 (4)1。
1.设计目的及任务 (4)1.2。
设计内容及要求 (4)1.3。
设计结果 (4)1.4。
设计原理 (4)1。
5。
建模仿真 (8)2开环仿真 (11)2。
1.电阻性负载仿真波形 (11)2。
1.1。
波形分析 (12)2。
2。
阻感性负载 (13)2.2.1。
波形分析 (13)2.3.阻感性负载 (14)2。
3.1。
波形分析 (14)3.闭环控制的仿真 (14)13。
1闭环控制的实现步骤 (14)3.2闭环控制下的仿真电路图 (15)3.2。
1输出波形 (15)3.3谐波分析 (18)4.设计体会 (20)参考文献 (21)摘要本次课程设计主要是研究单相交流调压电路的设计.由于交流调压电路的工作情况与负载的性质有很大的关系,交流调压电路可以带电阻性负载,也可以带电感性负载等。
交流调压电路是采用相位控制方式的交流电力控制电路,通常是将两个晶闸管反并联后串联在每相交流电源与负载之间.在电源的每半个周期内触发一次晶闸管,使之导通。
与相控整流电路一样,通过控制晶闸管开通时所对应的相位,可以方便的调节交流输出电压的有效值,从而达到交流调压的目的。
其晶闸管可以利用电源自然换相,无需强迫关掉电路,并可实现电压的平滑调节,系统响应速度较快,但它也存在深控时功率因数较低,易产生高次谐波等缺点.以对单相交流调压电路的MATLAB闭环控制的仿真为例,介绍了基于MATLAB的Simulink仿真中建立仿真模型的方法,以及如何利用仿真模型进行实际调压电路波形分析.通过对比电路仿2真结果和理论计算结果,二者完全吻合, 论证了MATLAB中的Simulink仿真工具可以很方便地创建和维护一个完整的模型,评估不同算法和结构并验证系统性能.关键词:交流;调压;晶闸管;闭环控制;仿真引言MATLAB是集数值计算、符号运算及图形处理等强大功能于一体的科学计算工具,作为强大的科学计算平台,它几乎可以满足所有的计算要求。
单相桥式全控整流电路Matlab仿真(完美)资料-共18页

目录完美篇单相桥式全控整流电路仿真建模分析 (1)(一)单相桥式全控整流电路(纯电阻负载) (2)1.电路的结构与工作原理 (2)2.建模 (3)3仿真结果与分析 (4)4小结 (6)(二)单相桥式全控整流电路(阻-感性负载) (7)1.电路的结构与工作原理 (7)2.建模 (8)3仿真结果与分析 (10)4.小结 (12)(三)单相桥式全控整流电路(反电动势负载) (13)1.电路的结构与工作原理 (13)2.建模 (14)3仿真结果与分析 (16)4小结 (18)单相桥式全控整流电路仿真建模分析一、实验目的1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。
2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。
二.实验内容(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理1.1电路结构U1U2Ud Id+ -T VT3VT1VT2VT4abR 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图)1.2工作原理用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。
(1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲。
四个晶闸管都不通。
假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。
(2)在u2正半波的ωt=α时刻:触发晶闸管VT1、VT4使其导通。
电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。
此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。
晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。
(3)在u2负半波的(π~π+α)区间:晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。
单相交流调压器仿真

单相交流调压器仿真摘要:基于单相交流调压器的结构和工作原理,建立了一种基于Matlab的仿真模型,具有原理清晰,仿真时短,占用资源少的优点。
关键词:单相交流调压器、晶闸管、MATLAB仿真1. 交流调压电路概念:在每半个周波内通过对晶闸管开通相位的控制来调节输出电压的有效值。
原理:两个晶闸管反并联后串联在交流电路中,通过对晶闸管的控制就可控制交流电力。
应用:交流调压电路(1)灯光控制(如调光台灯和舞台灯光控制);(2)异步电动机软起动;(3)异步电动机调速;(4)供用电系统对无功功率的连续调节;(5)在高压小电流或低压大电流直流电源中,(6)用于调节变压器一次侧电压。
2. 主要元件晶闸管介绍⑴晶闸管的工作原理晶闸管T在工作过程中,它的阳极A和阴极K与电源和负载连接,组成晶闸管的主电路,晶闸管的门极G和阴极K与控制晶闸管的装置连接,组成晶闸管的控制电路。
静态特性:① 当AK 之间加上反向电压时,不论门极是否有触发电流,晶闸管都不会 导通;② 当AK 之间加上正向电压时,仅在门极有触发电流的情况下晶闸管才能 开通;③ 晶闸管一旦导通,门极就失去控制作用;④ 要使晶闸管关断, 只有使晶闸管的电流降到接近于零的某一数值以下晶闸管的开通和关断过程波形① 开通特性 延迟时间td :从门极电流阶跃时刻开始,到阳极电流上升到稳态值的10% 所需的时间;上升时间tr :阳极电流从稳态值的10%上升到稳态值的90%所需的时间; 开通时间tgt 为以上两者之和:tgt=td+ tr普通晶闸管延迟时间为0.5~1.5 s ,上升时间为0.5~3 s 。
② 关断特性通常采用外加反电压的方法将已导通的晶闸管关断。
突加反向阳极电压后,由于外电路电感的存在,晶闸管阳极电流的 下降会有一个过程,当阳极电流过零,也会出现反向恢复电流,反向电流 达最大值IRM 后,再反方向快速衰减到接近于零,此时晶闸管恢复对反向 电压的阻断能力。
电流过零到反向电流接近于零所经历的时间称为反向阻断恢复时间trr 。
单相交流调压电路仿真实验报告

单相交流调压电路仿真实验报告一、实验目的本实验旨在通过仿真模拟,深入理解单相交流调压电路的工作原理和性能特点,掌握其电压调节原理和操作方法,提高对电力电子技术的理解和应用能力。
二、实验原理单相交流调压电路是通过控制开关器件的通断,调节输入交流电压的幅值和相位,以达到调节输出电压的目的。
根据控制方式的不同,单相交流调压电路可以分为斩波调压和相控调压两种。
本实验采用斩波调压方式。
斩波调压是通过控制开关器件的通断时间,调节输出电压的幅值。
当开关器件导通时,输出电压为输入电压;当开关器件关断时,输出电压为0。
通过调节开关器件的通断时间,可以改变输出电压的平均值,从而实现调节输出电压幅值的目的。
三、实验设备本实验使用MATLAB/Simulink软件进行仿真模拟,实验设备包括计算机、MATLAB/Simulink软件、电源模块、电阻器、电感器和开关器件等。
四、实验步骤1. 打开MATLAB/Simulink软件,新建一个仿真模型;2. 搭建单相交流调压电路的仿真模型,包括电源模块、电阻器、电感器、开关器件等;3. 设置仿真参数,如仿真时间、采样时间等;4. 启动仿真,观察并记录仿真结果;5. 分析仿真结果,包括输出电压的波形、相位、幅值等;6. 调整开关器件的通断时间,观察输出电压的变化,并分析斩波调压原理;7. 整理实验数据和波形,撰写实验报告。
五、实验结果与分析通过仿真模拟,我们得到了单相交流调压电路在不同开关器件通断时间下的输出电压波形。
从实验结果可以看出,当开关器件导通时间越长,输出电压的幅值就越高;当开关器件关断时间越长,输出电压的幅值就越低。
这个结果表明斩波调压原理是可行的。
此外,我们还观察了输出电压的相位变化。
当开关器件导通时,输出电压与输入电压同相位;当开关器件关断时,输出电压为0。
这说明斩波调压方式不会改变输出电压的相位。
六、结论与总结通过本次单相交流调压电路的仿真实验,我们深入了解了斩波调压电路的工作原理和性能特点,掌握了其电压调节方法和操作技巧。
完整word版单相交流调压电路Matlab仿真

单相交流调压电路的设计与仿真一.实验目的1)单相交流调压电路的结构、工作原理、波形分析。
2) 在仿真软件Matlab中进行单相交流调压电路的建模与仿真,并分析其波形。
二.实验内容(一)单相交流调压电路电路(纯电阻负载)1电路的结构与工作原理1.1电路结构)(截图单相交流调压电路的电路原理图(电阻性负载)1.2 工作原理电阻负载单相交流调压电路中,VT1和VT2可以用一个双向晶闸管代替,在交流电源的正半周和负半周,分别对晶闸管的开通叫进行控制就可以调节输出电压。
正负半周触发角时刻起均为过零时刻。
在稳态情况下。
应使正负半周的触发角相同。
可以看出。
负载电压波形是电源电压波形的一部分,负载电流和负载电压的波形相同。
2建模在MATLAB新建一个Model,同时模型建立如下图所示:- 1 -MATLAB仿真模型单相交流调压电路的模型参数设置2.1A.Pulse GeneratorB.Pulse Generator 1- 2 -C.示波器参数第一个波形为晶闸管电流的波形,第二个波形为晶闸管电压的波形,第三个波形为负载电流的波形,第四个波形为负载电压的波形,第五个波形为电源电压的波形,第六个波形为触发脉冲的波形。
3仿真结果与分析°,MATLAB仿真波形如下: a. 触发角α=0α=0°单相交流调压电路仿真结果(截图)°,MATLAB仿真波形如下: b. 触发角α=60)截图°单相交流调压电路仿真结果α =60(- 3 -°,MATLAB仿真波形如下: c. 触发角α=120)截图°单相交流调压电路仿真结果(α=1204小结通过设计可以总结出,ɑ的移相范围为0≤ɑ≤π。
ɑ=0时,相当于晶闸管一直导通,输出电压为最大值,U。
=U1。
随着ɑ的增大,U。
逐渐减小。
知道ɑ=π时,U。
=0。
此外,ɑ=0时,功率因数=1,随着ɑ的增大,输入电流滞后于电压且发生畸变,也逐渐降低。
(完整word版)单相桥式全控整流电路Matlab仿真(完美)资料

目录完美篇单相桥式全控整流电路仿真建模分析 (2)(一)单相桥式全控整流电路(纯电阻负载) (2)1。
电路的结构与工作原理 (2)2。
建模 (3)3仿真结果与分析 (4)4小结 (6)(二)单相桥式全控整流电路(阻-感性负载) (7)1.电路的结构与工作原理 (7)2.建模 (8)3仿真结果与分析 (10)4.小结 (14)(三)单相桥式全控整流电路(反电动势负载) (13)1.电路的结构与工作原理 (14)2.建模 (14)3仿真结果与分析 (16)4小结 (18)单相桥式全控整流电路仿真建模分析一、实验目的1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。
2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。
二.实验内容(一)单相桥式全控整流电路(纯电阻负载)1.电路的结构与工作原理1.1电路结构R单相桥式全控整流电路(纯电阻负载)的电路原理图(截图)1.2工作原理用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂.(1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲。
四个晶闸管都不通.假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。
(2)在u2正半波的ωt=α时刻:触发晶闸管VT1、VT4使其导通.电流沿a →VT1→R →VT4→b →Tr 的二次绕组→a 流通,负载上有电压(u d=u 2)和电流输出,两者波形相位相同且u T1.4=0。
此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u 2。
晶闸管VT1、VT4—直导通到ωt =π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。
(3)在u 2负半波的(π~π+α)区间:晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。
此时,u T2。
3=u T1.4= 1/2 u 2。
单相交流调压电路仿真设计

单相交流调压电路仿真设计一、单相交流调压电路原理变压器是单相交流调压电路的核心部件,其主要作用是改变输入交流电压的大小。
变压器由两个或多个线圈组成,其中一个线圈称为初级线圈,另一个线圈称为次级线圈。
交流电压作用在初级线圈上,通过磁耦合作用,可以在次级线圈上产生与输入电压不同的输出电压。
通过调整初级线圈与次级线圈的匝数比,可以实现不同的输出电压。
整流电路主要由二极管构成,用于将交流电压转换为直流电压。
二极管具有单向导电性,可以将交流电压中的正半周或者负半周导通,将其它方向的电压截断。
通过适当选择二极管的导通方向和数量,可以实现不同的整流方式,如半波整流、全波整流等。
滤波电路主要由电容器构成,用于去除整流电路输出电压中的纹波。
在整流电路中,由于二极管导通和截断的不完全性,输出电压中会带有交流成分,称为纹波。
通过选择合适的电容器容值和电阻负载,可以将输出电压中的纹波减小到很小的水平。
在进行单相交流调压电路的仿真设计时,首先需要确定输入电压、输出电压和负载电流等参数。
根据需要的输出电压大小和负载电流大小,可以选择合适的变压器匝数比、二极管种类和数量、电容器容值等。
接下来,可以利用电路仿真软件进行电路图设计,如Proteus、Multisim等。
首先,根据变压器匝数比和输入电压确定初级线圈和次级线圈的参数。
然后,设计整流电路,选择合适的二极管种类和数量,以及电容器和电阻负载参数。
最后,连接电路图中的各个元件,形成完整的单相交流调压电路。
完成电路图设计后,可以对电路进行仿真分析。
通过设置输入电压、输出电压和负载电流等参数,可以模拟电路工作情况。
仿真分析可以得到电路的输入电流、输出电流、纹波大小等参数,以及不同工作条件下的性能指标。
仿真结果可以用于评估电路性能和优化设计。
根据仿真结果,可以调整电路参数,以达到更好的性能要求。
比如,可以尝试不同的变压器匝数比、二极管种类和数量、电容器容值等,看看它们对电路性能的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单相交流调压电路的设计与仿真
一.实验目的
1)单相交流调压电路的结构、工作原理、波形分析。
2) 在仿真软件Matlab中进行单相交流调压电路的建模与仿真,并分析其波形。
二.实验内容
(一)单相交流调压电路电路(纯电阻负载)
1电路的结构与工作原理
1.1电路结构
)(截图单相交流调压电路的电路原理图(电阻性负载)1.2 工作原理
电阻负载单相交流调压电路中,VT1和VT2可以用一个双向晶闸管代替,在交流电源的正半周和负半周,分别对晶闸管的开通叫进行控制就可以调节输出电压。
正负半周触发角时刻起均为过零时刻。
在稳态情况下。
应使正负半周的触发角相同。
可以看出。
负载电压波形是电源电压波形的一部分,负载电流和负载电压的波形相同。
2建模
在MATLAB新建一个Model,同时模型建立如下图所示:
- 1 -
MATLAB仿真模型单相交流调压电路的模型参数设置2.1A.Pulse Generator
B.Pulse Generator 1
- 2 -
C.示波器参数
第一个波形为晶闸管电流的波形,第二个波形为晶闸管电压的波形,第三个波形为负载电流的波形,第四个波形为负载电压的波形,第五个波形为电源电压的波形,第六个波形为触发脉冲的波形。
3仿真结果与分析
°,MATLAB仿真波形如下: a. 触发角α=0
α=0°单相交流调压电路仿真结果(截图)
°,MATLAB仿真波形如下: b. 触发角α=60
)截图°单相交流调压电路仿真结果α =60(- 3 -
°,MATLAB仿真波形如下: c. 触发角α=120
)截图°单相交流调压电路仿真结果(α=1204小结
通过设计可以总结出,ɑ的移相范围为0≤ɑ≤π。
ɑ=0时,相当于晶闸管一直导通,输出电压为最大值,U。
=U1。
随着ɑ的增大,U。
逐渐减小。
知道ɑ=π时,U。
=0。
此外,ɑ=0时,功率因数=1,随着ɑ的增大,输入电流滞后于电压且发生畸变,也逐渐降低。
(二)单相交流调压电路(阻感负载)
1电路的结构与工作原理
1.1电路结构
)截图( 单相交流调压电路的电路原理图(阻感性负载)
- 4 -
1.2 工作原理
当电源电压U2在正半周时,晶闸管VT1承受正向电压,但是没有触发脉冲晶闸管VT1没有导通,在α时刻来了一个触发脉冲,晶闸管VT1导通,晶闸管VT2
在电源电压是正半周时承受反向电压截止,当电源电压反向过零时,由于负载电感产生感应电动势阻止电流变化,故电流不能马上为零,随着电源电流下降过零进入负半周,电路中的电感储存的能量释放完毕,电流到零,晶闸管VT1关断。
当电源电压U2在负半周时,晶闸管VT2承受正向电压,但是没有触发脉冲晶闸管VT2没有导通,在π+α时刻来了一个触发脉冲,晶闸管VT2导通,晶闸管VT1在电源电压是负半周时承受反向电压截止,当电源电压反向过零时,由于负载电感产生感应电动势阻止电流变化,故电流不能马上为零,随着电源电流下降过零进入负半周,电路中的电感储存的能量释放完毕,电流到零,晶闸管VT2关断。
2建模
在MATLAB新建一个Model,命名为dianlu4,同时模型建立如下图所示:
单相交流调压电路(阻感性负载)的MATLAB仿真模型
2.1 示波器参数设置
第一个波形为晶闸管电流的波形,第二个波形为晶闸管电压的波形,第三个波形为负载电流的波形,第四个波形为负载电压的波形,第五个波形为电源电压的波形,第六个波形为触发脉冲的波形。
- 5 -
3仿真结果与分析
°,MATLAB=0仿真波形如下: a.触发角α
)截图°单相交流调压电路仿真结果(阻感性负载)(α=0°,MATLAB仿真波形如下:α=60触发角b.
α=60°单相交流调压电路仿真结果(阻-感性负载)(截图)
°,MATLAB仿真波形如下:αc.触发角=120
- 6 -
)
截图-感性负载)(α =120°单相交流调压电路仿真结果(阻
小结4
单相交流调压电路用两只反并联的普通晶闸管或一只双向晶闸管与负载电阻串联组成主电路,因为比电阻性负载多了一个电感,在感应电动势的作LR电感用下,输出的电压都延迟了一段。
- 7 -。