八年级数学勾股定理4
人教版八年级数学下册_第一节《勾股定理》勾股定理

下列说法中,正确的是
(
)
下列说法中,正确的是
(
)
2.你还有什么疑问,问问老师。 通过前面的探究活动,你发现了直角三角形三边之间的关系规律了吗?
(1)若a=6,b=8,则c=
.
通过前面的探究活动,你发现了直角三角形三边之间的关系规律了吗?
在Rt△ABC中,∠C=90°.
思考:在网格中一般的直角三角形,以它的三边为边长的三个正方形A、B、C 是否也有类似的面积关系?观察下边两幅图(每个小正方形的面积为单位1):
1.本节课你有什么收获?你学到了什么? 在Rt△ABC中,∠C=90°,a=6,c=10,则b=
.
通过前面的探究活动,你发现了直角三角形三边之间的关系规律了吗?
思考 正方形A、B、C 所围成的直角三角形三条边之间有怎样的特殊关系?
说给大家听听。 如果直角三角形两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.
(2)若c=13,b=12,则a=
.
在Rt△ABC中,两直角边长分别为3和 ,则斜边长为
.
第1课时 勾股定理
思考:在网格中一般的直角三角形,以它的三边为边长的三个正方形A、B、C 是否也有类似的面积关系?观察下边两幅图(每个小正方形的面积为单位1):
9
13
右图 16
9
25
Hale Waihona Puke 思考 正方形A、B、C 所围成的直角三角形三条边之 间有怎样的特殊关系?
通过前面的探究活动,你发现了直角三角形
在Rt△ABC中,∠C=90°.
三边之间的关系规律了吗? 在Rt△ABC中,两直角边长分别为3和 ,则斜边长为
.
已知a,b,c是三角形的三边,则a2+b2=c2
八年级勾股定理的知识点

八年级勾股定理的知识点作为初中数学的重要知识点之一,勾股定理在八年级学生的学习中扮演着重要的角色。
勾股定理的概念和应用可以帮助学生理解和求解同类问题,并为进一步学习更高级别的数学知识奠定基础。
以下是勾股定理在初中八年级阶段的知识点。
一、勾股定理的定义勾股定理是指直角三角形中长边平方等于两短边平方和的关系。
即在一个直角三角形中,长边的平方等于其他两边平方和。
勾股定理的公式为:a² + b² = c²其中,a、b 代表短边,c 代表长边。
这个公式是勾股定理的基本表达形式。
二、三角形中的勾股定理应用勾股定理不仅仅是为了了解概念,同样也是一种有用的工具来解决各种三角形问题。
在三角形中,有两种使用勾股定理的方式:已知两个边长求第三个边长和已知三角形的三个角度和一个边长,求任意一边长。
2.1 已知两边长求第三边长当我们知道任意两边长的长度时,我们可以使用勾股定理来求解第三边长的长度。
我们可以先将已知的两边长的平方和计算得出,然后再对这个结果求平方根来得到第三边长的长度。
例如,当我们知道一个三角形的两边分别为 3 和 4,需求出第三边长,我们可以使用勾股定理进行计算:(3)² + (4)² = c²9 + 16 = c²25 = c²c = √25 = 52.2 已知三个角度和一个边长,求任意一边长在已知三个角度和一个边长的情况下,我们可以使用正弦、余弦、正切等三角函数结合勾股定理来求解三角形任意一边长。
例如,假设我们知道一个三角形的三个角分别为 60 度、30 度和 90 度,此三角形的一个边长为 5,需求出另外两边长的长度。
我们可以利用下列公式进行计算:sin(60°) = 对边 / 斜边 = c / 5c = 5 sin(60°) = 4.33(约)cos(60°) = 邻边 / 斜边 = b / 5b = 5 cos(60°) = 2.5(约)根据勾股定理,我们可以求出第三条边的长度:a² + b² = c²a² + (2.5)² = (4.33)²a² = (4.33)² - (2.5)²a² = 9 - 6.25a = √2.75 = 1.66(约)通过这种方式,我们可以使用勾股定理解决许多有关三角形的问题。
人教版八年级数学下册 勾股定理 讲义

c b a H G F E D C B A 勾股定理知识点一、勾股定理的概念知识概念:勾股定理是指,直角三角形的两条直角边的平方和等于斜边的平方。
中国古代称直角三角形为“勾股形”, 因此把这个定理称为“勾股定理”。
在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,因此这个定理也叫做“毕达哥拉斯定理”在Rt △ACB 中,根据勾股定理:222a b c +=中国古代数学家赵爽的证明方法:将四个全等的直角三角形摆成如图所示的图形4AGB S ∆+S 正方形EFGH =ABCD S 正方形,2214()2ab b a c ⨯+-= 化简可证a 2+b 2=c 2例1、在Rt △ABC 中,∠C=90°(1)已知a=3, b=4,求c (2)已知a=9,b=40,求c (3)已知a=6,c=10,求b1、在Rt △ABC 中,∠C=90°(1)已知a=5, b=12,求c (2)已知a=7,b=24,求c (3)已知a=8,c=17,求b2、如图,在ABC Rt ∆中,∠C =90°,a 、b 、c 分别表示A ∠、B ∠、C ∠的对边。
(1)已知c =25,b =15,求a(2)已知a =6,∠A =60°,求b 、c知识概念:满足勾股定理的三个正整数称为勾股数例2、下列属于勾股数的有_________①3,4,5 ②6,8,10 ③9,12,15 ④12,16,20 ⑤5,12,13 ⑥7,24,25 ⑦9,40,41⑧10,24,26 ⑨1,1,2 ⑩0.3,0.4,0.5如果三个数满足勾股定理,那么它们的k 倍也满足勾股定理1、下列哪一组属于勾股数( )A 、0.6,0.8,1B 、112,2,122C 、1,2,3D 、15,20,252、在△ABC中,∠C=90°,若c=10,a:b=3:4,则ab=______3、如图,在等腰△ABC中,AB=AC=10,BC=12,则高AD=______4、已知直角三角形一个锐角为60°,斜边长为2,那么此直角三角形的周长是()A、3B、1C、3+2D、3+35、已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A、25海里B、30海里C、35海里D、40海里6、请用数轴上表示出代表2的数7、如图所示,数轴上点A所表示的数为a,则a的值是________例3、已知Rt△ABC中,∠A、∠B、∠C的对边分别为a、b、c,若∠B=90°,则()A、a2+b2=c2B、a2+c2=b2C、b2+c2=a2D、a+b=c例4、已知一个直角三角形的两边长分别为3和4,则第三边长是________8、如图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是________米.9、如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1、S2、S3,且S1=4,S2=8,则AB的长为_________.10、在Rt△ABC中,斜边AB=2,则AB2+BC2+CA2=_________11、若一个直角三角形的三边长分别为a,b,c,且a2=9,b2=16,则c2为()A.25 B.7 C.7或25 D.9或1612、如图,△ABC中,∠C=90°,AB的中垂线DE交AB于E,交BC于D,若AB=10,AC=6,则△ACD的周长为()A.14 B.16 C.18 D.2013、直角三角形两直角边长分别为5和12,则它斜边上的高为_______.14、有一只小鸟在一棵高4m的小树梢上捉虫子,它的伙伴在离该树12m,高20m的一棵大树的树梢上发出友好的叫声,它立刻以4m/s的速度飞向大树树梢,那么这只小鸟至少几秒才可能到达大树和伙伴在一起?15、飞机在空中水平飞行,某一时刻刚好飞到小明头顶正上方4000米处,过了20秒,飞机距离小明头顶5000米,求飞机每小时飞行多少千米?16、如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?。
八年级数学 勾股定理证明方法

勾股定理的证明【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即abc ab b a 214214222⨯+=⨯++, 整理得 222c b a =+.【证法2】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF .∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于(a +∴()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法3】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB .∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90º.∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴ ()22214c a b ab =-+⨯.∴ 222c b a =+. 【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC .∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º. ∴ ΔDEC 是一个等腰直角三角形,它的面积等于221c .又∵ ∠DAE = 90º, ∠EBC = 90º,∴ AD ∥BC .∴ ABCD 是一个直角梯形,它的面积等于()221b a +. ∴ ()222121221c ab b a +⨯=+. ∴ 222c b a =+.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P .∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD, ∴ ∠EGF = ∠BED ,∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180º―90º= 90º.又∵ AB = BE = EG = GA = c ,∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90º.∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD .∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º. 又∵ ∠BDE = 90º,∠BCP = 90º, BC = BD = a . ∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则,21222ab S b a ⨯+=+ abS c 2122⨯+=,∴ 222c b a =+.【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上.过点Q 作QP ∥BC ,交AC 于点P . 过点B 作BM ⊥PQ ,垂足为M ;再过点 F 作FN ⊥PQ ,垂足为N . ∵ ∠BCA = 90º,QP ∥BC , ∴ ∠MPC = 90º, ∵ BM ⊥PQ , ∴ ∠BMP = 90º, ∴ BCPM 是一个矩形,即∠MBC = 90∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c , ∴ Rt ΔBMQ ≌ Rt ΔBCA .同理可证Rt ΔQNF ≌ Rt ΔAEF . 从而将问题转化为【证法4】(梅文鼎证明). 【证法7】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结BF 、CD . 过C 作CL ⊥DE ,交AB 于点M ,交DE 于点L . ∵ AF = AC ,AB = AD , ∠FAB = ∠GAD , ∴ ΔFAB ≌ ΔGAD , ∵ ΔFAB 的面积等于221aΔGAD 的面积等于矩形ADLM的面积的一半,∴ 矩形ADLM 的面积 =2a 同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积 ∴ 222b a c += ,即 222c b a =+. 【证法8】(利用相似三角形性质证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .在ΔADC 和ΔACB 中,∵ ∠ADC = ∠ACB = 90º,∠CAD = ∠BAC , ∴ ΔADC ∽ ΔACB .AD ∶AC = AC ∶AB , 即 AB AD AC ∙=2.同理可证,ΔCDB ∽ ΔACB ,从而有 AB BD BC ∙=2.∴ ()222AB AB DB AD BC AC =∙+=+,即 222c b a =+.【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c .再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R . 过B 作BP ⊥AF ,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H .∵ ∠BAD = 90º,∠PAC = 90º, ∴ ∠DAH = ∠BAC .又∵ ∠DHA = 90º,∠BCA = 90º,AD = AB = c ,∴ Rt ΔDHA ≌ Rt ΔBCA .∴ DH = BC = a ,AH = AC = b . 由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB = CA = b ,AP= a ,从而PH = b ―a .∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA . ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+∙-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+= 812S S b -- . ②把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +.∴ 222c b a =+.【证法10】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º, ∴ ∠TBH = ∠ABE . 又∵ ∠BTH = ∠BEA = 90º,BT = BE = b , ∴ Rt ΔHBT ≌ Rt ΔABE . ∴ HT = AE = a . ∴ GH = GT ―HT = b ―a .又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠∴ ∠GHF = ∠DBC .∵ DB = EB ―ED = b ―a , ∠HGF = ∠BDC = 90º,∴ Rt ΔHGF ≌ Rt ΔBDC . 即 27S S =.过Q 作QM ⊥AG ,垂足是M . 由∠BAQ = ∠BEA = 90º,可知 ∠ABE = ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE . 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE .∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE , ∴ ∠FQM = ∠CAR .又∵ ∠QMF = ∠ARC = 90º,QM = AR = a ,∴ Rt ΔQMF ≌ Rt ΔARC . 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵ 27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+ =52341S S S S S ++++=2c , 即 222c b a =+.【证法11】(利用切割线定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a . 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得AD AE AC ∙=2=()()BD AB BE AB -+=()()a c a c -+= 22a c -,即222a c b -=,∴ 222c b a =+.【证法12】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c (如图). 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB ∙+∙=∙,∵ AB = DC = c ,AD = BC = a , AC = BD = b ,∴ 222AC BC AB +=,即 222b a c +=, ∴ 222c b a =+.【证法13】在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 作Rt ΔABC 的内切圆⊙O ,切点分别为D 、E 、F (如图),设⊙O 的半径为r .∵ AE = AF ,BF = BD ,CD = CE ,∴ ()()()BF AF CD BD CE AE AB BC AC +-+++=-+= CD CE += r + r = 2r,即 r c b a 2=-+, ∴ c r b a +=+2.∴ ()()222c r b a +=+,即 ()222242c rc r ab b a ++=++,∵ab S ABC 21=∆,∴ ABC S ab ∆=42, 又∵ AOC BOCAOB ABC S S S S ∆∆∆∆++= = br ar cr 212121++ = ()r c b a ++21= ()r c c r ++221= rc r +2,∴()ABC S rc r ∆=+442, ∴ ()ab rc r242=+,∴ 22222c ab ab b a +=++, ∴ 222c b a =+. 【证法14】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB ∙=2=()BD AD AB +=BD AB AD AB ∙+∙可知 AD AB AC ∙≠2,或者 BD AB BC ∙≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB .在ΔADC 和ΔACB 中,∵ ∠A = ∠A ,∴ 若 AD :AC ≠AC :AB ,则∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B , ∴ 若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB . 又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+.【证法15】(辛卜松证明)设直角三角形两直角边的长分别为a 、b ,斜边的长为c . 作边长是a+b 的正方形ABCD . 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a b a 2222++=+;把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD 的面积为 ()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.【证法16】(陈杰证明)D设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图). 在EH = b 上截取ED = a ,连结DA 、则 AD = c .∵ EM = EH + HM = b + a , ED = a ∴ DM = EM ―ED = ()a b +―a = b . 又∵ ∠CMD = 90º,CM = a , ∠AED = 90º, AE = b , ∴ Rt ΔAED ≌ Rt ΔDMC .∴ ∠EAD = ∠MDC ,DC = AD = c . ∵ ∠ADE + ∠ADC+ ∠MDC =180º,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º, ∴ ∠ADC = 90º.∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º, ∴ ∠BAF=∠DAE .连结FB ,在ΔABF 和ΔADE 中,∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ ΔABF ≌ ΔADE .∴ ∠AFB = ∠AED = 90º,BF = DE = a . ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中,∵ AB = BC = c ,BF = CG = a , ∴ Rt ΔABF ≌ Rt ΔBCG .∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=,76451S S S S S +===,∴6217322S S S S S b a ++++=+ =()76132S S S S S ++++=5432S S S S +++=2c ∴ 222c b a =+.。
八年级数学勾股定理4

a²+b²=c²
(X )
2)、直角三角形的两边长分别是3和4,则另一边是5
(X )
3)、若△ABC的三边长是a=7,b=24,c=25,则△ABC
是直角三角形
(√ )
4)、 △ABC是三边之比为1:1:√2 ,则△ABC是直角
三角形
(√ )
5)、等边三角形高为2 √3cm,则它的边长是3cm (X )
AC²+BC²= AB²
(3)美国总统证法:
D
C
bc
c
a
Aa
bD
∵S梯形ABCD=1/2(a+b)(a+b)
=1/2ab×2+1/2 c²
∴a²+b²=c²
(4)我来试一试
b
a
ab
a c
a
cb
ca
bc c
bc
a
a
b
a
b b
S=1/2ab×4+ c²=1/2ab ×4+ a²+b² a²+b²=c²
∴ c= √20 =2 √ 5 (舍负 值)
∴ a2 = c2 ﹣b2 = 32 –(√ 2 )2 =7
∴ a= √ 7 (舍负值)
例2:将长为5.41米的梯子AC斜靠在墙上, BC长为2.16米,求梯子上端A到墙的底端 B的距离AB(精确到0.01米)
解:在Rt△ABC中,
∠ABC=90°
A
BC=2.16 ,CA=5.41
3、若a,b,c是一组基本的勾股数,则a,b,c 不能同时为奇数或同时为偶数
4、一组勾股数中必有一个数是5倍数 5、2mn,m²-n²,m²+n²为勾股数组,m>n﹥0 ,m,n一奇一偶
八年级数学下册【勾股定理】4种简单应用

八年级数学下册【勾股定理】4种简单应用一、勾股定理在网格中的应用例1、已知正方形的边长为1,(1)如图a,可以计算出正方形的对角线长为根号2.①分别求出图(b),(c),(d)中对角线的长_.②九个小正方形排成一排,对角线的长度(用含n的式子表示)为_.分析:借助于网格,构造直角三角形,直接利用勾股定理.二、勾般定理在最短距离中的应用例2、如图,已知C是SB的中点,圆锥的母线长为10cm,侧面展开图是一个半圆,A处有一只蜗牛想吃到C处的食物,它只能沿圆锥曲面爬行.请你求出蜗牛爬行的最短路程.分析在求解几何图形两点间最短距离的问题时,将几何体表面展开,求展开图中两点之间的距离,展开过程中必须要弄清楚所要求的是哪两点之间的距离,以及它们在展开图中的相应位置.点评在求立体几何图形的问题时,一般是通过平面展开图,将其转化成平面图形问题,然后求解.三、勾股定理在生活中的应用例3、如图,学校有一块长方形花园,有较少数同学为了避开拐角走“捷径”,在校园内走出了一条“路”.请同学们算一算,其实这些同学仅仅少走多少步路,却踩伤了花草.(假设1步为0.5m)点评:走“捷径”问题为出发点是常遇到情况,在考查勾股定理的同时,融入了环保教育:少走几步路,就可以留下一片期待的绿色.四、勾股定理在实际生活中的应用例4 小华想知道自家门前小河的宽度,于是按以下办法测出了如下数据:小华在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°,小华沿河岸向前走30m 选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小华计算小河的宽度.点评:此题考查直角三角形的应用,解答本题的关键在于画出示意图,将问题转化为解直角三角形的问题.。
八年级数学《勾股定理》知识点

八年级数学《勾股定理》知识点一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方ABCabc弦股勾勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。
2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。
)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。
(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。
(2)有两个角互余的三角形是直角三角形。
用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c2=a2+b2,则△ABC是以∠C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
5. 勾股定理的作用:(1)已知直角三角形的两边求第三边。
(2)已知直角三角形的一边,求另两边的关系。
(3)用于证明线段平方关系的问题。
(4)利用勾股定理,作出长为n的线段1。
八年级数学下册专题04勾股定理常考压轴题汇总(原卷版)

专题04 勾股定理常考压轴题汇总一.选择题(共23小题)1.我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成一个大正方形.如图,直角三角形的直角边长为a、b,斜边长为c.若b﹣a=2,c=10,则a+b的值为()A.12B.14C.16D.182.如图,长方体的长为3,宽为2,高为4,一只蚂蚁从点A出发,沿长方体表面到点B处吃食物,那么它爬行最短路程是()A.B.C.D.3.如图,以Rt△ABC的三条边作三个正三角形,则S1、S2、S3、S4的关系为()A.S1+S2+S3=S4B.S1+S2=S3+S4C.S1+S3=S2+S4D.不能确定4.如图,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G落在HI 上,若AC+BC=6,空白部分面积为10.5,则AB的长为()A.3B.C.2D.5.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm26.如图,阴影部分表示以Rt△ABC的各边为直径向上作三个半圆所组成的两个新月形,面积分别记作S1和S2.若S1+S2=7,AC=3,则BC长是()A.3.5B.C.4D.57.如图,在长方体ABCD﹣EFGH盒子中,已知AB=4cm,BC=3cm,CG=5cm,长为10cm 的细直木棒IJ恰好从小孔G处插入,木棒的一端I与底面ABCD接触,当木棒的端点Ⅰ在长方形ABCD内及边界运动时,GJ长度的最小值为()A.(10﹣5)cm B.3cm C.(10﹣4)cm D.5cm8.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=6,BC=10,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为()A.420B.440C.430D.4109.国庆假期间,妍妍与同学去玩寻宝游戏,按照藏宝图,她从门口A处出发先往东走9km,又往北走3km,遇到障碍后又往西走7km,再向北走2km,再往东走了4km,发现走错了之后又往北走1km,最后再往西走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.3km B.10km C.6km D.km10.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,AB=9,BC=6,则BD的长为()A.3B.4C.5D.611.如图,某小区有一块长方形花圃,为了方便居民不用再走拐角,打算用瓷砖铺上一条新路,居民走新路比走拐角近()A.2m B.3m C.3.5m D.4m12.如图,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=12,BC=7,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是()A.148B.100C.196D.14413.如图,四边形ABCD中,AD⊥CD于点D,BC=2,AD=8,CD=6,点E是AB的中点,连接DE,则DE的最大值是()A.5B.C.6D.14.如图,长为8cm的橡皮筋放置在数轴上,固定两端A和B,然后把中点C垂直向上拉升3cm到D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.1cm15.如图的数轴上,点A,C对应的实数分别为1,3,线段AB⊥AC于点A,且AB长为1个单位长度,若以点C为圆心,BC长为半径的弧交数轴于0和1之间的点P,则点P表示的实数为()A.B.C.D.16.“四千年来,数学的道理还是相通的”.运用祖冲之的出入相补原理也可证明勾股定理.若图中空白部分的面积是11,整个图形(连同空白部分)的面积是25,则大正方形的边长是()A.B.C.D.17.如图所示的一段楼梯,高BC是3米,斜边AB长是5米,现打算在楼梯上铺地毯,至少需要地毯的长度为()A.5米B.6米C.7米D.8米18.勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要细带.数学家欧几里得利用如图验证了勾股定理.以直角三角形ABC的三条边为边长向外作正方形ACKJ,正方形ABFE,正方形BCIH,连接AH.CF,具中正方形BCIH面积为1,正方形ABFE面积为5,则以CF为边长的正方形面积为()A.4B.5C.6D.1019.如图,Rt△ABC中,∠C=90°.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN.四块阴影部分的面积如图所示分别记为S、S1、S2、S3,若S=10,则S1+S2+S3等于()A.10B.15C.20D.3020.如图,在Rt△ABC中,∠C=90°,分别以AB、AC、BC为直径向外作半圆,它们的面积分别记作S1、S2、S3,若S1=25,S3=16,则S2为()A.9B.11C.32D.4121.如图,在Rt△ABC中,∠ACB=90°,分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BDMC,记四块阴影部分的面积分别为S1、S2、S3、S4.若已知S△ABC =S,则下列结论:①S4=S;②S2=S;③S1+S3=S2;④S1+S2+S3+S4=2.5S.其中正确的结论是()A.①②③B.①②④C.①③④D.②③④22.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10B.12C.13D.1423.将四个全等的直角三角形作为叶片按图1摆放成一个风车形状,形成正方形ABCD和正方形EFGH.现将四个直角三角形的较长直角边分别向外延长,且A′E=ME.B′F =NF,C′G=PG,D′H=HQ,得到图2所示的“新型数学风车”的四个叶片,即△A′EF,△B′FG,△C′CH.△D′HE.若FM平分∠BFE,正方形ABCD和正方形EFGH 的边长比为1:5.若”新型数学风车”的四个叶片面积和是m,则正方形EFCH的面积是()A.B.C.3m D.二.填空题(共14小题)24.如图①,四个全等的直角三角形与一个小正方形,恰好拼成一个大正方形,这个图形是由我国汉代数学家赵爽在为《周髀算经》作注时给出的,人们称它为“赵爽弦图”.如果图①中的直角三角形的长直角边为7cm,短直角边为3cm,连结图②中四条线段得到如图③的新图案,则图③中阴影部分的周长为cm.25.如图,在△ABC中,已知:∠ACB=90°,AB=10cm,AC=6cm,动点P从点B出发,沿射线BC以1cm/s的速度运动,设运动的时间为t秒,连接P A,当△ABP为等腰三角形时,t的值为.26.如图,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的“勾股分割点”.已知点M,N是线段AB 的“勾股分割点”,若AM=4,MN=5,则斜边BN的长为.27.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示“垂美”四边形ABCD,对角线AC,BD交于点O,若AB=6,CD=10,则AD2+BC2=.28.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(30,0)(0,12),点D是OA的中点,点P在BC上运动,当△ODP是腰长为15的等腰三角形时,点P 的坐标为.29.《勾股》中记载了这样一个问题:“今有开门去阃(kǔn)一尺不合2寸,问门广几何?”意思是:如图推开两扇门(AD和BC),门边沿D,C两点到门槛AB的距离是1尺(1尺=10寸),两扇门的间隙CD为2寸,则门槛AB长为寸.30.如图,在某次军事演习中,舰艇1号在指挥中心(O处)北偏西30°的A处,舰艇2号在指挥中心南偏东60°的B处,并且OA=OB.接到行动指令后,舰艇1号向正东方向以60海里/小时的速度前进,舰艇2号沿北偏东60°的方向以m海里/小时的速度前进.1.5小时后,指挥中心观测到两舰艇分别到达点E,F处,若∠EOF=75°,EF=210海里,则m的值为.31.如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH组成,恰好拼成一个大正方形ABCD.连结EG并延长交BC于点M.若AB=5,EF=1,则GM的长为.32.如图,铁路上A、D两点相距25千米,B,C为两村庄,AB⊥AD于A,CD⊥AD于D,已知AB=15km,CD=10km,现在要在铁路AD上建一个土特产品收购站P,使得B、C 两村到P站的距离相等,则P站应建在距点A千米.33.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).34.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD⊥BC.若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是.35.如图,在△ABC中,∠ABC=45°,AB=,AC=6,BC>4,点E,F分别在BC,AC边上,且AF=CE,则AE+BF的最小值为.36.如图,在△ABC中,AB=9cm,AC=12cm,BC=15cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是cm.37.如图,Rt△ABC中,.点P为△ABC内一点,P A2+PC2=AC2.当PB的长度最小时,△ACP的面积是.三.解答题(共4小题)38.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A 出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?39.如图,在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,动点P从B出发沿射线BC以1cm/s的速度运动,设运动时间为t(s).(1)求BC边的长.(2)当△ABP为等腰三角形时,求t的值.40.今年第6号台风“烟花”登陆我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB =500km,经测量,距离台风中心260km及以内的地区会受到影响.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?41.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、探究下面三个圆面积之间的关系
S1 S2
cb a
S3
∵ a²+b²=c² ∴ S1=S2+S3
勾股小常识:勾股数
1、 a²+b²=c²,满足(a,b,c)=1则a,b,c,为 基本勾数如:3、4、5;5、12、 13; 7、24、25……
2、如果a,b,c是一组勾股数,则ka、kb、 kc(k为正整数)也是一组勾股数,如: 6、8、10;9、12、18……
A
R
P
CQ B
AC²+BC²= AB²
(3)美国总统证法:
D
C
bc
c
a
Aa
bD
∵S梯形ABCD=1/2(a+b)(a+b)
=1/2ab×2+1/2 c²
∴a²+b²=c²
(4)我来试一试
b
a
ab
a c
a
cb
ca
bc c
bc
a
a
b
a
b b
S=1/2ab×4+ c²=1/2ab ×4+ a²+b² a²+b²=c²
3、若a,b,c是一组基本的勾股数,则a,b,c 不能同时为奇数或同时为偶数
4、一组勾股数中必有一个数是5倍数 5、2mn,m²-n²,m²+n²为勾股数组,m>n﹥0 ,m,n一奇一偶
作业:
1、用勾股定理知识设计一个图案 2、已知三角形三边为5、6、7,求 △ABC面积
; ;
∴ c= √20 =2 √ 5 (舍负 值)
∴ a2 = c2 ﹣b2 = 32 –(√ 2 )2 =7
∴ a= √ 7 (舍负值)
例2:将长为5.41米的梯子AC斜靠在墙上, BC长为2.16米,求梯子上端A到墙的底端 B的距离AB(精确到0.01米)
解:在Rt△ABC中,
∠ABC=90°
A
BC=2.16 ,CA=5.41
勾股定理
长春市第三十中学
李春梅
这是一个会标, 同学们认识这是什么大会的会标吗?
c b
a
弦图
∵1/2ab×4+(ba)²=c² ∴a²+b²=c²
(1)我国古代西周时期商高说法
A
勾 3a
弦5 c
b
C
股4
B
a²+b²=c²
勾股定理:直角三角形两直角边的 平方和 等于斜边的平方
(2)毕达哥拉斯定理:
根据勾股定理,得
AB=√ AC² - BC²
=√ 5.41²-2.16²
C
≈4.96(米)
B
思维拓展: 有没有一种直角三角形, 已知一边可以求另外两边长呢?
A A
a
c
a
45°
Cb
BC
c
30°
b
B
a:b:c=1:1:√2
a:b:c=1:√3:2
实践与探索
1、判断题:
1)、直角三角形三边a,b,c一定满足下面的式子:
老头一心想让她定定性子,或许,情关是让人成熟最快の一个方法.操心完别人の事,谢妙妙开始跟他算起自己の帐.“哎,你教陆陆鉴定古董,怎么不教我?”“教,我哪敢不教.”佟师兄可不糊涂,“不过她接触得比你早,你对考古方面还不够了解,先扎稳基础以后想学什么学什么.来日方长, 着急吃不了热豆腐...”毕竟是两位大姑娘の家,两人亲热一阵,最后各回各の房间休息.长途跋涉,他们很快便睡着了.累极睡着の人不容易惊醒,为防夜长梦多,陆羽和婷玉关上书房の门和灯,趁他俩还没把秦岭发现古董の消息传出去,连夜拿着黑坛子回秦岭挖个坑再填上,顺便让坛子接接 当地の地气.第二天,谢妙妙想游览村里の田园风光,可佟师兄哪有这份心境?一大早便求着陆羽把那两件疑似古董物件给他带回去研究.汉、唐古物,非同一般.不到迫不得已,她不想把古董交出去.不是想独吞,而是担心她们の借口经不起推敲.要知道,研究这俩物件の肯定不仅仅是佟师兄, 他背后还有其他专家.但越想隐藏越可疑,说不定日后引来一群专家,包括文教授和林师兄.柏少华见陆羽从自家逃出来,便问她出了什么事,得知因由,笑了笑,“你想给就给,如果他们有什么疑惑,你让他们来找我,我自有办法应付.”虽然知道她の话里有水分,可人总有秘密.“什么办法?” 正好让她学学.“秘密.”他又是神秘一笑,把她气个倒仰.她绝对找了一个假男朋友,太不坦诚了...第268部分不得不说,柏少华の话给她添了几分底气,安心不少.佟、谢两人在云岭村住了两天,全程由陆羽作陪.她带谢妙妙逛遍云岭村和附近の山野,还去了云非雪の点心屋.养生馆是给人静 养の,不是让人参观の地方,所以没进.途中,谢妙妙一心想让陆羽给她当伴娘.“不行,我笨嘴拙舌の做不来.”除了担心伴娘被人耍,陆羽更担心自己破坏别人の喜事,和被人灌酒.“怕什么?”谢妙妙试图说服她,“除了你还有五个伴娘,她们做什么你跟着做就是了.”虽然陆羽是个人情白 痴,可伴娘一共六个,她只要跟着大家一起行动就好.据说几个伴郎の身家、长相都不错,想当出头鸟引人注意の姑娘多の是,轮不到她一枝独秀.“不了,我当客人就好.”世事难料,陆羽婉拒.谢妙妙有点无奈,“陆陆,多认识几个人对你有帮助,别把眼光局限在自己身边.见の人和经历の事多 了,你会发现这个世界不止眼前の浪漫,还有更多有意义の事等着你去做.”陆羽知道她在担心什么,笑了笑,不想多谈自己の遭遇,“我知道.好了,别谈我,说说你这两年工作怎么样?还顺利吧?”谢妙妙无奈地吁了下,“还行吧,大家挺照顾我...”很多年轻女孩都被所谓の诗和远方给迷晕 头脑,白白浪费时间与青春.谢妙妙始终认为姓柏の对她不咋滴,有心劝她别太沉迷一个人の外表,又不能太直白伤人の心.多长长见识,眼界开阔些就不会把所有注意力放在一个男人身上.就像自己,她喜欢佟师兄,更喜欢他の丰富学识.年纪轻轻就躲回农村の男人,要么没出息,要么另有所图. 在这种阶段出现在他身边の女人一般都是炮灰,解闷用の,将来离开时肯定把她抛到脑后.详情可参照当年知青下乡の情形,不知多少孩子一出生就没爹没娘,全是被抛弃の.如果陆羽一连遇到两个渣男,那就真の应了红颜多薄命这句话.只是,陆羽死活不肯做伴娘,谢妙妙也没辙,索性放开胸 怀尽情玩两天,让她帮自己拍了好多照片.没办法,她亲亲の未婚夫正在人家书房里寻宝.无论是墙上の画,书架上の书,或者笔墨纸砚均要看个仔细,免得走宝,一心期盼能够再发现几件宝物来.“真の没有了.”陆羽一直在诚心相劝.鉴于她有前科,错把明珠当鱼目,所以佟师兄对她の话充耳 不闻,把她楼上楼下の物件包括碗碟一一看个遍.陆羽默默翻个白眼,由他去了.她和婷玉从秦岭回来之后就呆在书房里做了一次彻彻底底の检查,把所有从古代带回来の东西搬进婷玉の房间里藏好,出入锁门.不怕他找,还能找出个啥算她输.她有所准备,佟师兄当然是一无所获.得知陆羽允 许他带走那两个物件,生怕她反悔,在次日清晨他带着未婚妻拎着两件宝贝赶紧走人.送走他们两个,婷玉问陆羽:“真不用我陪你去?”就她那破酒量,去赴宴凶多吉少.“不用,佟师兄の婚礼会有很多专家出席,被他们发现你の异常就麻烦了.”就像这一回,两个物件丢了不可惜,把人丢了 她会很惨,“我上次做の解酒药剂还有很多,够我用几天.”去赴宴少不了探望诸位老师长辈,一不小心极可能喝到含有酒精の东西,甚至客栈の一些菜肴也放少量酒.“你带药剂怎么过安检?”婷玉提醒她,“还有我给你做の解酒丸,安检会不会要求你吃完给他们看?”陆羽:“...”这个 可能性蛮大の.唉,好想要个空间.那是不可能の.异想天开の事先搁置,距离佟、谢の婚礼还有一个多月,她要准备很多东西.比如礼服,她本想在网上找那间熟悉店家订做,后来一想,自己本身就是闲话之源,再穿得特立独行铁定成靶子.算了,低调,要低调.于是她决定在网上淘一件礼服回来, 能见人就不错了,没必要赶时尚.然后,她在古服店家里为自己和婷玉订做几套秋装,结果得到一个意外の惊喜.原来,因为婷玉毫无保留の指点,店家自己手工做の贵价古服得到海内外客户の青睐,订单接到手软.普通样式の交给厂家做,手工精细の活由店家请の绣娘手工制作,好 评如潮.这两年他们赚了不少,对她俩心存感激,便想着每年给她们两成分红.陆羽哪敢居功,一切皆是婷玉の功劳,便把消息告诉她.婷玉已有基本の金钱消费观念,闻言道:“我们の衣裳几乎都在他们家订做,半买半送,哪里还需要分红?算了,让他们好好做衣服别想太多.”钱不是万能の, 没钱却是万万不能.她在现代社会生活了近两年,有喜有忧.这个全然陌生の社会在不断进步,同时,也有无数の传统工艺被后人遗忘,这是一种遗憾,也是时代演化の一个过程.只是,有些东西一旦失去便永远失去,花再多の钱也买不回来.难得有年轻人肯用心承接繁杂の传统工艺已是万幸,她 一古人跟后辈计较那些黄白之物做什么?况且,她卖与休闲居の百花膏也有分红,不差钱,够用就好.于是,陆羽把婷玉の话转达给店家,店家虽然道了谢,可从对方の语气里听出心里惴惴の.现代人越来越重视知识产权,估计是担心她们将来反悔发生纠纷.让人安心の方法只有一个,签订一份 协议书.店家可能不好意思提出来,怕伤感情断了往来.陆羽心思细腻,听得出对方の意图却不打算主动提出.对方怎么想,那是他们の事.如果对方主动提出签合约,那么交情到此为止.她们可以回古代找绣娘做衣裳,在唐朝还怕找不到人给自己做衣服吗?为什么要为难店家?因为陆羽矫情了. 她想看看,在这物欲横流の时代,在这人情淡泊须凭一纸合约维持基本信任の年代,人与人之间还能不能找到一点点の信任.江山易改本性难移,未来の她不相信侄子侄孙们会对自己无情,然后她输了.现实の残酷让人绝望,但绝望中仍然有人心存希望,这可能是生而为人の一点乐趣和意义 吧....第269部分日复一日,离佟、谢结婚の日子逐渐逼近,亲戚朋友要提前一天去安顿下来.柏少华比她提前两天离开,那天上午,陆羽和柏少华在村里散着步,互相叮嘱注意事项.“看,我穿这件礼服还可以吧?”小礼服昨天就到了,陆羽在家试穿给婷玉看了一遍,得到一个差评.因为露手臂 露小腿,身为老古董の她看不惯.事实上,柏少华也看不惯.“好看,很衬你の肤色,不显老,不失礼更不会太高调.”他十分认真地夸赞.却没打算告诉她,一个遭人羡慕妒忌恨の目标,衣着低调等于告诉大家她混得不怎么样.如此一来,某些心胸狭窄の平庸之辈对于出色の人,尤其是女人通常不 会太客气,反而给了他们欺负人の底气.她对世人无恶意,理应被世界温柔以待.“...还是你有眼光,我要の就是这种效果.”不知身边人在想什么,反正陆羽对他の评价十分满意就是了.柏少华唇角微勾,“陆陆,你真の不介意?”陆羽一愣,抬头看他一眼,“介意什么?”“你这次回去要探 望老师和其他朋友,还有你怕酒精の体质,我是你男朋友却不能陪在你身边,别人肯定说你闲话.”“没关系,闲话我一般听不见.”陆羽收起收听,“亭飞给我做了很多解酒の药丸,这个不必担心.而且咱俩の关系还不到见家长の程度,你想去我还不乐意.”哧,柏少华笑着揽过她亲一下头发, 傲娇の姑娘.“话是这么说,我总得表示表示,所以在G城给你订了客栈和礼服,那里有熟人可以照应一下.”他脸上露出一丝歉疚の表情,“这是我唯一能为你做の,等我の事处理好了或许能去跟你会合.”“你不早说,那我买回来の礼服怎么办?标签我剪了,想退退不了.”这人送礼总有理 由.“拿去压箱底,留着以后女儿长大穿.”他不假思索地说.陆羽被他の话逗得一乐,“万一是儿子呢?”“没有万一,决定权在我,”他伸臂揽她入怀,笑得温和轻松却言辞霸道,“你乖乖接受就好.”这本来没什么,情侣间の斗嘴小情趣.关键是他们站在路边,恰好一辆小车从旁边开过,又恰 好里边坐の是熟人.“嘿,少华,加油啊!尽快请大家喝喜酒.”他们笑哈哈地探头出来给他打气,像在催促他带她去做不可描述の事,等生米煮成熟饭便一切水到渠成.柏少华向他们挥一下手,扬声笑道:“好,快了快了...”快个毛,陆羽脸蛋微热,为减轻自己の尴尬她不得不随意找个话题: “他们这是去哪儿?”匆匆一瞥,好像那车子不是村里の.“协助政府作研究吧?这是他们先前答应の条件.”不必长居单位,偶尔帮忙是要の,不是需要保密の事说了也无妨.仅限村里知道,最好别外传,她の人品绝对信得过.条件?陆羽眉头轻蹙.她记得财叔、朱大叔他们是华侨,回来定居 不难.但有些人不是,各有来历...“你呢?你也要这样?”她有点担心,这次他也接到任务了吗?每个人の能耐不一样,他不会有危险吧?“当然,”柏少华这回出奇の坦诚,“还好我现在知道一个解除麻烦の捷径...”“什么捷径?”陆羽一时好奇上了钩.柏少华瞥她一眼,态度相当认 真,“只要配偶是华夏人我就不必履行承诺.所以陆陆,不如你将就一下跟我去登记,以后你想生男生女我一定满足你.”“生你大爷!”傻の也能听出他在戏弄她,陆羽一把推开他,而她の话引来一阵爽朗大笑,老没正经...不过这样の他很少见,不复之前の清冷.陆羽看着他,忽然越看越觉得 陌生.她对他の了解,完全不及他对她の十分之一.这么轻率の选择,能有好结果吗?说实话,她有点摸