均值不等式的实际应用

合集下载

均值不等式及其应用详解

均值不等式及其应用详解

解:设DQ长为y(m),则
x 4 xy 200
2
A
M
N
B
故:
200 x y 4x
2
E
F
(2)解: x 0
s 4200x 210 4xy 80 2 y 400000 2 38000 4000 x x2
2
2
400000 S 38000 4000 x x2
分析二、 挖掘隐含条件
∵3x+1-3x=1为定值,且0<x<1 则1-3x>0; 3 1 可用均值不等式法 ∵0<x< ,∴1-3x>0 3 1 1 3 x 1 3 x 1 2 ∴y=x(1-3x)= 3x(1-3x)≤ ( ) 3 12 当且仅当 3x=1-3x 即x=1 时 y
3
2
x 4000 当且仅当 200吨时,每吨的平均成本最低
不等式定理及其重要变形:
(定理) a b 2ab(a, b R)
2 2
ab ab (推论) 2
( a, b R )


ab
ab 2 ( ) 2
1 例1、已知:0<x< ,求函数y=x(1-3x)的最大值 3 分析一、 原函数式可化为:y=-3x2+x, 利用二次函数求某一区间的最值
y 2x 3 x y 3 2 2
当且仅当
y 2 x 即: y 2 x 时取“=”号 x y
即此时
1 y 2x x 而 2 2 2 x y 1 2 y 2 2
ymin 3 2 2
本题小结: 用均值不等式求最值时,要注意检验最值存在的 充要条件,特别地,如果多次运用均值不等式求
最值,则要考虑多次“≥”(或者“≤”)中取

均值不等式在生活中的应用

均值不等式在生活中的应用

均值不等式在生活中的应用
平均值不等式是一种重要的数学不等式,它的应用非常广泛,在生活中也有着重要的作用。

首先,平均值不等式可以用来分析一组数据的分布情况,它可以用来确定一组数据的中位数、众数、最大值和最小值等。

例如,在一组数据中,如果我们知道其中的平均值和方差,那么我们就可以用平均值不等式来确定这组数据的中位数、众数、最大值和最小值。

其次,平均值不等式可以用来分析一个系统的稳定性。

例如,在一个系统中,如果我们知道其中的平均值和方差,那么我们就可以用平均值不等式来分析这个系统的稳定性,从而判断这个系统是否稳定。

此外,平均值不等式还可以用来分析一个系统的可靠性。

例如,在一个系统中,如果我们知道其中的平均值和方差,那么我们就可以用平均值不等式来分析这个系统的可靠性,从而判断这个系统是否可靠。

最后,平均值不等式还可以用来分析一个系统的效率。

例如,在一个系统中,如果我们知道其中的平均值和方差,那么我们就可以用平均值不等式来分析这个系统的效率,从而判断这个系统的效率是否达到预期的要求。

总之,平均值不等式在生活中有着重要的作用,它可以用来分析一组数据的分布情况,也可以用来分析一个系统的稳定性、可靠性和效率等。

均值不等式应用

均值不等式应用

均值不等式应用在实际应用中,均值不等式有一些常用的技巧,可以帮助我们更方便地应用和理解它们。

1.对称性:均值不等式对于多个变量的情况,通常具有对称性。

这意味着可以通过交换变量的位置来得到等价的不等式。

例如,对于实数$a,b,c$,有$\sqrt{\frac{a^2+b^2}{2}} \geq \frac{a+b}{2}$ 和$\sqrt{\frac{b^2+c^2}{2}} \geq \frac{b+c}{2}$,可以通过交换$a$和$c$得到$\sqrt{\frac{a^2+c^2}{2}} \geq \frac{a+c}{2}$。

利用这个对称性,可以在一些情况下简化不等式的推导过程。

2.递增性:均值不等式通常对于多个变量的情况是递增的。

这意味着如果变量的取值不变,但其中一个变量增加了,那么均值不等式的左边将比右边更大。

例如,对于实数$a,b$,有$\sqrt{ab} \leq \frac{a+b}{2}$,如果将$b$增加为$b+c$,则有$\sqrt{a(b+c)} \leq \frac{a+b+c}{2}$。

利用这个递增性,可以在一些情况下通过增加变量的值来简化不等式的推导过程。

3.平方技巧:当不等式中涉及到平方时,可以通过对不等式同时两边取平方来简化推导过程。

例如,对于实数$a,b$,有$\sqrt{a^2b^2} \leq\frac{a^2+b^2}{2}$,两边同时平方得到$a^2b^2 \leq\frac{(a^2+b^2)^2}{4}$,再进行化简推导。

需要注意的是,平方技巧可能会引入额外的解,因此在使用此方法时需要注意检查这些额外的解是否符合原始问题的要求。

4.归纳思想:对于具有多个变量的复杂不等式问题,可以利用归纳思想逐步推导出目标不等式。

具体来说,可以先考虑两个变量的情况,再逐步增加变量的个数,通过观察和推导相应的不等式,逐步得到目标不等式的结论。

这种思想在解决一些较为复杂的均值不等式问题时非常有帮助。

均值不等式及其应用

均值不等式及其应用

利用均值不等式求最值
1.若a,b∈R+且ab=s(s为常数)则
(当且仅当a=b时取等号)
2.若a+b=p,a,b∈R+,则
(当且仅当a=b时取等号)
求最值要注意三点: ⑴正数 ⑵定值 ⑶检验等号是否成立
总结:利用均值不等式求最值需注意的问题 ①各数(或式)均为正; ②和或积为定值; ③等号能否成立. 即“一正、二定、三相等” 这三个条件缺一不可.
a b a,b是正数, 2 ≥ ab
(当且仅当a=b时取“=”)
这里,
a + 2 b
称为两个正数的算数平均数
a b 称为两个正数的几何平均数
3.均值不等式的变形:
ì ï a + b ? 2 ab (a 0,b > 0) 当积为定值时,和有最小值 ï ï ï 2 í 骣 a + b ï ÷ ç 当和为定值时,积有最大值 ab N (a,b R) ÷ ï ç ÷ ç ï 桫 2 ï î
考试说明
均值不等式是每年高考的热点, 但严格限制在两个上,对于文科主 要考察命题的判断,以及求最值等 问题。
1.理解并掌握均值不等式及其变形. 2.会用均值不等式求最值问题和解决简单的实际问题.
知识梳理ห้องสมุดไป่ตู้
1.重要不等式:
a,b∈R,a2 +b2≥2ab
(当且仅当a=b时取“=”)
2.均值不等式:

均值不等式的总结与应用

均值不等式的总结与应用

均值不等式总结及应用1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤ (当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x+≥ (当且仅当1x =时取“=”) 若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”)4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2)2(222b a ba +≤+(当且仅当b a =时取“=”) 说明:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值围、证明不等式、解决实际问题方面有广泛的应用应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x 2 ≥23x 2·12x 2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2;当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)【解题技巧】技巧一:凑项 例 已知54x <,求函数14245y x x =-+-的最大值。

均值不等式推广的应用举例

均值不等式推广的应用举例

均值不等式推广的应用举例以均值不等式推广的应用举例:1. 优化生产过程:假设某公司有多个工厂,每个工厂的产量不同。

为了提高整体产量,可以将生产任务分配给产量较低的工厂,以提高整体平均产量。

2. 管理团队的绩效评估:假设一个公司有多个部门,每个部门的绩效不同。

为了提高整体绩效,可以将资源和项目分配给绩效较低的部门,以提高整体平均绩效。

3. 资源分配:假设一个国家有多个地区,每个地区的发展水平不同。

为了促进整体发展,可以将资源和投资分配给相对较落后的地区,以提高整体平均水平。

4. 教育资源的分配:假设一个城市有多所学校,每所学校的教育质量不同。

为了提高整体教育水平,可以将更多的教育资源分配给教育质量较差的学校,以提高整体平均水平。

5. 投资组合优化:在投资组合中,不同的资产具有不同的收益和风险水平。

为了降低整体风险,可以将资金分配给风险较低的资产,以提高整体平均风险水平。

6. 健康管理:假设一个社区中有多个家庭,每个家庭的健康状况不同。

为了改善整体健康水平,可以将医疗资源和健康服务优先提供给健康状况较差的家庭,以提高整体平均健康水平。

7. 环境保护:假设一个地区有多个工业企业,每个企业的环境影响不同。

为了改善整体环境质量,可以加强对环境影响较大的企业的监管和管理,以提高整体平均环境质量。

8. 城市规划:在城市规划中,不同的地区具有不同的功能和发展潜力。

为了实现整体均衡发展,可以将资源和投资分配给发展潜力较大的地区,以提高整体平均发展水平。

9. 食品安全:假设一个国家有多个农田,每个农田的农产品质量不同。

为了保障整体食品安全,可以加强对农产品质量较低的农田的监管和管理,以提高整体平均食品质量。

10. 社会福利分配:假设一个社会有多个群体,每个群体的福利水平不同。

为了实现整体社会公平,可以将福利资源分配给福利水平较低的群体,以提高整体平均福利水平。

以上是以均值不等式推广的应用举例,通过合理的资源分配和管理,可以提高整体水平,实现更好的平衡和发展。

均值不等式的正确使用及例题

均值不等式的正确使用及例题

均值不等式的正确使用及例题利用不等式求最值,要注意不等式成立的条件、等号成立的条件以及定值的条件,初学不等式时容易用错,现通过比较来说明均值不等式的正确使用。

(一)均值不等式有许多变形式子,使用哪一个不等式要选准 均值不等式是指),(2+∈≥+R b a ab b a ,它的变形式子有2)2(b a ab +≤,222b a ab +≤,≤+2)(b a)(222b a +等。

由此可知,在求ab 的最大值时至少有两个不等式可供选择,那么选择哪一个更好呢?通过比较发现,若已知b a +是定值,求ab 的最大值可使用第一个不等式;若已知22b a +是定值,求ab 的最大值可用第二个不等式,若求b a +的最大值可用第三个不等式。

(二)使用均值不等式求最值,定值是前提例1. 已知正数a 、b 满足3222=+b a ,求12+b a 的最大值。

(三)连续使用不等式(连续放缩)求最值,等号必须同时成立例2. 已知0>>b a ,求)(42b a b a -+的最小值。

二. 均值不等式的应用(一)用于比较大小例1.若b a >1>,b a P lg lg ⋅=,)lg (lg 21b a Q +⋅=,2lg b a R +=,则( ) A .P R <Q <B. Q P <R <C. P Q <R <D. R P <Q < 例2.若)0(21>++=a aa p ,≤-=1(arccos t q )1≤t 则下列不等式恒成立的是( ) A. q p >≥π B. 0≥>q p C. q p ≥>4 D. 0>≥q p(二)用于求取值范围例3. 若正数a 、b 满足3++=b a ab ,则ab 的取值范围是 。

(三)用于证明不等式例4. 已知i 、m 、n 是正整数,且<1n m i <≤,求证:.)1()1(m n n m +>+三. 均值不等式中等号不成立时最值的求法利用均值不等式求最值是高中数学中常用方法之一,应注意“一正二定三相等”。

高中数学专题均值不等式的应用,求最小值问题,利用好条件更简便

高中数学专题均值不等式的应用,求最小值问题,利用好条件更简便

高中数学专题均值不等式的应用,求最小值问题,利用
好条件更简便
均值不等式在求最小值问题中是非常常用的一种方法。

具体应用时,我们可以根据题目所给出的条件,选择合适的均值不等式进行推导。

例如,若要求函数 $f(x)=\sqrt{x+\frac{1}{x}}$ 的最小值,我们可以根据函数的形式,将其化为 $\sqrt{x}+\sqrt{\frac{1}{x}}$ 的形式,然后应用均值不等式得出:
$$\sqrt{x}+\sqrt{\frac{1}{x}}\geqslant2\sqrt{\sqrt{x}\cdot\s qrt{\frac{1}{x}}}=2$$。

因此,$f(x)$ 的最小值为 $2$,当且仅当
$\sqrt{x}=\sqrt{\frac{1}{x}}$,即 $x=1$ 时取得。

在应用均值不等式求最小值时,我们需要注意条件的限制,利用条件可以更加简便地解决问题。

例如,若要求$a^2+b^2+c^2$的最小值,且已知$a+b+c=1$,我们可以直接利用均值不等式得出:
$$a^2+b^2+c^2\geqslant\frac{(a+b+c)^2}{3}=\frac{1}{3}$$。

因此,$a^2+b^2+c^2$ 的最小值为 $\frac{1}{3}$,当且仅当
$a=b=c=\frac{1}{3}$ 时取得。

通过合理选择均值不等式及利用条件,我们可以更加简便地解决求最小值问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
B a
b
P
H
解 : 设学生P距黑板x米,黑板上,下边缘与学生的
水平视线PH的夹角分别为APH , BPH ,
其中 ,则学生看黑板的视角为
A
由tan a , tan b ,由此可得,
B
x
x
a b
tan
tan tan Biblioteka ab x Pxab
H
1 tan tan
1
ab x2
用均值不等式解决本章引例中此类问题时,应按 如下步骤进行: (1)先理解题意,设变量,设变量时一般把要求最大值 或最小值的变量定为函数; (2)建立相应的函数关系式,把实际问题抽象为函数 的最大值或最小值问题; (3)在定义域内,求出函数的最大值或最小值; (4)正确写出答案
二、讲解范例:
例1.甲、乙两电脑批发商每次在同一电脑耗材厂以 相同价格购进电脑芯片。甲、乙两公司共购芯片两 次,每次的芯片价格不同,甲公司每次购10000片 芯片,乙公司每次购10000元芯片,两次购芯片, 哪家公司平均成本低?请给出证明过程。
10000 10000 1 1
a
b ab
a b ab由于a,b不相等,故等号不成立,
2
又 1 1 2 1 1 a b ab
2 ab
1
2
1
ab
答:乙 公司平均成本较低。 a b
例4.如图,教室的墙壁上挂着一块黑板,它的上、 下边缘分别在学生的水平视线上方a米和b米,问 学生距离墙壁多远时看黑板的视角最大?
例1.某工厂要建造一个长方体无盖贮水池,其容积为
4800m3,深为3m,如果池底每1m2的造价为150元,
池壁每1m2的造价为120元,问怎样设计水池能使总
造价最低,最低总造价是多少元? 解:设水池底面一边的长度为xm,水池的总造
价为l元,根据题意,得
l 240000 720( x 1600) 240000 720 2 x
例四. 甲、乙两地相距S千米,汽车从甲地匀速行驶到 乙地,速度不得超过C千米/时,已知汽车每小时的运 输成本(以元为单位)由可变部分和固定部分组成: 可变部分与速度v(千米/时)的平方成正比,比例系数 为 b;固定部分为a元,
(1)把全程运输成本y(元)表示为速度v(千米/时) 的函数,并指出这个函数的定义;
x ab x
因为x ab 2 x ab 2 ab,当且仅当 x ab时, tan 最大,
x
x
由于 为锐角,此时 最大,
即学生距墙壁 ab时看黑板的视角最大.
例三:一批救灾物资随26辆汽车从某市以 vkm/h的速度运往灾区,已知两地的公路 长为400km,为了安全起见两辆汽车的间 距不得小于(v/20)2km/h,那么这批物质 全部云到灾区至少需要多少小时?
分析:
设第一、第二次购芯片的价格分别为每片a元和b 元,列出甲、乙两公司的平均价格,然后利用不 等式知识论证。
解:设第一、二次购芯片的价格分别为每片a元和b元,
那么甲公司两次购芯片的平均价格为 10000a b a b 元 \ 片 ,
20000
2
乙公司两次购芯片的平均价格为 20000 2 元 \ 片,
x 1600 x
240000 720 240 297600
当x 1600 ,即x 40时, l有最小值2976000. x
因此,当水池的底面是边长为40m的正方形时,水池的
总造价最低,最低总造价是297600元.
评述:此题既是不等式性质在实际中的应用,应注 意数学语言的应用即函数解析式的建立,又是不 等式性质在求最值中的应用,应注意不等式性质 的适用条件.
(2)为了使全程运输成本最小,汽车应以多大速度行 驶?
相关文档
最新文档