西南交大数值分析题库积分微分方程

合集下载

西南交通大学2018-2019数值分析Matlab上机实习题

西南交通大学2018-2019数值分析Matlab上机实习题

西南交通⼤学2018-2019数值分析Matlab上机实习题数值分析2018-2019第1学期上机实习题f x,隔根第1题.给出⽜顿法求函数零点的程序。

调⽤条件:输⼊函数表达式()a b,输出结果:零点的值x和精度e,试取函数区间[,],⽤⽜顿法计算附近的根,判断相应的收敛速度,并给出数学解释。

1.1程序代码:f=input('输⼊函数表达式:y=','s');a=input('输⼊迭代初始值:a=');delta=input('输⼊截⽌误差:delta=');f=sym(f);f_=diff(f); %求导f=inline(f);f_=inline(f_);c0=a;c=c0-f(c0)/f_(c0);n=1;while abs(c-c0)>deltac0=c;c=c0-f(c0)/f_(c0);n=n+1;enderr=abs(c-c0);yc=f(c);disp(strcat('⽤⽜顿法求得零点为',num2str(c)));disp(strcat('迭代次数为',num2str(n)));disp(strcat('精度为',num2str(err)));1.2运⾏结果:run('H:\Adocument\matlab\1⽜顿迭代法求零点\newtondiedai.m')输⼊函数表达式:y=x^4-1.4*x^3-0.48*x^2+1.408*x-0.512输⼊迭代初始值:a=1输⼊截⽌误差:delta=0.0005⽤⽜顿法求得零点为0.80072迭代次数为14精度为0.00036062⽜顿迭代法通过⼀系列的迭代操作使得到的结果不断逼近⽅程的实根,给定⼀个初值,每经过⼀次⽜顿迭代,曲线上⼀点的切线与x轴交点就会在区间[a,b]上逐步逼近于根。

上述例⼦中,通过给定初值x=1,经过14次迭代后,得到根为0.80072,精度为0.00036062。

最新西南交通大学高等数学练习题答案详解优秀名师资料

最新西南交通大学高等数学练习题答案详解优秀名师资料

西南交通大学高等数学练习题答案详解精品文档西南交通大学高等数学练习题答案详解高等数学1. 函数y?xcos2? A. 奇函数x3?x是1?xB. 偶函数C. 非奇非偶函数D. 有界函数2. 函数y?2cos的周期是B.?C.?D. 0an?2,. 设数列an,bn及cn满足:对任意的n,an?bn?cn,且limn??lim?0,则limbn?n??n??A. 0B. 1C.D. -21 / 32精品文档x2?2x?14. lim=x?ix3?xA.1B. 0C.1D. ?5. 在抛物线y?x2上点M的切线的倾角为 A. 1124tan2x?,则点M的坐标为11B. C. D.426.limx?0e?1?sinxB.2 / 32精品文档1xA. 0 C. 1 D. -27. A.limx?012B. eC.1D. ?8. 设曲线y?x与直线x=2的交点为P,则曲线在P点的切线方程是 A x-y-4=0B x+y-1=0C x+y-3=0D x-y+2=09. y?x?3?sinx,则y?? A. xx?1xx?3x?cosx1B. x?3ln3?cosxxxC. xlnx?3ln3?cosxxxD. x?3ln3?cosx3 / 32精品文档xx10. f在点x0可微是f在点x0连续的 A. 充分条件B. 必要条件C. 充分必要条件D. 无关条件11. 函数y?2x3?6x2?18x?7单调减少的区间是 A.B. x? D.C. ,12.?sin3xdx?11cos3x?c B. ?cos3x?C C. ?cos3x?C D. cos3x?C3 21dt,则??? 13. 设??? sinx1?t21cosxcosx1?? A.B.C.D.1?sin2x1?sin2x1?sin2x1?sin2xA.14. 函数5e的一个原函数为 A.e5x5xB.e4 / 32精品文档5xC.15xeD. ?e5x15.??2??2xcos3xdx= B.A.2???4C. 0D.216. 下列广义积分收敛的是 A.5 / 32精品文档??dxx1B.dx? 022C.??11dx 1?xD.?adxa?x2217. 下列集合可作为一条有向直线在空间直角坐标系中的方向角?,?,?的是 A. 5?,45?,60?C. 0?,45?,60?,18. 设函数f?xy? A. 06 / 32精品文档B. 12B.5?,60?,60? D.5?,60?,90? y,则f?=xxC. ?1D.2219. 设函数u?ln,则du2=A.1C. dx?dy?dz 0.24D.3B.7 / 32精品文档23x ??xA?2xcos2x B xsinx2C sinxDsin2x2. 当D?{|x2?y2?1} 时,则??dx?DA ?B 1C 0D ?a23. 设a?0,则?? A.?B.?C.发散D.?4225. 曲面z?x2?y2在点处的切平面方程是A.?4??0 B ?4??0 C. ?2??0,D.?4??0?26. 判断级数?n?118 / 32精品文档n?12n2?n是 A绝对收 . B条件收敛. C 发散 . D 以上都不正确 . ?g27. f???x,x?0其中g?=2要使f在x?0处连续,则a?A. 0B. 1C.D. e28. 方程y???4y?0的通解是 A. y?Ce2x?Ce?2xC.y?C1e2x?C2e?2x?B. y?C1e2x?e?2x D. y?e2x?C2e?2xn?1x2n?129. ?内的和函数是n?1!AsinxB cosx Cex30. 设f?3??x9 / 32精品文档20tdt,,则f=西南交通大学网络教育2010年秋季入学考试模拟题高等数学1.函数y?x2sinx?ln,则y?? A. xx?1x3?3x?cosx2B. x?3ln3?cosx D. x?3ln3?cosxxxxxC. x?3x?sinxx7. f在点x0可导是f在点x0连续的 A. 充分条件B. 必要条件C. 充分必要条件D. 无关条件8. 函数y?2x3?6x2?18x?7单调减少的区间是 A.B. x? D.10 / 32精品文档C. ,1x9. 曲线y?e?1的水平渐近线方程为 A. x?1B. y?1C. x?0D.y?0210.?5一、填空题: 1(设函数z?z是由?nxz?lnzy所确定,则dz?0,1,1??dx?dy (?2(设幂级数?anx的收敛区间为??3,3?,则幂级数?an?x?1?的收11 / 32精品文档n?0n?0n敛区间为 ??2,4? ((设函数??x,f???0,y???x?00?x??的付氏级数的和函数为S,则S??2(4(设z?f,其中f具有连续的二阶偏导数,则x??z?x?y2=1x???f121x12 / 32精品文档2f2??yx3?? ( f225(设幂级数?an?x?1?在x?0处收敛,而在x?2处发散,则幂级数?anxn的n?0n?0n?收敛域为 [?1,1)((函数?n?1?n关于x的幂级数展开式为 ? ( f??1??x,x?2n?1x?x?2n?0?2?3?y7(设函数z?x,则dz? dx?2ln2dy8(曲线x?t,y??t2,z?t3的切线中,与平面x?2y?3z?6垂直的切线方程是13 / 32精品文档x?11?y?1?2?z?13z(9(设z?z是由方程e?zsin?lna a?0为常数所确定的二元函数,则 dz? yzcose?sin2zdx?xzcose?sinzdy(10.旋转抛物面z?x?y的切平面:x?4y?8z?1?0,2平行与已知平面x?y?2z?1.111(微分方程2y???y??y?0的通解为 Y?C1e2x?C2e14 / 32精品文档?x,1x2y???y??y?e的通解为 y?C1e2?C2ex?x?12e(x12.曲线?:x??tecosudu,y?2sint?cost,z?1?eu3t在点?0,1,2?处的切线方程为3(函数f?1x?4的麦克劳林级数的第5项为?x44515 / 32精品文档,收敛域为.14.(已知函数f?2x?3y?x?y,有一个极值点,则a?2, b?3,此时函数f 的极大值为 .ab15.试写出求解下列条件极值问题的拉格朗日函数:分解已知正数a为三个正数x,y,z之和,使x,y,z的倒数之和最小L?x,y,z??1x?1y?1z???x?y?z?a?16函数f?xln?1?x?的麦克劳林级数的收敛域为x???1,1?,f?二、单项选择题:请将正确结果的字母写在括号内。

西南交通大学研究生数值分析总复习

西南交通大学研究生数值分析总复习

记x*表示x的近似值,若x* 0.a1a2 an 10m , (ai 是0,1,,9中的一个数字,a1 0),
*
1 mn 如果 x x 10 , 则称x *近似x时具有n位有效数字。 2
返回
前进
3. 记近似值x*=0.a1a2…an×10m,若要保留五位有效数 字(这是 以后常会用到的),即要求误差限ε<0.5×10m-n, 则n=5;
1 这即要求出满足: 10( n 1) 0.01%的n 2a1
例3(续)
1 由a1 5 10( n 1) 0.01% 0.0001 25 10( n 1) 0.001 n 1 lg 0.001 3 n 4 1 因此,只要对 0.052631578 的近似值取四位 19 1 有效数字为 0.05263 ,则其相对误差限就不 超过0.01% 19
返回
前进
§2 绝对误差、相对误差和有效数字
2.1 绝对误差与相对误差 设 x *为准确值的近似值,记
e xx
*
e x x* er x x
分别称e为近似值x *的绝对误差或误差, er为x*的相对误差。
一般情况下,准确值是不知道的,从而也不能算出绝 对误差e的准确值,但往往可以根据测量工具或计算的情 况估计出e 的取值范围,即估计出绝对误差的一个上界ε :
返回
前进
迭代法是一种重要的逐次逼近法,其基本思想是: 设方程f (x) = 0在区间[a, b]内有一根x*,将方程化为等价 方程x = (x),并在[a, b]内任取一点x0作为初始近似值, 然后按迭代公式计第二章 非线性方程求解算: x ( x ), (k 0,1,2,) (2 - 3)
返回

西南交大数值分析第一次大作业答案

西南交大数值分析第一次大作业答案

数值分析大作业1、证明:1-x-sinx=0在[0,1]内有一个根,使用二分法求误差不大于0.5*10^-4的根要迭代多少次,并输出每一步的迭代解和迭代误差证明:令f(x)= 1-x-sinx;f(0)=1,f(1)=-sin1f(0)*f(1)<0f’(x)=1-cosx<0在[0,1]内恒成立所以1-x-sinx=0在[0,1]内恒有一个根程序:function chap2bisecta = 0;b = 1;fprintf('n || a || b || c || r \n')for k=1:15c = (a+b)/2;r=(b-a)/2;fa =1-a-sin(a);fb =1-b-sin(b);fc =1-c-sin(c);fprintf('%d || %f || %f || %f \n',k,a,b,c,r);if abs(fc)<0.5*10^(-4) r=c; sprintf('the root is: %d' , r);elseif fa*fc<0 b=c;elseif fb*fc<0 a=c;endendroot = (a+b)/2结果:n || a || b || c || r1 || 0.000000 || 1.000000 || 0.500000 ||5.000000e-001 ||2 || 0.500000 || 1.000000 || 0.750000 ||2.500000e-001 ||3 || 0.500000 || 0.750000 || 0.625000 ||1.250000e-001 ||4 || 0.500000 || 0.625000 || 0.562500 ||6.250000e-002 ||125 || 0.500000 || 0.562500 || 0.531250 ||3.125000e-002 ||6 || 0.500000 || 0.531250 || 0.515625 ||1.562500e-002 ||7 || 0.500000 || 0.515625 || 0.507813 ||7.812500e-003 ||8 || 0.507813 || 0.515625 || 0.511719 ||3.906250e-003 || 9 || 0.507813 || 0.511719 || 0.509766 ||1.953125e-003 || 10 || 0.509766 || 0.511719 || 0.510742 ||9.765625e-004 || 11 || 0.510742 || 0.511719 || 0.511230 ||4.882813e-004 || 12 || 0.510742 || 0.511230 || 0.510986 ||2.441406e-004 || 13 || 0.510742 || 0.511230 || 0.510986 ||2.441406e-004 || 14 || 0.510742 || 0.511230 || 0.510986 ||2.441406e-004 || 15 || 0.510742 || 0.511230 || 0.510986 ||2.441406e-004 || root =0.510986328125000。

西南交大《数值计算》习题习题

西南交大《数值计算》习题习题

4
5
y
0
16
46
88
0
求各价差商,并写出Newton基本插值公式。 4. 已知函数表:
x 0.125 0.250 0.375 0.500 0.625 0.750
f(x) 0.79618 0.77334 0.74371 0.70431 0.65632 0.60228
(1) 写出差分表 (2) 用Newton向前插值公式计算f(0.158)的近似值 (3) 用Newton向后插值公式计算f(0.636)的近似值 5. 求次数不高于4次的多项式p(x),使它满足:
6. 用Romberg法计算下述积分。
(1)
(2)
使误差不超过
7. 分别用n=5的Gauss型求积公式,计算:

8. 试证明上的Gauss-Legendre求积公式的节点和系数关于原点是对称分
布。
习题八 1. 分别用Euler法,改进Euler法,二阶及四阶标准Rumge-Kutta法求 解如下的初值问 题。 在点x=0.1处的数值解(分别取h=0.1,h=0.05)及局部截断误差(准确
(1) p(1)=p (1)=0, p(2)=p (2) =0, p(3)=1 (2) p(0)=p (0)=0, p(1)=p (1) =1, p(2)=1 并写出误差表达式。 6. 已知数据表:
x
1
2
4
5
y
1
4
6
4
试分别求出满足下列条件的三次样条插值函数。 (1)S (1)=1 S (5)=0 (2)S (1)=1 S (5)=0 7. 设
习题八分别用euler法改进euler法二阶及四阶标准rumgekutta法求解如下的初值问在点x01处的数值解分别取h01h005及局部截断误差准确解y用adamas预报一校正公式求初值问题

数值分析练习题附答案

数值分析练习题附答案

目录一、绪论------------------------------------------------------------------------------------- 2-2二、线性方程组直接解法列主元高斯LU LDL T GG T-------------------- 3-6二、线性方程组迭代法----------------------------------------------------------------- 7-10 三、四、非线性方程组数值解法二分法不动点迭代---------------------- 11-13五、非线性方程组数值解法牛顿迭代下山弦截法----------------- 14-15六、插值线性插值抛物线插值------------------------------------------------ 16-18七、插值Hermite插值分段线性插值-----------------------------------------19-22八、拟合------------------------------------------------------------------------------------ 23-24九、数值积分----------------------------------------------------------------------------- 25-29十、常微分方程数值解法梯形欧拉改进----------------------------------- 30-32 十一、常微分方程数值解法龙格库塔------------------------------------------ 33-35绪论1-1 下列各数都是经过四舍五入得到的近似值 ,试分别指出它们的绝对误差限,相对误差限和有效数字的位数.X 1 =5.420, X 2 =0.5420, X 3 =0.00542, X 4 =6000, X 5 =0.6×105注:将近似值改写为标准形式X 1 =(5*10-1+4*10-2+2*10-3+0*10-4)*101 即n=4,m=1 绝对误差限|△X 1|=|X *1-X 1|≤ 12×10m-n =12×10-3 相对误差限|△r X 1|= |X∗1−X1||X∗1|≤|X∗1−X1||X1|= 12×10-3/5.4201-2 为了使101/2 的相对误差小于0.01%, 试问应取几位有效数字?1-3 求方程x 2 -56x+1=0的两个根, 使它们至少具有4位有效数字( √783≈27.982)注:原方程可改写为(x-28)2=783线性方程组解法(直接法)2-1用列主元Gauss消元法解方程组解:回代得解:X1=0 X2=-1 X3=12-2对矩阵A进行LU分解,并求解方程组Ax=b,其中解:(注:详细分解请看课本P25)A=(211132122)→(211(1/2)5/23/2(1/2)3/23/2)→(2111/25/23/21/2(3/5)3/5)即A=L×U=(11/211/23/51)×(2115/23/23/5)先用前代法解L y=P b 其中P为单位阵(原因是A矩阵未进行行变换)即L y=P b 等价为(11/211/23/51)(y1y2y3)=(111)(465)解得 y 1=4 y 2=4 y 3=35再用回代解Ux =y ,得到结果x即Ux =y 等价为(2115/23/23/5)(x 1x 2x 3)=(y 1y 2y 3)=(443/5) 解得 x 1=1 x 2=1 x 3=1即方程组Ax=b 的解为x =(111)2-3 对矩阵A 进行LDL T 分解和GG T 分解,求解方程组Ax=b,其中A=(164845−48−422) , b =(123)解:(注:课本 P 26 P 27 根平方法)设L=(l i j ),D=diag(d i ),对k=1,2,…,n,其中d k =a kk -∑l kj 2k−1j=1d jl ik =(a ik −∑l ij l kj k−1j=1d j )/ d k 即d 1=a 11-∑l 1j 20j=1d j =16-0=16因为 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=a 21/ d 1=416=14 所以d 2=a 22-∑l 2j 21j=1d j =5-(14)2d 1=4同理可得d 3=9 即得 D=(1649)同理l 11=(a 11−∑l ij l 1j 0j=1d j )/ d 1=1616=1=l 22=l 33 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=416=14 l 31=(a 31−∑l 3j l 1j 0j=1d j )/ d 1=816=12 l 32=(a 32−∑l 3j l 2j 1j=1d j )/ d 2=−4−12×14×164=−64=-32即L=(114112−321) L T=(114121−321) 即LDL T分解为A=(114112−321)(1649)(114121−321)解解:A=(164845−48−422)→(41212−32−33)故得GG T分解:A=(4122−33)(4122−33) LDL T分解为A=(114112−321)(1649)(114121−321) 由(114112−321)(y 1y 2y 3)=(123) ,得(y 1y 2y 3)=(0.250.8751.7083)再由(4122−33)(x 1x 2x 3)=(0.250.8751.7083) ,得(x 1x 2x 3)=(−0.54511.29160.5694)2-4 用追赶法求解方程组:解:(4−1−14−1−14−1−14−1−14)→(4−14−1154−415−15615−1556−120956−56209−1780209)由(4−1154−15615−120956−1780209)(y1y2y3y4y5)=(100200),得(y1y2y3y4y5)=(256.66671.785700.4784753.718)再由(1−141−4151−15561−562091)(x1x2x3x4x5)=(256.66671.785700.4784753.718),得(x1x2x3x4x5)=(27.0518.20525.769314.87253.718)线性方程组解法(迭代法)2-1 设线性方程组{4x 1−x 2+2x 3=1−x 1−5x 2+x 3=22x 1+x 2+6x 3=3(1) 写出Jacobi 法和SOR 法的迭代格式(分量形式) (2) 讨论这两种迭代法的收敛性(3) 取初值x (0)=(0,0,0)T ,若用Jacobi 迭代法计算时,预估误差 ||x*-x (10)||∞ (取三位有效数字)解:(1)Jacobi 法和SOR 法的迭代格式分别为Jacobi 法迭代格式SOR(2)因为A 是严格对角占优矩阵,但不是正定矩阵,故Jacobi 法收敛,SOR 法当0<ω≤1时收敛.⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=-+-=+-=+++216131525151412141)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x xx x ⎪⎪⎪⎩⎪⎪⎪⎨⎧-++-=+-+-=+-+-+=++++++)216131()525151()412141()(3)1(2)1(1)(3)1(3)(3)(2)1(1)(2)1(2)(3)(2)(1)(1)1(1k k k k k k k k k k k k k k k x x x x x x x x x x x x x x x ωωω(3)由(1)可见||B ||∞=3/4,且取x (0)=(0,0,0)T ,经计算可得x (1)=(1/4,-2/5,1/2)T ,于是||x (1)-x (0)||∞=1/2,所以有2-2 设方程组为{5x 1+2x 2+x 3=−12−x 1+4x 2+2x 3=202x 1−3x 2+10x 3=3试写出其Jacobi 分量迭代格式以及相应的迭代矩阵,并求解。

西南交大研究生数值分析期末考试作业答案

西南交大研究生数值分析期末考试作业答案

序言随着科技的进步和经济的迅猛发展,计算机这一工具在人们的生活和工作中越来越重要,数值分析作为工程计算和科学计算连接计算机的一门基础课程日益受到人们的重视,数值分析这门课在我们整个研究生课程的学习中具有很重要的意义,对我们以后的工作学习有很重要的作用。

Matlab是与一个非常优秀的的计算机语言,集数学计算,仿真和函数绘图等于一体,是一款功能强大的数学软件,是科研机构进行数学建模分析、研究必要的工具。

本上机实习的所有内容都是采用Matlab7.0这个软件开发平台。

使用Matlab7.0语言所编写的程序,与Visual C++、Basic和Pascal程序相比,具有速度快、操作简单、修改方便、界面友好、功能强大等优势。

用C++自编程序解决问题针对性好,可以得到想要的各种结论,而用数学软件计算则有一定的局限性,因为数学软件的算法是封装的,甚至我们不知道命令的具体算法,另外数学软件的命令只能解决通用的计算问题,对需要特定结论的计算问题,比如得到迭代次数, 光用数学软件的命令便不能得到,而用C++编程则有很强的适应性,可以精细控制计算细节,得到一些想要的结论,但是对于常规的计算问题,比如拟合和插值以及解方程(组),如果只要结果,那么用软件计算比较有优势,所以对实际问题综合使用计算方法比较好.由于使用能力所限,有一些疏忽,恳请老师指正,在此感谢老师这个学期对我们的悉心教导。

第一题写出对一般的线性方程组通用的Gauss消元, Gauss-Seidel迭代程序。

并以下面的线性方程组为例进行计算,讨论所得到的计算结果是否与理论一致。

(1)6213100 1422200 3144345x--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=-⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭或(2)10.80.835 0.810.820 0.80.81110x⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭或(3)134 716x⎛⎫⎛⎫=⎪ ⎪-⎝⎭⎝⎭本题的思路为编写Gauss-Seidel迭带的函数,在matlab中运行,查看其收敛与否与收敛速度,然后验证迭代收敛的条件。

数值分析试题库与答案解析

数值分析试题库与答案解析

模 拟 试 卷(一)一、填空题(每小题3分,共30分)1.有3个不同节点的高斯求积公式的代数精度是 次的.2.设152210142-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A ,342⎛⎫ ⎪=- ⎪ ⎪⎝⎭x ,则 ∞A = ., 1x = ______.3.已知y =f (x )的均差(差商)01214[,,]3f x x x =,12315[,,] 3f x x x =,23491[,,]15f x x x =,0238[,,] 3f x x x =, 那么均差423[,,]f x x x = .4.已知n =4时Newton -Cotes 求积公式的系数分别是:,152,4516,907)4(2)4(1)4(0===C C C 则)4(3C = .5.解初始值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进的Euler 方法是 阶方法;6.求解线性代数方程组123123123530.13260.722 3.51x x x x x x x x x --=⎧⎪-++=⎨⎪++=⎩的高斯—塞德尔迭代公式为 ,若取(0)(1,1,1)=-x, 则(1)=x .7.求方程()x f x =根的牛顿迭代格式是 . 8.1(), (),, ()n x x x 是以整数点01, ,, ,n x x x 为节点的Lagrange 插值基函数,则()n kjk k xx =∑= .9.解方程组=Ax b 的简单迭代格式(1)()k k +=+xBx g 收敛的充要条件是 .10.设(-1)1,(0)0,(1)1,(2)5f f f f ====,则()f x 的三次牛顿插值多项式为 ,其误差估计式为 .二、综合题(每题10分,共60分)1.求一次数不超过4次的多项式()p x 满足:(1)15p =,(1)20p '=,(1)30p ''=(2)57p =,(2)72p '=.2.构造代数精度最高的形式为10101()()(1)2xf x dx A f A f ≈+⎰的求积公式,并求出 其代数精度.3.用Newton 法求方程2ln =-x x 在区间) ,2(∞内的根, 要求8110--<-kk k x x x .4.用最小二乘法求形如2y a bx =+的经验公式拟合以下数据:5.用矩阵的直接三角分解法解方程组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡71735 30103421101002014321x x x x .6 试用数值积分法建立求解初值问题0(,)(0)y f x y y y '=⎧⎨=⎩的如下数值求解公式1111(4)3n n n n n hy y f f f +-+-=+++,其中(,),1,,1i i i f f x y i n n n ==-+.三、证明题(10分)设对任意的x ,函数()f x 的导数()f x '都存在且0()m f x M '<≤≤,对于满足20Mλ<<的任意λ,迭代格式1()k k k x x f x λ+=-均收敛于()0f x =的根*x .参考答案一、填空题1.5; 2. 8, 9 ; 3.9115; 4. 1645; 5. 二; 6. (1)()()123(1)(1)()213(1)(1)(1)312(330.1)/5(220.7)/6(12)*2/7k k k k k k k k k x x x x x x x x x ++++++⎧=++⎪=+-⎨⎪=--⎩, ,,0.1543)7. 1()1()k k k k k x f x x x f x +-=-'-; 8. j x ; 9. ()1B ρ<; 10.32(4)11,()(1)(1)(2)/24(1,2)66x x x f x x x x ξξ+-+--∈-二、综合题 1.差商表:233234()1520(1)15(1)7(1)(1)(2)5432p x x x x x x x x x x =+-+-+-+--=++++其他方法:设233()1520(1)15(1)7(1)(1)()p x x x x x ax b =+-+-+-+-+ 令(2)57p =,(2)72p '=,求出a 和b. 2.取()1,f x x =,令公式准确成立,得:0112A A +=,011123A A +=, 013A =, 116A =. 2()f x x =时,公式左右14=;3()f x x =时,公式左15=, 公式右524=∴ 公式的代数精度2=.3.此方程在区间) ,2(∞内只有一个根s ,而且在区间(2,4)内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用复化梯形公式计算积分
1
()f x dx ⎰,要把区间[0,1]一般要等分 41 份才能保
证满足误差小于0.00005的要求(这里(2)
()
1f x ∞
≤)
;如果知道(2)
()0f x >,则 用复化梯形公式计算积分1
()f x dx ⎰
此实际值 大 (大,小)。

在以1
0((),())()(),(),()[0,1]g x f x xf x g x dx f x g x C =
∈⎰为内积的空间C[0,1]
中,与非零常数正交的最高项系数为1的一次多项式是 2
3
x -
3. (15分)导出用Euler 法求解 (0)1y y
y λ'=⎧⎨=⎩
的公式, 并证明它收敛于初值问题的精确解
解 Euler 公式 11,1,,,k k k x
y y h y k n h n
λ--=+==
L -----------(5分) ()()1011k
k k y h y h y λλ-=+==+L ------------------- (10分)
若用复化梯形求积公式计算积分1
x I e dx =

区间[0,1]应分 2129 等分,即要
计算个 2130 点的函数值才能使截断误差不超过
71
102
-⨯;若改用复化Simpson 公式,要达到同样精度区间[0,1]应分12 等分,即要计算个 25 点的函数值
1.用Romberg 法计算积分 2
3
2
x e dx -⎰
解 []02()()2b a
T f a f b -=
+= 9.6410430E-003 10221()222
b a a b
T T f -+=+= 5.1319070E-003
10
022243
T T S -=
= 4.6288616E-003
22T = 4.4998E-003 21
122243
T T S -=
= 4.E-003
10
02221615
S S C -=
= 4.6588636E-003
32T = 4.7817699E-003
32
222243
T T S -=
= 4.1067038E-003
21
12221615S S C -=
= 4.5783515E-003
10
02226463
C C R -=
= 4.7358037E-003
2.用复合Simpson 公式计算积分
2
3
2
x e dx -⎰
(n=5)
解 44
501()4()2()(),625k k h h b a
S f a f a kh f a kh f b h ==⎡⎤-=++++++=⎢⎥⎣⎦
∑∑
5S =4.3630653 E-003
3、 对于n+1个节点的插值求积公式
()()b
n
k k k a
f x dx A f x =≈∑⎰ 至少具有 n 次代数精度. 4、 插值型求积公式
()()b
n
k k k a
f x dx A f x =≈∑⎰的求积系数之和0n
k k A =∑=b-a 5、 证明定积分近似计算的抛物线公式
()()4()()22b
a
b a a b f x dx f a f f b -+⎡⎤

++⎢⎥⎣⎦

具有三次代数精度 证明 如果具有4阶导数,则
()()4()()22b
a
b a a b f x dx f a f f b -+⎡⎤
-++⎢⎥⎣⎦

=)(f 2880)a b ()4(5η--
(η∈[a,b])
因此对不超过3次的多项式f(x)有
()()4()()022b
a
b a a b f x dx f a f f b -+⎡⎤
-
++=⎢⎥⎣⎦


()()4()()22b
a
b a a b f x dx f a f f b -+⎡⎤
=
++⎢⎥⎣⎦

精确成立,对任一4次的多项式f(x)有 因此定积分近似计算的抛物线公式具有三次代数精度 或直接用定义证.
6、 试确定常数A ,B ,C 和a ,使得数值积分公式
有尽可能高的代数精度。

试问所得的数值积分公式代数精度是多少?它是否为Gauss 型? 解 由()1f x = 得 4A B C ++= 由()f x x = 得 0aA aC -+=
由2()f x x = 得 22
163
a A a C +=
由3()f x x = 得 33
0a A a C -+=
由4()f x x = 得 44
64
5
a A a C +=

得1016,,99A C B a ====? 代数精度是5, 是Gauss 型积分公式
7.1)设{})(x P n 是[0,1]区间上带权x x =)(ρ的最高次项系数为1的正交多项式系,求
)(2x P
2)构造如下的Gauss 型求积公式1
00110()()()xf x dx A f x A f x ≈+⎰
解 (1) 0()1P x =, 01000(,())2
()()((),())3
x P x P x x P x x P x P x =-
=-
(2) 2
263
()510
P x x x =-
+
的两零点为01x x ==(即Gauss 点) Gauss
型求积公式
1
()xf x dx f f +⎰ 8 用复合Simpson 公式计算:
要使误差小于0.005,求积区间[0,π]应分多少个子区间?并用复合Simpson 公式求此
积分值。

解 复合Simpson 公式计算的误差为 =)f (R n 4(4)
b-a ()2880
h f η-
,η∈[a ,b] 因此只要
4
0.0052880n ⎛⎫
≤ ⎪⎝⎭
ππ 即可.得 2.147n >,取3n = 9 试述何谓Gauss 型求积公式。

如下求积公式:
是否是Gauss 型求积公式?Gauss 型求积公式是否稳定?是否收敛?(假定f(x)在积分
区间上连续)
⎰π
sin xdx
()()()()1
1
141
101333
f x dx f f f -≈
-++⎰。

相关文档
最新文档