项目四钢质船舶规范法结构设计.pptx
合集下载
项目四 钢质船舶规范法结构设计(4)组合型材的剖面设计

3)型材稳定性条件
型材腹板高而薄或面板过宽时, 型材腹板高而薄或面板过宽时,往往面板由于弯 曲压应力作用或腹板受过大的剪切作用而局部失 去稳定性, 去稳定性,因此型材的尺寸搭配应满足这种局部 稳定性的要求。 稳定性的要求。 要求腹板高厚比h/t< ,否则应设置加强筋, 要求腹板高厚比 <75,否则应设置加强筋, 长江实船h/t=50~60。 长江实船 。 经稳定性计算, 型材面板宽厚比 型材面板宽厚比b/δ< , 经稳定性计算,T型材面板宽厚比 <36,实 际可取b=( 际可取 (10~20)δ,折边型材减半。 ) ,折边型材减半。 h、b、t、δ的规定如图 所示。 的规定如图5-8所示 、 、 、 的规定如图 所示。
2.设计步骤 .
型材的剖面设计,就是确定型材剖面尺寸, 型材的剖面设计,就是确定型材剖面尺寸,使型材 满足强度、刚度及稳定性要求。 满足强度、刚度及稳定性要求。 现结合实例,说明组合型材剖面的设计步骤。 现结合实例,说明组合型材剖面的设计步骤。 某长江客货轮, 某长江客货轮,甲板纵桁所必须的剖面模数 W=404cm3,惯性矩 ,惯性矩I=7780cm4,甲板纵桁跨长 , l=7.7m,载荷的平均宽度b 2.35m, l=7.7m,载荷的平均宽度b = 2.35m,设计型材剖面 尺寸。 尺寸。
⑤确定面板尺寸 面板剖面积: 面板剖面积:
w h × t 404 30 × 0.6 f1= − = − = 13.5 − 4 = 9.5 cm 2 h k 30 4.5
⑥决定面板尺寸
δ = (1.2 ~ 2)t = 7.2 ~ 12 mm, 实取δ =8mm
950 b= = = 119 mm, 实取b = 120 mm δ 8 f1
1.首先确定腹板尺寸。 首先确定腹板尺寸。
项目四 钢质船舶规范法结构设计(9) 总纵强度的要求

2. 船长大于或等于 船长大于或等于50m时,船舯剖面对水平中和轴 时 的惯性矩I应不小于按下式计算所得之值 应不小于按下式计算所得之值: 的惯性矩 应不小于按下式计算所得之值: I =3.5W0L×10-2 cm2·m2 × 式中: 船中剖面模数, 式中:W0——船中剖面模数,cm2·m,按上式计算; 船中剖面模数 ,按上式计算; 3. 船长大于或等于 船长大于或等于80m时,船舶尚应按规定对总纵 时 弯曲强度及屈曲强度进行校核。 弯曲强度及屈曲强度进行校核。
计算静水弯矩Ms和静水剪力 时载荷的符号规定 计算静水弯矩 和静水剪力Fs时载荷的符号规定, 和静水剪力 时载荷的符号规定, 向下的载荷取为正值,向上的载荷取为负值, 向下的载荷取为正值,向上的载荷取为负值,从 尾端向船首沿船长积分。静水弯矩、 尾端向船首沿船长积分。静水弯矩、静水剪力的 符号(正 规定见下图。 符号 正、负)规定见下图。为方便记忆,可总结 规定见下图 为方便记忆, 使梁单元逆时针转动的截面剪力为正, 为,使梁单元逆时针转动的截面剪力为正,使梁 单元发生中拱变形的截面弯矩为正。 单元发生中拱变形的截面弯矩为正。
•波浪附加弯矩 波浪附加弯矩WM沿船长的假定分布如下图所示 波浪附加弯矩 沿船长的假定分布如下图所示
•波浪附加剪力 波浪附加剪力FW(+)(中拱)、 )、FW(-)(中垂)按下式计 波浪附加剪力 (中拱)、 - (中垂) 算:
FW(+)=αF K1K2LB kN FW(-) =αF K1LB kN - 式中: 系数, 式中:K1——系数,K1 =(1423+7.55L-0.1L2) 系数 - ×10-3 K2——系数,K2= 0.5+0.5Cb; 系数, 系数 ; L、B、Cb——同上; 同上; 、 、 同上 αF——航区波高修正系数,A级航区取 ,B级航区 航区波高修正系数, 级航区取 级航区取1.0, 级航区 航区波高修正系数 级航区取0.07; 取0.45,C级航区取 , 级航区取 ; 波浪附加切力FW沿船长的假定分布如下图所示: 沿船长的假定分布如下图所示: 波浪附加切力 沿船长的假定分布如下图所示
钢质船舶规范法结构设计(1)

§ 4.1 了解规范的适用范围
《钢质内河船舶建造规范》 《内河小型船舶建造规范》 《内河高速船入级与建造规范》
4.1 了解规范的适用范围
一、船舶航区划分 1. 设计前必须明确航行区域。 2. 我国通航的内河水系,包括江、河、湖泊和水库, 根据分布、水文、气象等实际情况,可划分为 A, B,C三级航区 3. 其中某些水域又依据水流湍急情况,又划分为急 流航段,即J级航段。
航区级别 A级 航 行 区 域 自江阴的黄田港以下至吴松口,包括横沙岛以 内水域 1.长江—自江阴的黄田港至涪陵李渡长江大桥 2.黄浦江—自分水龙王庙经闵行至吴淞口 3.淮河-—自正阳关至洪泽湖 4.赣江—自南昌至都阳湖 5.湘江一一自株州以下至洞庭湖 6.洪泽湖、高邮湖、邵泊湖、太湖、巢湖、鄱 阳湖、洞庭湖以及类似的大型水库 1.长江—自宜昌以上 2.黄浦江—自分水龙王庙以上 3.淮河-—正阳关以上 4.赣江—自南昌以上 5.湘江一一自株州及其以上 6.源水、资水、澧水、汉水、嘉陵江、岷江、 乌江以及A、B级没有提到的其他长江水系支流 计算波高×计 算波长(m) 2.5×30 波高范围(m) 1.5以上至2.5
比如在计算构件剖求的剖面模数和惯性 矩为连带板的最小要求值; 普通骨材的带板宽度取骨材间距; 强骨材带板宽度取强骨材跨距的1/6,但不大于负荷 平均宽度,亦不小于普通骨材间距。 若骨材仅一侧有带板时,则带板宽度取上述规定的 50%。 当骨材不直接与板相连时,要求的剖面模数和惯性 矩仅为骨材不含带板的最小要求值。
作业
波高范围是不同的。 《内规》规定,计算半波高,A级航区r=1.25m, B级航区r=0.75m,C级航区r=0.25m。
表4-1
各级航区的计算波浪尺度和波高范围 详细的航区划分可参考中华人民共和国海事局《内河 船舶法定检验技术规则》关于内河航区分级的规定
钢质船舶规范法结构设计(2)外板及内底板

t =a(αL+βs+γ) mm L—船长,m; s——肋骨或纵骨间距,m; a——航区系数,A级航区船舶取a=1,B级航区船
舶取a=0.85,C级航区船舶取a=0.7; α、β、γ——系数,按骨架型式由表4-5选取。
表4-4 α、β、γ系数的取值
骨架型式 α
β
γ
纵骨架式 0.066
4.5
-0.8
一、 外板的组成和作用
二、外板的受力
1.总纵弯曲应力: 船底板承受总纵弯正应力;舷侧板是船体梁的腹
板,承受总纵弯曲剪应力和沿型深变化的正应力。
2.横向荷载:
直接承受舷外水压力、舱内液体压力,使板格产生局 部弯曲。
横荷重——船体骨架发生局部弯曲 3.波浪砰击力:
船在波浪中航行时,升沉和纵摇——首部船底出 水,其重新入水之际,会发生严重的砰击,过高的砰 击压力使首部外板及其骨架破坏,甚至会出现总纵强 度的不足。
三、外板尺寸
1. 外板设计:确定不同部位的板厚 2. 特点:厚度沿全船变化——各处外板作用、受力
不同 3. 板厚分布规律: (1)沿船长方向:******如图4一2所示 把船长划分成几个区域,不同区域外板厚度不同:
把船长划分成几个区域,不同区域外板厚度不同:
1. 中部0.4 L范围内的外板厚度主要由总 纵强度及板格局部强度决定
横骨架式 0.076
4.5
-0.4
② 按局部强度要求,船底板厚度t不小于按下式计算所得之值:
t 4.8s d r
式中:d——吃水,m; s——肋骨或纵骨间距,m; r——半波高,m,按航区确定。
船底板厚度取①②的大者,但无论如何不应小于最小厚度tmin; 【《内规》规定,船底板在任何情况下,厚度不得小于3.0mm】
舶取a=0.85,C级航区船舶取a=0.7; α、β、γ——系数,按骨架型式由表4-5选取。
表4-4 α、β、γ系数的取值
骨架型式 α
β
γ
纵骨架式 0.066
4.5
-0.8
一、 外板的组成和作用
二、外板的受力
1.总纵弯曲应力: 船底板承受总纵弯正应力;舷侧板是船体梁的腹
板,承受总纵弯曲剪应力和沿型深变化的正应力。
2.横向荷载:
直接承受舷外水压力、舱内液体压力,使板格产生局 部弯曲。
横荷重——船体骨架发生局部弯曲 3.波浪砰击力:
船在波浪中航行时,升沉和纵摇——首部船底出 水,其重新入水之际,会发生严重的砰击,过高的砰 击压力使首部外板及其骨架破坏,甚至会出现总纵强 度的不足。
三、外板尺寸
1. 外板设计:确定不同部位的板厚 2. 特点:厚度沿全船变化——各处外板作用、受力
不同 3. 板厚分布规律: (1)沿船长方向:******如图4一2所示 把船长划分成几个区域,不同区域外板厚度不同:
把船长划分成几个区域,不同区域外板厚度不同:
1. 中部0.4 L范围内的外板厚度主要由总 纵强度及板格局部强度决定
横骨架式 0.076
4.5
-0.4
② 按局部强度要求,船底板厚度t不小于按下式计算所得之值:
t 4.8s d r
式中:d——吃水,m; s——肋骨或纵骨间距,m; r——半波高,m,按航区确定。
船底板厚度取①②的大者,但无论如何不应小于最小厚度tmin; 【《内规》规定,船底板在任何情况下,厚度不得小于3.0mm】
钢质船舶规范法结构设计(2)外板及内底板

t 5.5s h
3.
式中:s——肋骨或纵骨间距,m;
h——计算水柱高度,m,自内底板上缘量至干舷甲 板边线(或舱棚顶板与围壁板交线)的距离。
(九)内底板厚度
1.
2.
应先按船中部的船底板计算公式计算,并不小于所得结 果的0.8倍。 载货部位内底板厚度t尚应不小于按下式计算所得之值:
式中:s——肋骨或纵骨间距,m; h——计算水柱高度,m,自内底板上缘量至干舷甲板边线 (或舱棚顶板与围壁板交线)的距离。
3.
4. 5.
如采用抓斗或其他类似机械卸货时,内底板尚应加厚 2mm 机舱内的内底板厚度、双层底内燃油舱内底板厚度应加 厚1mm 内底边板的厚度取不小于内底板厚度即可 在实船设计中,所有外板的厚度都应严格按照规范的要 求设计,并整理船体结构计算书。涉及计算的部分,应 注明引用公式的规范条文号,便于审核
三、外板尺寸
外板设计:确定不同部位的板厚 2. 特点:厚度沿全船变化——各处外板作用、受力 不同 3. 板厚分布规律: (1)沿船长方向:******如图4一2所示 把船长划分成几个区域,不同区域外板厚度不同:
1.
把船长划分成几个区域,不同区域外板厚度不同:
1. 2. 3.
中部0.4 L范围内的外板厚度主要由总 纵强度及板格局部强度决定 首、尾0.1L范围内的外板厚度主要由 局部强度决定 中间为过渡区,厚度可较中部适当减 薄。
(二) 平板龙骨
1.船中部平板龙骨厚度:按船中部底底船平板龙骨厚度:可与船中部船底板厚度相同 4.平板龙骨的宽度:不小于0.1B,且应不小于0.75m
(三)舭列板厚度
1.按船中部船底板厚度增加
0.5mm 2.船底板厚度大于 8mm时,可与船底板相同 3.如舭部为折角型,当用连接型材与船底板及舷侧外 板对接或搭接相连时,型材厚度也应符合上面的规定
项目四 钢质船舶规范法结构设计(6) 舷侧结构设计PPT课件

3. 航行于冰区的船舶,应考虑流冰碰撞和挤压力。
4. 靠离码头、编队系结、碰撞等情况下的横向挤压 力。
二、结构型式
舷侧结构分横骨架式和纵骨架式二种 横骨架式舷侧由于肋骨与强肋骨较为密集,间距
小,所以横向强度好,且建造工艺简便。但由于 横向构件不参予总纵弯曲,总纵强度差。目前多 用于沿海中型货轮、小型船舶及内河船上 纵骨架式舷侧明显地加强了总纵强度,故为大型 船舶及油轮所采用。如图5-27中b)所示。
② 舭肘板高出肋板的高度应不小于肋骨高度 的3倍,舭肘板的宽度约等于中纵剖面处实 肋板的高度,舭肘板的厚度取与实肋板相 同,如图5-29(2)所示,也可采用连体肘 板,如图5-29(3)所示。
12
图5-29 肋骨与实肋板的连接
13
③ 肋骨与底肋骨应用舭肘板连接,舭肘板与肋骨及 舭肘板与底肋骨的搭接长度应不小于连接肋骨高 度的2倍,如图5-29(4)所示。
当肘板任一直角边长与肘板厚度的比值大 于30时,肘板的自由边应折边或设面板, 折边(或面板)的宽度一般为肘板厚度的 10倍。
图5-30 肋骨与横梁的连接
17
强肋骨与强横梁可采用肘板连接,或强横梁端部 在不小于1.5倍腹板高度范围内将腹板升高至1.5 倍腹板高度后与强肋骨连接的形式,如图5-31所 示。肘板的直角边长应不小于强横梁或强肋骨腹 板高度的较大值,肘板的厚度应不小于强横梁或 强肋骨腹板厚度的较大值,肘板的自由边应折边 (或设面板),折边(或面板)的要求应符合规 范关于折边肘板的规定。
5
内河船由于宽深比B/D较大,出于横强度需要, 多采用横骨架式船侧,又分有两种型式:
1. 对于甲板和船底为纵骨架式而舷侧为横骨架式 者,其舷侧应采用交替肋骨制,即普通肋骨与 强肋骨交替布置,交替肋骨制的强肋骨间距应 不大于2.5m,并设置舷侧纵桁。
4. 靠离码头、编队系结、碰撞等情况下的横向挤压 力。
二、结构型式
舷侧结构分横骨架式和纵骨架式二种 横骨架式舷侧由于肋骨与强肋骨较为密集,间距
小,所以横向强度好,且建造工艺简便。但由于 横向构件不参予总纵弯曲,总纵强度差。目前多 用于沿海中型货轮、小型船舶及内河船上 纵骨架式舷侧明显地加强了总纵强度,故为大型 船舶及油轮所采用。如图5-27中b)所示。
② 舭肘板高出肋板的高度应不小于肋骨高度 的3倍,舭肘板的宽度约等于中纵剖面处实 肋板的高度,舭肘板的厚度取与实肋板相 同,如图5-29(2)所示,也可采用连体肘 板,如图5-29(3)所示。
12
图5-29 肋骨与实肋板的连接
13
③ 肋骨与底肋骨应用舭肘板连接,舭肘板与肋骨及 舭肘板与底肋骨的搭接长度应不小于连接肋骨高 度的2倍,如图5-29(4)所示。
当肘板任一直角边长与肘板厚度的比值大 于30时,肘板的自由边应折边或设面板, 折边(或面板)的宽度一般为肘板厚度的 10倍。
图5-30 肋骨与横梁的连接
17
强肋骨与强横梁可采用肘板连接,或强横梁端部 在不小于1.5倍腹板高度范围内将腹板升高至1.5 倍腹板高度后与强肋骨连接的形式,如图5-31所 示。肘板的直角边长应不小于强横梁或强肋骨腹 板高度的较大值,肘板的厚度应不小于强横梁或 强肋骨腹板厚度的较大值,肘板的自由边应折边 (或设面板),折边(或面板)的要求应符合规 范关于折边肘板的规定。
5
内河船由于宽深比B/D较大,出于横强度需要, 多采用横骨架式船侧,又分有两种型式:
1. 对于甲板和船底为纵骨架式而舷侧为横骨架式 者,其舷侧应采用交替肋骨制,即普通肋骨与 强肋骨交替布置,交替肋骨制的强肋骨间距应 不大于2.5m,并设置舷侧纵桁。
船舶结构规范设计PPT课件

结构构件的布置要尽可能均匀,以避免构 件规格太多或是造力后,能有效 地将力传递到邻近的结构构件上,以避免 某一单独的结构构件承受外力。
(例如,支柱的上下端应固定在纵、横强骨架交叉的节点 上,并且上下支柱应尽可能布置在同一垂直线上,使支柱 所承受的力能有效地传递给甲板及船底结构;当甲板或船 底为纵骨架式时,舷侧普通肋骨的端部应以肘板与邻近的 甲板及船底纵骨相连;当舷侧采用普通肋骨与强肋骨的交 替建造时,一般应设舷侧纵桁,使普通肋骨承受的载荷, 能通过舷侧纵桁传递给强肋骨。)
满足国际海事组织对于船舶使用寿命的更高要求 是CSR的目的之一。
共同规范的影响
所有IACS的成员 将贯彻CSR,从而可以有效避免 竞争导致协会成员降低技术标准的可能。
CSR要求增加船舶关键部位的钠材厚度,造船成 本的增加,致船舶的运费收入减少。
对于船舶维护,CSR提出了更高要求,这会导致 船舶的维护成本上升。
已知条件
在船舶总体设计初步完成后进行, 此时已经确定条件:
1. 主尺度 2. 型线图 3. 总布置图和按设计任务书对结构的要求
(船舶用途、航区、装载情况、建筑形成、 甲板层数、主要设备及使用要求等)
主要任务
确定整个船体结构设计的原则,如选择材料、 骨架形式、肋骨间距、分析结构质量对经济性 的影响。
从长期来看总的成本却不见得增加,因为适当的 维护可以有效降低船舶修理的次数,缩短修理的 时间,从而提高船舶的实际运营效率。
船体规范设计的局限性
规范制订中某些不合理因素限制了新型结构 设计的合理性
不断诞生的新型船舶无法依据规范进行结构 设计
造船新材料的问世也使得原有规范不能适用
规范法设计的基本步骤
结构与工艺性的矛盾
在结构设计时,还必须考虑到结构工艺性要求。 好的结构工艺性包括: 1. 考虑到船舶所有部位的装配和施焊的可能性; 2. 尽可能扩大分段建造范围,缩短造船周期,改善作
(例如,支柱的上下端应固定在纵、横强骨架交叉的节点 上,并且上下支柱应尽可能布置在同一垂直线上,使支柱 所承受的力能有效地传递给甲板及船底结构;当甲板或船 底为纵骨架式时,舷侧普通肋骨的端部应以肘板与邻近的 甲板及船底纵骨相连;当舷侧采用普通肋骨与强肋骨的交 替建造时,一般应设舷侧纵桁,使普通肋骨承受的载荷, 能通过舷侧纵桁传递给强肋骨。)
满足国际海事组织对于船舶使用寿命的更高要求 是CSR的目的之一。
共同规范的影响
所有IACS的成员 将贯彻CSR,从而可以有效避免 竞争导致协会成员降低技术标准的可能。
CSR要求增加船舶关键部位的钠材厚度,造船成 本的增加,致船舶的运费收入减少。
对于船舶维护,CSR提出了更高要求,这会导致 船舶的维护成本上升。
已知条件
在船舶总体设计初步完成后进行, 此时已经确定条件:
1. 主尺度 2. 型线图 3. 总布置图和按设计任务书对结构的要求
(船舶用途、航区、装载情况、建筑形成、 甲板层数、主要设备及使用要求等)
主要任务
确定整个船体结构设计的原则,如选择材料、 骨架形式、肋骨间距、分析结构质量对经济性 的影响。
从长期来看总的成本却不见得增加,因为适当的 维护可以有效降低船舶修理的次数,缩短修理的 时间,从而提高船舶的实际运营效率。
船体规范设计的局限性
规范制订中某些不合理因素限制了新型结构 设计的合理性
不断诞生的新型船舶无法依据规范进行结构 设计
造船新材料的问世也使得原有规范不能适用
规范法设计的基本步骤
结构与工艺性的矛盾
在结构设计时,还必须考虑到结构工艺性要求。 好的结构工艺性包括: 1. 考虑到船舶所有部位的装配和施焊的可能性; 2. 尽可能扩大分段建造范围,缩短造船周期,改善作
项目四 钢质船舶规范法结构设计(7) 甲板结构设计ppt课件

W=5cshl2
cm3
7
舷侧结构的布置:
式中:c——系数,对A级航区船舶强力甲板取1.45;B级航 区船舶强力甲板取1.2;C级航区船舶强力甲板取1;其余 各层甲板均取1;
s——横梁间距,m; l——横梁跨距,m,取舷侧与甲板纵桁(纵舱壁)或甲板纵桁
(纵舱壁)之间距离之大者,且不小于2m。船长小于30m的 船舶,载货区域甲板横梁取实际跨距; h——甲板计算水柱高度,m,强力甲板取0.5m;旅客舱室甲 板取0.45m;船员舱室甲板取0.35m;顶篷甲板取0.2m; 载货甲板的水柱高度h应按下式计算,但应不小于0.5m,
④横梁穿过甲板纵桁时应与纵桁腹板焊接,且每间隔 一个肋位设置单面肘板,也可设置间距不大于 2m的双面肘板。
10
2.强横梁
机舱或货舱等设置强肋骨的部位,甲板应设置强横梁, 以形成强框架,强横梁的间距应不大于2.5m且与 强肋骨(或主肋骨)在同一平面内。
(1)横骨架式强横梁的剖面尺寸取与甲板纵桁相同。
19
若甲板纵桁与舱壁垂直桁或扶强材对准有困难时, 则应采取适当支承措施。
顶篷甲板纵桁的上面若无钢质甲板时,应增设钢 质牵条板,其厚度应不小于2.5mm,宽度应不小 于150mm,包括牵条板在内的甲板纵桁剖面模 数应不小于规范规定。
甲板纵桁跨距内如承受上方支柱传递的集中载荷 时,其剖面尺寸应用强度计算方法确定。
8
h=k Q /F 其中:Q——载货甲板载货总重量,t; F——载货甲板面积,m2; K——系数,装金属矿石时取K=1.30;非金属矿石
时取K=1.15。
9
③强力甲板横梁的剖面惯性矩I应不小于按下式计算 所得之值:
I =3Wl
cm4
式中:W——按横梁计算所得之剖面模数;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表4-1 各级航区的计算波浪尺度和波高范围
航区级别
航行区域
自江阴的黄田港以下至吴松口,包括横沙岛以
A级
内水域
1.长江—自江阴的黄田港至涪陵李渡长江大桥
2.黄浦江—自分水龙王庙经闵行至吴淞口
3.淮河-—自正阳关至洪泽湖
B级
4.赣江—自南昌至都阳湖 5.湘江一一自株州以下至洞庭湖
6.洪泽湖、高邮湖、邵泊湖、太湖、巢湖、鄱
§ 4.1 了解规范的适用范围
《钢质内河船舶建造规范》 《内河小型船舶建造规范》 《内河高速船入级与建造规范》
4.1 了解规范的适用范围
一、船舶航区划分 1. 设计前必须明确航行区域。
2. 我国通航的内河水系,包括江、河、湖泊和水库, 根据分布、水文、气象等实际情况,可划分为A, B,C三级航区
4. 从工艺性及使用条件考虑
纵骨架式纵骨布置稠密、横向强骨材尺度大,节点 复杂,焊接、装配施工较为困难,且舱容、净空损失 较多。
除总纵强度确有需要外,对中、小船舶少用纵骨架 式为佳。
采用纵、横混合骨架式时,应考虑合理搭配与过渡。
如甲板为纵骨架式、舷侧横骨架式时,应采用交替肋 骨制【每3~4档布置强肋骨及舷侧纵桁】,使强横梁 与强肋骨合理搭配,以提高结构强度。
采用何种骨架式,应统筹兼顾强度、使用条件、工艺 性等因素酌情决定:
1.从总纵强度考虑
对于其总纵强度要求较高的大型内河船,采用纵骨架式 可以显著降低船体结构重量,提高技术经济性能
但中、小型船舶,总纵强度易于满足,壳板厚度多按局 部强度、使用条件及蚀耗等因素所决定,如采用纵骨架 式,结构重量减少不明显,甚至反而增加。
表4-2 《内规》的船舶主尺度比值范围(m)
船宽B为不包括船壳板在内的船体最大宽度,且不计 入舷伸甲板宽; 型深D为船长中点处沿舷侧自平板龙骨上表面量至干 舷甲板下表面(或其延伸线)的垂直距离。
三、结构设计中的几个重要问题
(一)船体骨架型式的选择 内河船舶的骨架型式可以选择以下三种形式: 1.横骨架式:横向构件稠密,间距小。 2.纵骨架式:纵向构件稠密,横向强构件疏稀布置。 3.混合骨架式: 4. 船体部分结构采用横Байду номын сангаас架式,部分采用纵骨架式 的混合骨架式。 5. 比如舷侧为横骨架式,船底及甲板采用纵骨架式。
1. 按《内规》进行船体结构设计时,应满足关于船 体结构的一般规定
2. 客船、滚装船、油船、甲板船、大舱口船、工程 船等船舶,船体结构设计时需要遵守该规范相关 章节的船体结构补充规定;
3. 需要进行船舶总纵强度或局部结构强度的直接计 算,则相应的应遵守《内规》关于结构强度直接 计算的补充规定。
4. 按《内规》设计的船舶,其主尺度比值应符合表 4-2的要求:
乌江以及A、B级没有提到的其他长江水系支流
0.5及以下
二、 船型范围
(一)《钢质内河船舶建造规范》: 1. 航行于内河水域 2. 船长20m≤L≤140m 3. 焊接结构钢质民用船舶 船长L一般取满载水线的垂线间长Lpp。但规范
规定L应不大于满载水线长度,亦不小于满载水 线长度的96%。
【所谓满载水线系指船舶最高级别航区载重线对应的水线】
不同的J级航段分别从属于所在水域的 航区级别。
在结构设计计算时,不同的航区的计算波浪尺度和 波高范围是不同的。 《内规》规定,计算半波高,A级航区r=1.25m, B级航区r=0.75m,C级航区r=0.25m。
表4-1 各级航区的计算波浪尺度和波高范围 详细的航区划分可参考中华人民共和国海事局《内河 船舶法定检验技术规则》关于内河航区分级的规定
纵骨间距S1可适当大些,大约S1 =1.1S,但不 宜超过600mm。
3. 其中某些水域又依据水流湍急情况,又划分为急 流航段,即J级航段。
4. 急流航段【J级航段】
1. 在峡谷河流中,滩上流速超过3.5m/s的航段 定为急流航段。
2. 按航区内滩上流速大小划分为J1、J2 两级: J1级航段:滩上流速5m/s~6.5m/s的航段 J2级航段:滩上流速为3.5m/s~5m/s的航段
阳湖、洞庭湖以及类似的大型水库
计算波高×计 算波长(m)
2.5×30
1.5×15
波高范围(m) 1.5以上至2.5
0.5以上至1.5
1.长江—自宜昌以上
2.黄浦江—自分水龙王庙以上
3.淮河-—正阳关以上
C级
4.赣江—自南昌以上 5.湘江一一自株州及其以上
0.5×5.0
6.源水、资水、澧水、汉水、嘉陵江、岷江、
5. 无论采用何种骨架型式,纵向构件均应有良好的 结构连续性;甲板、舷侧及船底骨架应有效地连接, 构成完整的刚性整体。
(二)骨材间距的确定
1. 骨材间距指肋骨间距或纵骨间距
2. 普通骨材间距根据等强度条件、按重量最轻的原 则决定。
据研究,当肋距S = 500~600mm时板格重量最 小。
《内规》规定肋骨或纵骨间距一般应不大于 600mm。多数长江小型机动船为500mm,多数 大、中型长江船为550mm,所以一般取S =500~600mm。
无舵船舶的船长取满载水线长度【即满载水线面 在中纵剖面上的投影长度】
(二) 《内河小型船舶建造规范》 1. 适用于我国内河船长5m≤L<20m的民用船舶 2. 包括钢质船舶和纤维增强塑料船舶 小型民用船舶一般适用《小规》,
但该规范不适用于高速船、柴油挂桨机船、帆船 和运动竞赛艇的设计。
《内规》进行结构设计的总原则
项目四 钢质船舶规范法结构设计
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节 第九节
了解规范的适用范围 船体外板及内底板设计 甲板板设计 组合型材的剖面设计 船底结构设计 舷侧结构设计 甲板结构设计 舱壁结构设计 总纵强度
项目四 钢质船舶规范法结构设计
要求: 1. 熟悉钢船设计规范 2. 掌握船体结构设计方法、过程
2.从局部强度考虑
船长小于50m时,局部强度是主要矛盾,宜用横骨架式。
舷侧骨架主要承受局部弯曲及横向弯曲,其参加总纵弯 曲效率较低,一般均采用横骨架式。
首、尾结构主要承受局部荷重,除顶推船外,均采用横 骨架式等等。
3. 从横向强度考虑
纵骨架式的横向强度较差,故当横向强度矛盾突出时, 如装运重货的双壳驳以及B/D>5~5.5的大开口船舶 【较宽】等,应优先考虑采用横骨架式。