2013年高考数学全国卷1(完整版试题+答案+解析)

合集下载

2013年高考试题及解析:文科数学(新课标Ⅰ卷)

2013年高考试题及解析:文科数学(新课标Ⅰ卷)

绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

全卷满分150分。

考试时间120分钟。

注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束,将本试题和答题卡一并交回。

第Ⅰ卷一、 选择题共12小题。

每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

(1)已知集合A={1,2,3,4},B={x |x =n 2,n ∈A },则A ∩B= ( ) (A ){0} (B ){-1,,0} (C ){0,1} (D ){-1,,0,1} 【答案】A 【解析】【难度】容易【点评】本题考查集合之间的运算关系,即包含关系.在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,其中第02节中有完全相同类型题目的计算.在高考精品班数学(文)强化提高班中有对集合相关知识的总结讲解. (2)1+2i(1-i)2= ( ) (A )-1-12i(B )-1+12i(C )1+12i(D )1-12i【答案】B 【解析】【难度】容易【点评】本题考查复数的计算。

在高二数学(文)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。

在高考精品班数学(文)强化提高班中有对复数相关知识的总结讲解。

(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )(A )12(B )13(C )14(D )16【答案】B【难度】容易【点评】本题考查几何概率的计算方法。

在高二数学(文)强化提高班,第三章《概率》有详细讲解,在高考精品班数学(文)强化提高班中有对概率相关知识的总结讲解。

2013年高考数学新课标全国卷Ⅰ试题及答案

2013年高考数学新课标全国卷Ⅰ试题及答案

绝密★启封2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

全卷满分150分。

考试时间120分钟。

注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束,将本试题和答题卡一并交回。

第Ⅰ卷一、选择题共8小题。

每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

(1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B= ( ) (A){0}(B){-1,,0}(C){0,1} (D){-1,,0,1}(2)错误!未找到引用源。

= ( )(A)-1 - 错误!未找到引用源。

i (B)-1 + 错误!未找到引用源。

i (C)1 + 错误!未找到引用源。

i (D)1 - 错误!未找到引用源。

i(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()(A)错误!未找到引用源。

(B)错误!未找到引用源。

(C)错误!未找到引用源。

(D)错误!未找到引用源。

(4)已知双曲线C:错误!未找到引用源。

= 1(a>0,b>0)的离心率为错误!未找到引用源。

,则C的渐近线方程为()(A)y=±错误!未找到引用源。

x (B)y=±错误!未找到引用源。

x (C)y=±错误!未找到引用源。

x (D)y=±x(5)已知命题p:,则下列命题中为真命题的是:()(A) p∧q (B)¬p∧q (C)p∧¬q (D)¬p∧¬q(6)设首项为1,公比为错误!未找到引用源。

的等比数列{an }的前n项和为Sn,则()(A)Sn =2an-1 (B)Sn=3an-2 (C)Sn=4-3an(D)Sn=3-2an(7)执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于(A)[-3,4](B)[-5,2](C)[-4,3](D)[-2,5](8)O为坐标原点,F为抛物线C:y²=4x的焦点,P为C上一点,若丨PF丨=4,则△POF的面积为(A)2 (B)2(C)2(D)4(9)函数f(x)=(1-cosx)sinx在[-π,π]的图像大致为(10)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos²A+cos2A=0,a=7,c=6,则b= (A)10 (B)9 (C)8 (D)5(11)某几何函数的三视图如图所示,则该几何的体积为(A)18+8π(B)8+8π(C)16+16π(D)8+16π(12)已知函数f(x)= 若|f(x)|≥ax,则a的取值范围是(A)(-∞] (B)(-∞] (C)[-2,1] (D)[-2,0]第Ⅱ卷本卷包括必考题和选考题两个部分。

2013年高考数学全国卷1(完整版试题+答案+解析)

2013年高考数学全国卷1(完整版试题+答案+解析)

2013年普通高等学校招生全国统一考试(全国卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页.考试时间120分钟.满分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在第Ⅰ卷答题卡和第Ⅱ卷答题纸规定的位置. 参考公式:样本数据n x x x ,,21的标准差nx x x x x x s n 22221)()()(-++-+-=其中x 为样本平均数球的面积公式24R S π=第Ⅰ卷(选择题 共60分)注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上. 2.第Ⅰ卷只有选择题一道大题.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数ii++121(i 是虚数单位)的虚部是 A .23 B .21C .3D .1 2.已知R 是实数集,{}11,12+-==⎭⎬⎫⎩⎨⎧<=x y y N x xM ,则=M C N R A .)2,1(B .[]2,0C .∅D .[]2,13.现有10个数,其平均数是4,且这10个数的平方和是200,那么这个数组的标准差是 A .1 B .2 C .3 D .44.设n S 为等比数列{}n a 的前n 项和,0852=-a a ,则=24S S A .5 B .8 C .8- D .15 5.已知函数)62sin()(π-=x x f ,若存在),0(π∈a ,使得)()(a x f a x f -=+恒成立,则a的值是A .6π B .3π C .4π D .2π 6.已知m 、n 表示直线,γβα,,表示平面,给出下列四个命题,其中真命题为 (1)βααβα⊥⊥⊂=则,,,m n n m (2)m n n m ⊥==⊥则,,,γβγαβα (3),,βα⊥⊥m m 则α∥β (4)βαβα⊥⊥⊥⊥则,,,n m n mA .(1)、(2)B .(3)、(4)C .(2)、(3)D .(2)、(4)7.已知平面上不共线的四点C B A O ,,,,若||,23BC AB OC OB OA -=等于A .1B .2C .3D .4 8.已知三角形ABC ∆的三边长成公差为2的等差数列,且最大角的正弦值为23,则这个三角形的周长是A .18B .21C .24D .15 9.函数xx x f 1lg )(-=的零点所在的区间是 A .(]1,0 B .(]10,1 C .(]100,10 D .),100(+∞ 10.过直线y x =上一点P 引圆22670x y x +-+=的切线,则切线长的最小值为A .22 B . 223 C .210 D .211.已知函数b ax x x f 2)(2-+=.若b a ,都是区间[]4,0内的数,则使0)1(>f 成立的概率是A .43 B .41 C .83D .8512.已知双曲线的标准方程为116922=-y x ,F 为其右焦点,21,A A 是实轴的两端点,设P 为双曲线上不同于21,A A 的任意一点,直线P A P A 21,与直线a x =分别交于两点N M ,,若0=⋅FN FM ,则a 的值为A .916 B .59 C .925 D .516题图第13第Ⅱ卷(非选择题 共90分)注意事项:1. 请用0.5毫米的黑色签字笔将每题的答案填写在第Ⅱ卷答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案.2. 不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效. 3. 第Ⅱ卷共包括填空题和解答题两道大题. 二、填空题:本大题共4小题,每小题4分,共16分. 13.如图所示的程序框图输出的结果为__________.14. 若一个底面是正三角形的三棱柱的正视图如下图所示,其在一个球面上,则该球的表面积为__________.15.地震的震级R 与地震释放的能量E 的关系为)4.11(lg 32-=E R .2011年3月11日,日本东海岸发生了9.0级特大地震,2008年中国汶川的地震级别为8.0级,那么2011年地震的能量是2008年地震能量的 倍. 16.给出下列命题: ①已知,,a b m都是正数,且bab a >++11,则a b <; ②已知()f x '是()f x 的导函数,若,()0x R f x '∀∈≥,则(1)(2)f f <一定成立; ③命题“x R∃∈,使得2210x x -+<”的否定是真命题; ④“1,1≤≤y x 且”是“2≤+y x ”的充要条件.其中正确命题的序号是 .(把你认为正确命题的序号都填上)第14题图三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知向量),2cos 2sin 3()2cos ,1(y xx b x a +==→→与共线,且有函数)(x f y =.(Ⅰ)若1)(=x f ,求)232cos(x -π的值;(Ⅱ)在ABC ∆中,角C B A ,,,的对边分别是c b a ,,,且满足b c C a 2cos 2=+,求函数)(B f 的取值范围.18.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设⎭⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .已知四棱锥BCDE A -,其中1====BE AC BC AB ,2=CD ,ABC CD 面⊥,BE∥CD ,F 为AD 的中点. (Ⅰ)求证:EF ∥面ABC ; (Ⅱ)求证:面ACD ADE 面⊥; (III )求四棱锥BCDE A -的体积.20.(本小题满分12分)在某种产品表面进行腐蚀性检验,得到腐蚀深度y 与腐蚀时间x 之间对应的一组数据:现确定的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再对被选取的2组数据进行检验.(Ⅰ)求选取的2组数据恰好不相邻的概率;(Ⅱ)若选取的是第2组和第5组数据,根据其它4组数据,求得y 关于x 的线性回归方程26139134ˆ+=x y,规定由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2微米,则认为得到的线性回归方程是可靠的,判断该线性回归方程是否可靠.AB CDEF已知函数1)(2++=x bax x f 在点))1(,1(--f 的切线方程为03=++y x . (Ⅰ)求函数()f x 的解析式;(Ⅱ)设x x g ln )(=,求证:)()(x f x g ≥在),1[+∞∈x 上恒成立.22.(本小题满分14分)实轴长为34的椭圆的中心在原点,其焦点1,2,F F 在x 轴上.抛物线的顶点在原点O ,对称轴为y 轴,两曲线在第一象限内相交于点A ,且12AF AF ⊥,△12AF F 的面积为3. (Ⅰ)求椭圆和抛物线的标准方程;(Ⅱ)过点A 作直线l 分别与抛物线和椭圆交于C B ,,若AB AC 2=,求直线l 的斜率k .参考答案及评分标准一.选择题(本大题共12小题,每小题5分,共60分.)B D B A D B B D BC C B二.填空题(本大题共4小题,每小题4分,共16分.)13.2 14.π31915. 2310 16. ①③三.解答题17.(本小题满分12分) 解:(Ⅰ)∵→a 与→b 共线∴yxx x 2cos 2cos2sin 31=+21)6sin()cos 1(21sin 232cos 2cos 2sin 32++=++=+=πx x x x x x y …………3分∴121)6sin()(=++=πx x f ,即21)6sin(=+πx …………………………………………4分211)6(sin 21)3(cos 2)3(2cos )232cos(22-=-+=--=-=-ππππx x x x…………………………………………6分 (Ⅱ)已知b c C a 2cos 2=+由正弦定理得:CA C A C C A C ABC C A sin cos 2cos sin 2sin cos sin 2)sin(2sin 2sin cos sin 2+=++==+∴21cos =A ,∴在ABC ∆中 ∠3π=A …………………………………………8分 21)6sin()(++=πB B f∵∠3π=A ∴320π<<B ,6566πππ<+<B …………………………………………10分∴1)6sin(21≤+<πB ,23)(1≤<B f ∴函数)(B f 的取值范围为]23,1( …………………………………………12分18.(本小题满分12分) 解:(Ⅰ)依题意得⎪⎩⎪⎨⎧+=+=⨯++⨯+)12()3(5025452233112111d a a d a d a d a …………………………………………2分 解得⎩⎨⎧==231d a , …………………………………………4分 1212)1(23)1(1+=+=-+=-+=∴n a n n d n a a n n 即,.……………………………6分(Ⅱ)13-=n nna b ,113)12(3--⋅+=⋅=n n n n n a b …………………………………………7分 123)12(37353-⋅+++⋅+⋅+=n n n T n n n n n T 3)12(3)12(3735333132⋅++⋅-++⋅+⋅+⋅=- ……………………9分n n n n T 3)12(3232323212+-⋅++⋅+⋅+=--nnn n n 323)12(31)31(3231⋅-=+---⋅+=- ∴nn n T 3⋅= …………………………………………12分19.(本小题满分12分)解:(Ⅰ)取AC 中点G,连结FG 、BG , ∵F,G 分别是AD,AC 的中点∴FG ∥CD,且FG=21DC=1 .∵BE ∥CD ∴FG 与BE 平行且相等∴EF ∥BG . ……………………………2分ABC BG ABC EF 面面⊂⊄,∴EF ∥面ABC ……………………………4分 (Ⅱ)∵△ABC 为等边三角形 ∴BG ⊥AC 又∵DC ⊥面ABC,BG ⊂面ABC ∴DC ⊥BGABCDEF G∴BG 垂直于面ADC 的两条相交直线AC,DC ,∴BG ⊥面ADC . …………………………………………6分 ∵EF ∥BG ∴E F ⊥面ADC∵EF ⊂面ADE ,∴面ADE ⊥面ADC . …………………………………………8分 (Ⅲ)连结EC,该四棱锥分为两个三棱锥E -ABC 和E -ADC .43631232313114331=+=⨯⨯+⨯⨯=+=---ACD E ABC E BCDE A V V V .………………………12分另法:取BC 的中点为O ,连结AO ,则BC AO ⊥,又⊥CD 平面ABC ,∴C CD BC AO CD =⊥ , , ∴⊥AO 平面BCDE ,∴AO 为BCDE A V -的高,43232331,2321)21(,23=⨯⨯=∴=⨯+==-BCDE A BCDE V S AO . 20.(本小题满分12分)解:(Ⅰ)设6组数据的编号分别为1,2,3,4,5,6.设抽到不相邻的两组数据为事件A ,从6组数据中选取2组数据共有15种情况:(1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)(4,5)(4,6)(5,6),其中事件A 包含的基本事件有10种. …………………………………………3分所以321510)(==A P .所以选取的2组数据恰好不相邻的概率是32. ………………………6分(Ⅱ) 当10=x 时,;2|1026219|,262192613910134ˆ<-=+⨯=y……………………………………9分 当30=x 时,;2|1626379|,263792613930134ˆ<-=+⨯=y所以,该研究所得到的回归方程是可靠的. …………………………………………12分 21.(本小题满分12分)解:(Ⅰ)将1-=x 代入切线方程得2-=y ∴211)1(-=+-=-ab f ,化简得4-=-a b . …………………………………………2分 222)1(2)()1()(x xb ax x a x f +⋅+-+='12424)(22)1(-===-+=-'bb a b a f . …………………………………………4分解得:2,2-==b a∴122)(2+-=x x x f . …………………………………………6分 (Ⅱ)由已知得122ln 2+-≥x x x 在),1[+∞上恒成立化简得22ln )1(2-≥+x x x即022ln ln 2≥+-+x x x x 在),1[+∞上恒成立 . …………………………………………8分 设22ln ln )(2+-+=x x x x x h ,21ln 2)(-++='xx x x x h ∵1≥x ∴21,0ln 2≥+≥xx x x ,即0)(≥'x h . …………………………………………10分 ∴)(x h 在),1[+∞上单调递增,0)1()(=≥h x h∴)()(x f x g ≥在),1[+∞∈x 上恒成立 . …………………………………………12分22.(本小题满分14分)解(1)设椭圆方程为22221(0)x y a b a b+=>>,12,AF m AF n ==由题意知⎪⎪⎩⎪⎪⎨⎧==+=+6344222mn n m c n m …………………………………………2分解得92=c ,∴39122=-=b .∴椭圆的方程为131222=+y x …………………………………………4分 ∵3=⨯c y A ,∴1=A y ,代入椭圆的方程得22=A x ,将点A 坐标代入得抛物线方程为y x 82=. …………………………………………6分(2)设直线l 的方程为)22(1-=-x k y ,),(),,(2211y x C y x B2013年高考数学全国卷1(完整版试题+答案+解析)- 11 - / 11 由AB AC 2= 得)22(22212-=-x x , 化简得22221=-x x …………………………………………8分 联立直线与抛物线的方程⎪⎩⎪⎨⎧=-=-yx x k y 8)22(12, 得0821682=-+-k kx x ∴k x 8221=+① …………………………………………10分 联立直线与椭圆的方程⎪⎩⎪⎨⎧=+-=-124)22(122y x x k y 得0821632)2168()41(2222=--+-++k k x k k x k ∴22241821622kk k x +-=+② …………………………………………12分 ∴2222418216)228(222221=++---=-kk k k x x 整理得:0)4121)(2416(2=+--k k k ∴42=k ,所以直线l 的斜率为42 . …………………………………………14分。

2013年全国高考数学试题及答案-北京卷

2013年全国高考数学试题及答案-北京卷

2013年普通高等学校招生全国统一考试第一部分(选择题 共40分)一、选择题(共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合{}1,0,1A =-,{}|11B x x =-≤<,则AB =( )A .{}0B .{}1,0-C .{}0,1D .{}1,0,1- 2.设a ,b ,c R ∈,且a b >,则( )A .ac bc >B .11a b< C .22a b > D .33a b > 3.下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是( )A .1y x=B .x y e -=C .21y x =-+ D .lg y x = 4.在复平面内,复数(2)i i -对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 5.在ABC ∆中,3a =,5b =,1sin 3A =,则sin B =( )A .15 B .59 C D .16.执行如图所示的程序框图,输出的S 值为( )A .1B .23C .1321D .6109877.双曲线221y x m-= A .12m >B .1m ≥C .1m >D .2m >8.如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )A .3个B .4个C .5个D .6个第二部分(选择题 共110分)二、填空题(共6小题,每小题5分,共30分)9.若抛物线22y px =的焦点坐标为(1,0),则p = ,准线方程为 。

10.某四棱锥的三视图如图所示,则该四棱锥的体积为 。

11.若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q = ;前n 项和n S = 。

12.设D 为不等式组02030x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为 。

2013年安徽省高考数学试卷(理科)及解析

2013年安徽省高考数学试卷(理科)及解析

2013年普通高等学校夏季招生全国统一考试数学理工农医类(安徽卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页.全卷满分150分,考试时间120分钟.考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡背面规定的地方填写姓名和座位号后两位.2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效............................ 4.考试结束,务必将试题卷和答题卡一并上交.参考公式:如果事件A 与B 互斥,那么 P (A +B )=P (A )+P (B )如果事件A 与B 相互独立,那么 P (AB )=P (A )P (B )第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013安徽,理1)设i 是虚数单位,z 是复数z 的共轭复数.若·i+2=2z z z ,则z =( ).A .1+iB .1-iC .-1+iD .-1-i 答案:A 解析:设z =a +b i(a ,b ∈R ),则由·i+2=2z z z 得(a +b i)(a -b i)i +2=2(a +b i),即(a 2+b 2)i +2=2a +2b i , 所以2a =2,a 2+b 2=2b ,所以a =1,b =1,即z =a +b i =1+i.2.(2013安徽,理2)如图所示,程序框图(算法流程图)的输出结果是( ).A .16 B .2524 C .34 D .1112答案:D解析:开始2<8,110+22s ==,n =2+2=4;返回,4<8,113244s =+=,n =4+2=6; 返回,6<8,31114612s =+=,n =6+2=8;返回,8<8不成立,输出1112s =.3.(2013安徽,理3)在下列命题中,不是..公理的是( ). A .平行于同一个平面的两个平面相互平行B .过不在同一条直线上的三点,有且只有一个平面C .如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D .如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 答案:A解析:由立体几何基本知识知,B 选项为公理2,C 选项为公理1,D 选项为公理3,A 选项不是公理. 4.(2013安徽,理4)“a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内单调递增”的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 答案:C解析:函数f (x )的图象有以下三种情形:a =0 a >0 a <0由图象可知f (x )在区间(0,+∞)内单调递增时,a ≤0,故选C.5.(2013安徽,理5)某班级有50名学生,其中有30名男生和20名女生.随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( ).A .这种抽样方法是一种分层抽样B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班男生成绩的平均数小于该班女生成绩的平均数 答案:C解析:五名男生成绩的平均数为15(86+94+88+92+90)=90, 五名女生成绩的平均数为15(88+93+93+88+93)=91, 五名男生成绩的方差为21s =22222869094908890929090905(-)+(-)+(-)+(-)+(-)=8,五名女生成绩的方差为22s=22288913939165(-)+(-)=,所以2212s s >,故选C.6.(2013安徽,理6)已知一元二次不等式f (x )<0的解集为112x x x ⎧⎫<->⎨⎬⎩⎭或,则f (10x )>0的解集为( ). A .{x |x <-1或x >-lg 2} B .{x |-1<x <-lg 2} C .{x |x >-lg 2} D .{x |x <-lg 2} 答案:D解析:由题意知-1<10x <12, 所以x <1lg2=-lg 2,故选D. 7.(2013安徽,理7)在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为( ).A .θ=0(ρ∈R )和ρcos θ=2B .θ=π2(ρ∈R )和ρcos θ=2 C .θ=π2(ρ∈R )和ρcos θ=1D .θ=0(ρ∈R )和ρcos θ=1 答案:B解析:由题意可知,圆ρ=2cos θ可化为普通方程为(x -1)2+y 2=1. 所以圆的垂直于x 轴的两条切线方程分别为x =0和x =2,再将两条切线方程化为极坐标方程分别为θ=π2(ρ∈R )和ρcos θ=2,故选B. 8.(2013安徽,理8)函数y =f (x )的图象如图所示,在区间[a ,b ]上可找到n (n ≥2)个不同的数x 1,x 2,…,x n ,使得1212===n nf x f x f x x x x ()()(),则n 的取值范围是( ).A .{3,4}B .{2,3,4}C .{3,4,5}D .{2,3} 答案:B 解析:1212===n n f x f x f x x x x ()()() 可化为1212000===000n n f x f x f x x x x ()-()-()---- ,故上式可理解为y =f (x )图象上一点与坐标原点连线的斜率相等,即n 可看成过原点的直线与y =f (x )的交点个数.如图所示,由数形结合知识可得,①为n =2,②为n =3,③为n =4.9.(2013安徽,理9)在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足=2OA OB OA OB =⋅=,则点集{}=+,1,P OP OA OB λμλμμ+≤∈R所表示的区域的面积是( ).A .22B .23C .42D .43 答案:D解析:以OA ,OB为邻边作一个平行四边形,将其放置在如图平面直角坐标系中,使A ,B 两点关于x 轴对称,由已知|OA |=|OB |=OA ·OB=2,可得出∠AOB =60°,点A (3,1),点B (3,-1),点D 23,0).现设P (x ,y ),则由OP =λOA +μOB 得(x ,y )=λ(3,1)+μ(3,-1),即3,.x y λμλμ⎧(+)=⎪⎨-=⎪⎩由于|λ|+|μ|≤1,λ,μ∈R , 可得33,11,x y ⎧-≤≤⎪⎨-≤≤⎪⎩画出动点P (x ,y )满足的可行域为如图阴影部分,故所求区域的面积为232=43⨯.10.(2013安徽,理10)若函数f (x )=x 3+ax 2+bx +c 有极值点x 1,x 2,且f (x 1)=x 1,则关于x 的方程3(f (x ))2+2af (x )+b =0的不同实根个数是( ).A .3B .4C .5D .6 答案:A解析:由f ′(x )=3x 2+2ax +b =0得,x =x 1或x =x 2,即3(f (x ))2+2af (x )+b =0的根为f (x )=x 1或f (x )=x 2的解.如图所示,x1<x2 x2<x1由图象可知f(x)=x1有2个解,f(x)=x2有1个解,因此3(f(x))2+2af(x)+b=0的不同实根个数为3.第Ⅱ卷(非选择题共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效...........二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.11.(2013安徽,理11)若83axx⎛⎫+⎪⎝⎭的展开式中x4的系数为7,则实数a=__________.答案:12解析:∵83axx⎛⎫+⎪⎝⎭的通项为1838C()r r r rx a x--883388=C Cr rrr r r r ra x x a x----=,∴8-r-3r=4,解得r=3.∴338C7a=,得12a=.12.(2013安徽,理12)设△ABC的内角A,B,C所对边的长分别为a,b,c.若b+c=2a,3sin A=5sin B,则角C=__________.答案:2π3解析:∵3sin A=5sin B,∴3a=5b.①又∵b+c=2a,②∴由①②可得,53a b=,73c b=,∴22222257133cos52223b b bb a cCab b b⎛⎫⎛⎫+-⎪ ⎪+-⎝⎭⎝⎭===-⨯⨯,∴2π3C=.13.(2013安徽,理13)已知直线y=a交抛物线y=x2于A,B两点.若该抛物线上存在点C,使得∠ACB 为直角,则a的取值范围为__________.答案:[1,+∞)解析:如图,设C(x0,2x)(2x≠a),A (a-,a),B (a,a),则CA =(0a x --,20a x -),CB =(0a x -,20a x -).∵CA ⊥CB ,∴CA ·CB=0,即-(a -20x )+(a -20x )2=0,(a -20x )(-1+a -20x )=0,∴20x =a -1≥0,∴a ≥1.14.(2013安徽,理14)如图,互不相同的点A 1,A 2,…,A n ,…和B 1,B 2,…,B n ,…分别在角O 的两条边上,所有A n B n 相互平行,且所有梯形A n B n B n +1A n +1的面积均相等.设OA n =a n .若a 1=1,a 2=2,则数列{a n }的通项公式是__________.答案:32n a n =- 解析:设11OA B S ∆=S , ∵a 1=1,a 2=2,OA n =a n , ∴OA 1=1,OA 2=2.又易知△OA 1B 1∽△OA 2B 2, ∴1122221221124OA B OA B S OA S OA ∆∆()⎛⎫=== ⎪()⎝⎭. ∴1122A B B A S 梯形=311OA B S ∆=3S .∵所有梯形A n B n B n +1A n +1的面积均相等,且△OA 1B 1∽△OA n B n ,∴11113132n n OA B n OA B S OA S OA S S n S n ∆∆===+(-)-.∴1132n a a n =-,∴32n a n =-. 15.(2013安徽,理15)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为BC 的中点,Q 为线段CC 1上的动点,过点A ,P ,Q 的平面截该正方体所得的截面记为S .则下列命题正确的是__________(写出所有正确命题的编号).①当0<CQ <12时,S 为四边形 ②当CQ =12时,S 为等腰梯形 ③当CQ =34时,S 与C 1D 1的交点R 满足C 1R =13④当34<CQ <1时,S 为六边形⑤当CQ =1时,S 的面积为62答案:①②③⑤解析:当CQ =12时,D 1Q 2=211D C +C 1Q 2=54,AP 2=AB 2+BP 2=54,所以D 1Q =AP ,又因为AD 1∥2PQ ,所以②正确;当0<CQ <12时,截面为APQM ,且为四边形,故①也正确,如图(1)所示;图(1)如图(2),当CQ =34时,由△QCN ∽△QC 1R 得11C Q C R CQ CN =,即114314C R=,C 1R =13,故③正确;图(2)如图(3)所示,当34<CQ <1时,截面为五边形APQMF ,所以④错误; 当CQ =1时,截面为APC 1E ,图(3)可知AC 1=3,EP =2,且四边形APC 1E 为菱形,S 四边形APC 1E =62,故⑤正确. 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16.(2013安徽,理16)(本小题满分12分)已知函数f (x )=4cos ωx ·πsin 4x ω⎛⎫+⎪⎝⎭(ω>0)的最小正周期为π. (1)求ω的值;(2)讨论f (x )在区间π0,2⎡⎤⎢⎥⎣⎦上的单调性.解:(1)f (x )=4cos ωx ·sin π4x ω⎛⎫+ ⎪⎝⎭=22sin ωx ·cos ωx +22cos 2ωx =2(sin 2ωx +cos 2ωx )+2π2sin 224x ω⎛⎫=++ ⎪⎝⎭.因为f (x )的最小正周期为π,且ω>0,从而有2π=π2ω,故ω=1. (2)由(1)知,f (x )=π2sin 224x ⎛⎫++ ⎪⎝⎭.若0≤x ≤π2,则ππ5π2444x ≤+≤.当πππ2442x ≤+≤,即π08x ≤≤时,f (x )单调递增; 当ππ5π2244x ≤+≤,即ππ82x ≤≤时,f (x )单调递减. 综上可知,f (x )在区间π0,8⎡⎤⎢⎥⎣⎦上单调递增,在区间ππ,82⎡⎤⎢⎥⎣⎦上单调递减.17.(2013安徽,理17)(本小题满分12分)设函数f (x )=ax -(1+a 2)x 2,其中a >0,区间I ={x |f (x )>0}.(1)求I 的长度(注:区间(α,β)的长度定义为β-α);(2)给定常数k ∈(0,1),当1-k ≤a ≤1+k 时,求I 长度的最小值. 解:(1)因为方程ax -(1+a 2)x 2=0(a >0)有两个实根x 1=0,221ax a=+, 故f (x )>0的解集为{x |x 1<x <x 2}.因此区间20,1a I a ⎛⎫= ⎪+⎝⎭,I 的长度为21a a +. (2)设d (a )=21aa+,则d ′(a )=22211a a -(+). 令d ′(a )=0,得a =1.由于0<k <1,故当1-k ≤a <1时,d ′(a )>0,d (a )单调递增; 当1<a ≤1+k 时,d ′(a )<0,d (a )单调递减.所以当1-k ≤a ≤1+k 时,d (a )的最小值必定在a =1-k 或a =1+k 处取得.而23223211211111211kd k k k k k d k k kk -(-)--+(-)==<+(+)-++(+), 故d (1-k )<d (1+k ).因此当a =1-k 时,d (a )在区间[1-k,1+k ]上取得最小值2122kk k --+. 18.(2013安徽,理18)(本小题满分12分)设椭圆E :2222=11x y a a +-的焦点在x 轴上.(1)若椭圆E 的焦距为1,求椭圆E 的方程;(2)设F 1,F 2分别是椭圆E 的左、右焦点,P 为椭圆E 上第一象限内的点,直线F 2P 交y 轴于点Q ,并且F 1P ⊥F 1Q .证明:当a 变化时,点P 在某定直线上.解:(1)因为焦距为1,所以2a 2-1=14, 解得a 2=58. 故椭圆E 的方程为2288=153x y +. (2)设P (x 0,y 0),F 1(-c,0),F 2(c,0),其中221c a =-.由题设知x 0≠c ,则直线F 1P 的斜率1F P k =00y x c +, 直线F 2P 的斜率2F P k =00y x c -,故直线F 2P 的方程为y =0()y x c x c --. 当x =0时,y =0cy c x -,即点Q 坐标为0(0,)cy c x -. 因此,直线F 1Q 的斜率为1F Q k =0y c x -.由于F 1P ⊥F 1Q ,所以11F P F Q k k ⋅=0000y yx c c x ⋅+-=-1. 化简得22200(21)y x a =--.①将①代入椭圆E 的方程,由于点P (x 0,y 0)在第一象限,解得x 0=a 2,y 0=1-a 2,即点P 在定直线x +y =1上.19.(2013安徽,理19)(本小题满分13分)如图,圆锥顶点为P ,底面圆心为O ,其母线与底面所成的角为22.5°,AB 和CD 是底面圆O 上的两条平行的弦,轴OP 与平面PCD 所成的角为60°.(1)证明:平面P AB 与平面PCD 的交线平行于底面;(2)求cos ∠COD .(1)证明:设面P AB 与面PCD 的交线为l . 因为AB ∥CD ,AB 不在面PCD 内, 所以AB ∥面PCD .又因为AB ⊂面P AB ,面P AB 与面PCD 的交线为l ,所以AB ∥l . 由直线AB 在底面上而l 在底面外可知,l 与底面平行.(2)解:设CD 的中点为F .连接OF ,PF . 由圆的性质,∠COD =2∠COF ,OF ⊥CD . 因为OP ⊥底面,CD ⊂底面, 所以OP ⊥CD .又OP ∩OF =O ,故CD ⊥面OPF .又CD ⊂面PCD ,因此面OPF ⊥面PCD .从而直线OP 在面PCD 上的射影为直线PF , 故∠OPF 为OP 与面PCD 所成的角. 由题设,∠OPF =60°.设OP =h , 则OF =OP ·tan ∠OPF =h ·tan 60°=3h . 根据题设有∠OCP =22.5°,得tan tan 22.5OP hOC OCP ==∠︒. 由1=tan 45°=22tan 22.51tan 22.5︒-︒和tan 22.5°>0, 可解得tan 22.5°=2-1, 因此(21)21hOC h ==+-. 在Rt △OCF 中,cos ∠COF =36321OF hOC h==-(+), 故cos ∠COD =cos(2∠COF )=2cos 2∠COF -1=22(63)1=17122---.20.(2013安徽,理20)(本小题满分13分)设函数f n (x )=23222123nx x x x n-+++++ (x ∈R ,n ∈N *).证明:(1)对每个n ∈N *,存在唯一的x n ∈2,13⎡⎤⎢⎥⎣⎦,满足f n (x n )=0;(2)对任意p ∈N *,由(1)中x n 构成的数列{x n }满足0<x n -x n +p <1n.证明:(1)对每个n ∈N *,当x >0时,f ′n (x )=11+2n x x n-++ >0,故f n (x )在(0,+∞)内单调递增.由于f 1(1)=0,当n ≥2时,f n (1)=22211123n +++ >0,故f n (1)≥0.又2222221121131 ()3334334k k n nn k k f k ==⎛⎫⎪⎛⎫⎝⎭=-++≤-+=-+ ⎪⎝⎭∑∑· 2112213312023313n n --⎡⎤⎛⎫⎛⎫-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎛⎫⎣⎦=-⋅< ⎪⎝⎭-, 所以存在唯一的x n ∈2,13⎡⎤⎢⎥⎣⎦,满足f n (x n )=0.(2)当x >0时,f n +1(x )=f n (x )+121n x n +(+)>f n (x ),故f n +1(x n )>f n (x n )=f n +1(x n +1)=0.由f n +1(x )在(0,+∞)内单调递增知,x n +1<x n ,故{x n }为单调递减数列, 从而对任意n ,p ∈N *,x n +p <x n . 对任意p ∈N *,由于f n (x n )=222102nn n n x x x n-++++= ,①f n +p (x n +p )=2122221+021n n n pn p n p n p n p n p x x x x x n n n p ++++++-++++++=(+)(+) +.② ①式减去②式并移项,利用0<x n +p <x n ≤1, 得x n -x n +p =222211k kkkn pn pnn p n n p n p k k n k n x x x x k k k+++++==+=+-+≤∑∑∑21111(1)n pn pk n k n k k k ++=+=+≤<-∑∑111n n p n =-<+.因此,对任意p ∈N *,都有0<x n -x n +p <1n.21.(2013安徽,理21)(本小题满分13分)某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责.已知该系共有n 位学生,每次活动均需该系k 位学生参加(n 和k 都是固定的正整数).假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k 位学生,且所发信息都能收到.记该系收到李老师或张老师所发活动通知信息的学生人数为X .(1)求该系学生甲收到李老师或张老师所发活动通知信息的概率; (2)求使P (X =m )取得最大值的整数m .解:(1)因为事件A :“学生甲收到李老师所发信息”与事件B :“学生甲收到张老师所发信息”是相互独立的事件,所以A 与B 相互独立.由于P (A )=P (B )=11C C k n k n k n --=,故P (A )=P (B )=1k n-,因此学生甲收到活动通知信息的概率222211k kn k P n n -⎛⎫=--= ⎪⎝⎭. (2)当k =n 时,m 只能取n ,有P (X =m )=P (X =n )=1.当k <n 时,整数m 满足k ≤m ≤t ,其中t 是2k 和n 中的较小者.由于“李老师和张老师各自独立、随机地发活动通知信息给k 位同学”所包含的基本事件总数为2(C )k n .当X =m 时,同时收到李老师和张老师转发信息的学生人数恰为2k -m .仅收到李老师或仅收到张老师转发信息的学生人数均为m -k .由乘法计数原理知:事件{X =m }所含基本事件数为2C C C C C C k k m m k k m k m k n k n k n kn k ------=. 此时P (X =m )=22C C C C C (C )C k k m m k m k m kn k n k kn k k kn n------=. 当k ≤m <t 时,P (X =m )≤P (X =m +1)⇔C C m km k kn k ---≤11C C m k m kkn k +-+-- ⇔(m -k +1)2≤(n -m )(2k -m )⇔m ≤2(1)22k k n +-+. 假如k ≤2(1)22k k n +-+<t 成立,则当(k +1)2能被n +2整除时,k ≤2(1)22k k n +-+2(1)212k k n +<+-+≤t . 故P (X =m )在m =2(1)22k k n +-+和m =2(1)212k k n ++-+处达最大值;当(k +1)2不能被n +2整除时,P (X =m )在m =2(1)22k k n ⎡⎤+-⎢⎥+⎣⎦处达最大值.(注:[x ]表示不超过x 的最大整数)下面证明k ≤2(1)22k k n +-+<t .因为1≤k <n ,所以2(1)22k k n +-+-k =2211110222kn k k k k k n n n --(+)---≥=≥+++. 而22(1)12<022k n k k n n n +(-+)--=-++, 故2k -(k +1)2n +2<n .显然2(1)22k k n +-+<2k .因此k ≤2(1)22k k n +-+<t .。

2013年高考数学全国卷1(完整版试题+答案+解析)

2013年高考数学全国卷1(完整版试题+答案+解析)

2013年高考数学全国卷1(完整版试题+答案+解析)2013年普通高等学校招生全国统一考试(全国卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页.考试时间120分钟.满分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在第Ⅰ卷答题卡和第Ⅱ卷答题纸规定的位置.参考公式:样本数据x1,x2,x n的标准差s222(x1x)(xx)(xx)2nn其中x为样本平均数球的面积公式S 24R第Ⅰ卷(选择题共60分)注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.2.第Ⅰ卷只有选择题一道大题.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数112ii(i是虚数单位)的虚部是A.32B.12C.3D.122.已知R是实数集,Mx1,Nyyx11,则NC R M3.xA.(1,2)B.0,2C.D.1,24.现有10个数,其平均数是4,且这10个数的平方和是200,那么这个数组的标准差是A.1B.2C.3D.45.设S n为等比数列{a n}的前n项和,8a2a50 ,则S4 S 2A.5B.8C.8D.156.已知函数f(x)sin(2x),若存在a(0,),使得f(xa)f(xa)恒成立,则 a6的值是-1-/112013年高考数学全国卷1(完整版试题+答案+解析) A.B.C.D.63427.已知m、n表示直线,,,表示平面,给出下列四个命题,其中真命题为(1)m,n,nm,则(2),m,n,则nm(3)m,m,则∥(4)m,n,mn,则A.(1)、(2)B.(3)、(4)C.(2)、(3)D.(2)、(4)8.已知平面上不共线的四点O,A,B,C,若|AB| OA3OB2OC,则等于|BC|A.1B.2C.3D.49.已知三角形ABC的三边长成公差为2的等差数列,且最大角的正弦值为32,则这个三角形的周长是A.18B.21C.24D.1510.函数f 1(x)lgx的零点所在的区间是xA.0,1B.1,10C.10,100D.(100,)11.过直线yx上一点P引圆22670xyx的切线,则切线长的最小值为A.22B.322C.102D.2 212.已知函数f(x)xax2b .若a,b都是区间0,4内的数,则使f(1)0成立的概率是A.34B.14C.38D.582y2x13.已知双曲线的标准方程为1916,F为其右焦点,A1,A2是实轴的两端点,设P为双曲线上不同于A1,A的任意一点,直线A1P,A2P与直线xa分别交于两点M,N,若2FMFN0,则a的值为A.169B.95C.259D.165-2-/112013年高考数学全国卷1(完整版试题+答案+解析)第Ⅱ卷(非选择题共90分)注意事项:1.请用0.5毫米的黑色签字笔将每题的答案填写在第Ⅱ卷答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案.2.不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效.3.第Ⅱ卷共包括填空题和解答题两道大题.二、填空题:本大题共4小题,每小题4分,共16分.开始14.如图所示的程序框图输出的结果为__________.a2,i1否15.若一个底面是正三角形的三棱柱的正视图如下图所示,其顶点都在i10一个球面上,则该球的表面积为__________.是1aa1输出1a11第14题图ii1结束第13题图216.地震的震级R与地震释放的能量E的关系为R(lgE11.4).2011年3月11日,日3本东海岸发生了9.0级特大地震,2008年中国汶川的地震级别为8.0级,那么2011年地震的能量是2008年地震能量的倍.17.给出下列命题:①已知a,b都,m是正数,且ab 11ab,则ab;②已知f(x)是f(x)的导函数,若xR,f(x)0,则f(1)f(2)一定成立;③命题“xR,使得2210xx”的否定是真命题;④“x1,且y1”是“xy2”的充要条件.其中正确命题的序号是.(把你认为正确命题的序号都填上)-3-/112013年高考数学全国卷1(完整版试题+答案+解析)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)xxx已知向量a(1,cos)与b(3sincos,y)共线,且有函数yf(x).2222(Ⅰ)若f(x)1,求cos(2x)的值;3(Ⅱ)在ABC中,角A,B,C,的对边分别是a,b,c,且满足2acosCc2b,求函数f(B)的取值范围.18.(本小题满分12分)已知等差数列a n的前n项和为S n,公差d0,且S3S550,a1,a4,a13成等比数列.(Ⅰ)求数列a的通项公式;n(Ⅱ)设bnan是首项为1,公比为3的等比数列,求数列b的前n项和Tn.n-4-/112013年高考数学全国卷1(完整版试题+答案+解析)18.(本小题满分12分)已知四棱锥ABCDE,其中ABBCACBE1,CD2,CD面ABC,BE∥CD,F为AD的中点.D(Ⅰ)求证:EF∥面ABC;(Ⅱ)求证:面ADE面ACD;F (III)求四棱锥ABCDE的体积.ECAB19.(本小题满分12分)在某种产品表面进行腐蚀性检验,得到腐蚀深度y与腐蚀时间x之间对应的一组数据:时间x(秒)51015203040深度y(微米)61010131617现确定的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再对被选取的2组数据进行检验.(Ⅰ)求选取的2组数据恰好不相邻的概率;(Ⅱ)若选取的是第2组和第5组数据,根据其它4组数据,求得y关于x的线性回归方程4139y?x,规定由线性回归方程得到的估计数据与所选出的检验数据的误1326差均不超过2微米,则认为得到的线性回归方程是可靠的,判断该线性回归方程是否可靠.-5-/112013年高考数学全国卷1(完整版试题+答案+解析) 20.(本小题满分12分)已知函数axbf(x)在点(1,f(1))的切线方程为xy30.2x1(Ⅰ)求函数f(x)的解析式;(Ⅱ)设g(x)lnx,求证:g(x)f(x)在x[1,)上恒成立.21.(本小题满分14分)实轴长为43的椭圆的中心在原点,其焦点F1,,F2在x轴上.抛物线的顶点在原点O,对称轴为y轴,两曲线在第一象限内相交于点A,且A FAF,△AF1F2的面积为3.12(Ⅰ)求椭圆和抛物线的标准方程;(Ⅱ)过点A作直线l分别与抛物线和椭圆交于B,C,若AC2AB,求直线l的斜率k.yAF1BoF2xC-6-/112013年高考数学全国卷1(完整版试题+答案+解析)参考答案及评分标准一.选择题(本大题共12小题,每小题5分,共60分.)BDBADBBDBCCB二.填空题(本大题共4小题,每小题4分,共16分.)13.214. 19322.310216.①③三.解答题17.(本小题满分12分)解:(Ⅰ)∵a与b共线∴3sin1x2xcos2xcos2yy3sin x2cosx22x3xxx1cossin(1cos)sin(2226)12⋯⋯⋯⋯3分1∴f(x)sin(x)1,即62 sin(x )612⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分2 cos(3 2x)cos2(x)32x2x2cos()12sin(36) 112⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(Ⅱ)已知2acosCc2b由正弦定理得:2sinAcosCsinC2sinB2sin(AC)2sinAcosCsinC2sinAcosC2cosAsinC∴f1cosA,∴在ABC中∠21(B)sin(B)62 A3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∵∠A∴320B,3B6656⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分1∴sin(B)1,26 1f(B)323 ∴函数f(B)的取值范围为](1,2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分 -7-/112013年高考数学全国卷1(完整版试题+答案+解析)18.(本小题满分12分) 解:(Ⅰ)依题意得3a132 2d45 5ad1250⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分(a 1 3d) 2 a ( 1 a 12d 1)解得a 1 d 3 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分2a n a 1(n1)d32(n1)2n1,即a n 2n1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(Ⅱ) b na nn 3 1 , n1(21)3nb n a3nn1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分2(21)3nT n 53n337123n1n3T n 335373(2n1)3(2n1)3⋯⋯⋯⋯⋯⋯⋯⋯9分 2n1n2T n 3232323(2n1)332 3(1 1 n 3 3 1 ) (2n n 1)32n n 3∴n T n n3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分 19.(本小题满分12分)解:(Ⅰ)取AC 中点G,连结FG 、BG , ∵F,G 分别是A D,AC 的中点12∴FG ∥CD,且FG=DC=1.D ∵BE ∥CD ∴FG 与BE 平行且相等F∴EF ∥BG .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分EEF 面ABC,BG 面ABC ∴EF ∥面ABCGC⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分AB (Ⅱ)∵△ABC为等边三角形∴BG⊥AC又∵DC⊥面ABC,BG面ABC∴DC⊥BG-8-/112013年高考数学全国卷1(完整版试题+答案+解析)∴BG垂直于面ADC的两条相交直线AC,DC,∴BG⊥面ADC.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∵EF∥BG∴EF⊥面ADC∵EF面ADE,∴面ADE⊥面ADC.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分(Ⅲ)连结EC,该四棱锥分为两个三棱锥E-ABC和E-ADC.1313333V A VV11.BCDEEABCEACD34321264⋯⋯⋯⋯⋯⋯⋯⋯⋯12分另法:取BC的中点为O,连结A O,则A OBC,又CD平面ABC,∴CDAO,BCCDC,∴AO平面BCDE,∴AO为V ABCDE的高,3(12)131333AO,S BCDE,V.ABCDE222322420.(本小题满分12分)解:(Ⅰ)设6组数据的编号分别为1,2,3,4,5,6.设抽到不相邻的两组数据为事件A,从6组数据中选取2组数据共有15种情况:(1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)(4,5)(4,6)(5,6),其中事件A包含的基本事件有10种.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分所以102P(A).所以选取的2组数据恰好不相邻的概率是15323.⋯⋯⋯⋯⋯⋯⋯⋯⋯6分4139219219(Ⅱ)当x10时,y?10,|10|2;13262626⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分4139379379y?30,|当x30时,16|2;13262626所以,该研究所得到的回归方程是可靠的.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分21.(本小题满分12分)解:(Ⅰ)将x1代入切线方程得y2ba∴f(1)2,化简得ba4.11⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分f(x) a(2x 1)(1(axb)222x)x-9-/112013年高考数学全国卷1(完整版试题+答案+解析)2a2(ba)2bbf(1)1. 442⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分解得:a2,b2 ∴2x2 f(x).2 x1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 (Ⅱ)由已知得 ln2x2x 在[1,)上恒成立2 x12xx 化简得(1)ln22x 即x 2lnxlnx2x 20在[1,)上恒成立.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分设h(x)x 2lnxlnx2x2,h(x)2xlnxx1 x2 1∵x1∴2xlnx0,x2,即h(x)0.x⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分 ∴h(x)在[1,)上单调递增,h (x)h(1)0 ∴g(x)f(x)在x[1,)上恒成立.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分 22.(本小题满分14分) 22xy解(1)设椭圆方程为221(0)abab,AF 1m,AF 2n m 2 2 n 2 4c由题意知 m n43⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分 mn6解得c 29,∴b 21293.2y 2x∴椭圆的方程为1123⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分 ∵y A c3,∴y A 1,代入椭圆的方程得x A 22,2将点A 坐标代入得抛物线方程为x 8y.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(2)设直线l的方程为y1k(x22),B(x1,y1),C(x2,y2)-10-/112013年高考数学全国卷1(完整版试题+答案+解析)由AC2AB 得2222(x22)x ,1 化简得2x 1x22 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 联立直线与抛物线的方程y x 2 1 8 k (x2 y 2) , 得x 28kx162k80∴x 1228k ①⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分 联立直线与椭圆的方程y x 1 k (22y4x 22 12 ) 2x 2kkxkk 22得(14k)(8162)3216280 ∴ 2162k8kx22② 2214k⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分 2162k8k ∴22222xx2(8k22)1k 22142k整理得:)0(16k42)(1214k∴ 22 k ,所以直线l 的斜率为 44 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14分-11-/11。

2013年全国高考数学试题及答案(大纲卷)

2013年全国高考数学试题及答案(大纲卷)

2013年全国高考数学试题答案卷(理科)一、选择题1. 设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中元素的个数为( )A .3B .4C .5D .61.B [解析] 1,2,3与4,5分别相加可得5,6,6,7,7,8,根据集合中元素的互异性可得集合M 中有4个元素.2. (1+3i)3=( ) A .-8 B .8 C .-8i D .8i2.A [解析] (1+3i)3=13+3×12(3i)+3×1×(3i)2+(3i)3=1+33i -9-33i =-8.3. 已知向量=(λ+1,1),=(λ+2,2),若(+)(-),则λ=( ) A .-4 B .-3 C .-2 D .-13.B [解析] (+)⊥(-)⇔(+)·(-)=0⇔2=2,所以(λ+1)2+12=(λ+2)2+22,解得λ=-3.4. 已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0) D.⎝⎛⎭⎫12,14.B [解析] 对于f (2x +1),-1<2x +1<0,解得-1<x <-12,即函数f (2x +1)的定义域为⎝⎛⎭⎫-1,-12. 5. 函数f (x )=log 2⎝⎛⎭⎫1+1x (x >0)的反函数f -1(x )=( ) A.12x -1(x >0) B.12x -1(x ≠0) C .2x -1(x ∈) D .2x -1(x >0)5.A [解析] 令y =log 2⎝⎛⎭⎫1+1x ,则y >0,且1+1x =2y ,解得x =12y -1,交换x ,y 得f -1(x )=12x-1(x >0). 6. 已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10) B.19(1-310)C .3(1-3-10) D .3(1+3-10)6.C [解析] 由3a n +1+a n =0,得a n ≠0(否则a 2=0)且a n +1a n =-13,所以数列{a n }是公比为-13的等比数列,代入a 2可得a 1=4,故S 10=4×⎣⎡⎦⎤1-⎝⎛⎭⎫-13101+13=3×⎣⎡⎦⎤1-⎝⎛⎭⎫1310=3(1-3-10).7. (1+x )8(1+y )4的展开式中x 2y 2的系数是( ) A .56 B .84 C .112 D .1687.D [解析] (1+x )8展开式中x 2的系数是C 28,(1+y )4的展开式中y 2的系数是C 24,根据多项式乘法法则可得(1+x )8(1+y )4展开式中x 2y 2的系数为C 28C 24=28×6=168.8.、 椭圆C :x 24+y 23=1的左、右顶点分别为A 1,A 2,点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],那么直线P A 1斜率的取值范围是( )A.⎣⎡⎦⎤12,34B.⎣⎡⎦⎤38,34C.⎣⎡⎦⎤12,1D.⎣⎡⎦⎤34,1 8.B [解析] 椭圆的左、右顶点分别为(-2,0),(2,0),设P (x 0,y 0),则kP A 1kP A 2=y 0x 0+2·y 0x 0-2=y 20x 20-4,而x 204+y 203=1,即y 20=34(4-x 20),所以kP A 1kP A 2=-34,所以kP A 1=-34kP A 2∈⎣⎡⎦⎤38,34.9.、 若函数f (x )=x 2+ax +1x 在⎝⎛⎭⎫12,+∞是增函数,则a 的取值范围是( ) A .[-1,0] B .[-1,+∞)C .[0,3]D .[3,+∞)9.D [解析] f ′(x )=2x +a -1x 2≥0在⎝⎛⎭⎫12,+∞上恒成立,即a ≥1x 2-2x 在⎝⎛⎭⎫12 ,+∞上恒成立,由于y =1x2-2x 在⎝⎛⎭⎫12,+∞上单调递减,所以y <3,故只要a ≥3. 10. 已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( )A.23B.33C.23D.1310.A [解析] 如图,联结AC ,交BD 于点O .由于BO ⊥OC ,BO ⊥CC 1,可得BO ⊥平面OCC 1,从而平面OCC 1⊥平面BDC 1,过点C 作OC 1的垂线交OC 1于点E ,根据面面垂直的性质定理可得CE ⊥平面BDC 1,∠CDE 即为所求的线面角.设AB =2,则OC =2,OC 1=18=3 2,所以CE =CC 1·OC OC 1=4 23 2=43,所以sin ∠CDE =CE CD =23.11.、 已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若MA →·MB =0,则k =( )A.12B.22C. 2 D .211.D [解析] 抛物线的焦点坐标为(2,0),设直线l 的方程为x =ty +2,与抛物线方程联立得y 2-8ty -16=0.设A (x 1,y 1),B (x 2,y 2),则y 1y 2=-16,y 1+y 2=8t ,x 1+x 2=t (y 1+y 2)+4=8t 2+4,x 1x 2=t 2y 1y 2+2t (y 1+y 2)+4=-16t 2+16t 2+4=4.MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=x 1x 2+2(x 1+x 2)+4+y 1y 2-2(y 1+y 2)+4 =4+16t 2+8+4-16-16t +4=16t 2-16t +4=4(2t -1)2=0,解得t =12,所以k =1t =2.12.、 已知函数f (x )=cos x sin 2x ,下列结论中错误的是( )A .y =f (x )的图像关于点(π,0)中心对称B .y =f (x )的图像关于直线x =π2对称C .f (x )的最大值为32D .f (x )既是奇函数,又是周期函数12.C [解析] 因为对任意x ,f (π-x )+f (π+x )=cos x sin 2x -cos x sin 2x =0,故函数f (x )图像关于点(π,0)中心对称;因为对任意x 恒有f (π-x )=cos x sin 2x =f (x ),故函数f (x )图像关于直线x =π2对称;f (-x )=-f (x ),f (x +2π)=f (x ),故f (x )既是奇函数也是周期函数;对选项C 中,f (x )=2cos 2x sin x =2(1-sin 2x )sin x ,令t =sin x ∈[-1,1],设y =(1-t 2)t =-t 3+t ,y ′=-3t 2+1,可得函数y 的极大值点为t =13,所以y 在[]-1,1上的极大值为-1313+13=2 39,函数的端点值为0,故函数y 在区间[]-1,1的最大值为2 39,函数f (x )的最大值为439,所以选项C 中的结论错误.13. 已知α是第三象限角,sin α=-13,则cot α=________.13.2 2 [解析] cos α=-1-sin 2α=-2 23,所以cot α=cos αsin α=2 2.14.、 6个人排成一行,其中甲、乙两人不相邻的不同排法共有________种.(用数字作答)14.480 [解析] 先排另外四人,方法数是A 44,再在隔出的五个位置安插甲乙,方法数是A 25,根据乘法原理得不同排法共有A 44A 25=24×20=480种.15. 记不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域为D .若直线y =a (x +1)与D 有公共点,则a 的取值范围是________.15.⎣⎡⎦⎤12,4 [解析] 已知不等式组表示的平面区域如图1-2中的三角形ABC 及其内部,直线y =a (x +1)是过点(-1,0)斜率为a 的直线,该直线与区域D 有公共点时,a 的最小值为MA 的斜率,最大值为MB 的斜率,其中点A (1,1),B (0,4),故MA 的斜率等于1-01-(-1)=12,MB 的斜率等于4-00-(-1)=4,故实数a 的取值范围是⎣⎡⎦⎤12,4.16.、 已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,OK =32,且圆O 与圆K 所在的平面所成的一个二面角为60°,则球O 的表面积等于________.16.16π [解析] 设两圆的公共弦AB 的中点为D ,则KD ⊥DA ,OD ⊥DA ,∠ODK 即为圆O 和和圆K 所在平面所成二面角的平面角,所以∠ODK =60°.由于O 为球心,故OK垂直圆K 所在平面,所以OK ⊥KD .在直角三角形ODK 中,OK OD =sin60°,即OD =32×23=3,设球的半径为r ,则DO =32r ,所以32r =3,所以r =2,所以球的表面积为4πr 2=16π.17.、 等差数列{a n }前n 项和为S n .已知S 3=a 22,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.17.解:设{a n }的公差为d .由S 3=a 22,得3a 2=a 22,故a 2=0或a 2=3.由S 1,S 2,S 4成等比数列得S 22=S 1S 4.又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d , 故(2a 2-d )2=(a 2-d )(4a 2+2d ).若a 2=0,则d 2=-2d 2,所以d =0, 此时S n =0,不合题意;若a 2=3,则(6-d )2=(3-d )(12+2d ),解得d =0或d =2.因此{a n }的通项公式为a n =3或a n =2n -1. 18.、 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c )(a -b +c )=ac . (1)求B ; (2)若sin A sin C =3-14,求C . 18.解:(1)因为(a +b +c )(a -b +c )=ac ,所以a 2+c 2-b 2=-ac . 由余弦定理得cos B =a 2+c 2-b 22ac =-12,因此B =120°.(2)由(1)知A +C =60°,所以cos(A -C )=cos A cos C +sin A sin C =cos A cos C -sin A sin C +2sin A sin C =cos(A +C )+2sin A sin C =12+2×3-14 =32, 故A -C =30°或A -C =-30°, 因此C =15°或C =45°. 19.、 如图,四棱锥P -ABCD 中,∠ABC =∠BAD =90°,BC =2AD ,△P AB 和△P AD 都是等边三角形.(1)证明:PB ⊥CD ;(2)求二面角A -PD -C 的大小.19.解:(1)取BC 的中点E ,联结DE ,则四边形ABED 为正方形. 过P 作PO ⊥平面ABCD ,垂足为O . 联结OA ,OB ,OD ,OE .由△P AB 和△P AD 都是等边三角形知P A =PB =PD ,所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE .因为O 是BD 的中点,E 是BC 的中点,所以OE ∥CD .因此PB ⊥CD .(2)解法一:由(1)知CD ⊥PB ,CD ⊥PO ,PB ∩PO =P , 故CD ⊥平面PBD .又PD ⊂平面PBD ,所以CD ⊥PD .取PD 的中点F ,PC 的中点G ,连FG . 则FG ∥CD ,FG ⊥PD .联结AF ,由△APD 为等边三角形可得AF ⊥PD .所以∠AFG 为二面角A -PD -C 的平面角. 联结AG ,EG ,则EG ∥PB . 又PB ⊥AE ,所以EG ⊥AE .设AB =2,则AE =2 2,EG =12PB =1,故AG =AE 2+EG 2=3,在△AFG 中,FG =12CD =2,AF =3,AG =3.所以cos ∠AFG =FG 2+AF 2-AG 22·FG ·AF =-63.因此二面角A -PD -C 的大小为π-arccos63. 解法二:由(1)知,OE ,OB ,OP 两两垂直.以O 为坐标原点,OE →的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz .设|AB →|=2,则A (-2,0,0),D (0,-2,0), C (2 2,-2,0),P (0,0,2),PC →=(2 2,-2,-2),PD →=(0,-2,-2), AP →=(2,0,2),AD →=(2,-2,0). 设平面PCD 的法向量为1=(x ,y ,z ),则 1·PC →=(x ,y ,z )·(2 2,-2,-2)=0,1·PD →=(x ,y ,z )·(0,-2,-2)=0,可得2x -y -z =0,y +z =0.取y =-1,得x =0,z =1,故1=(0,-1,1). 设平面P AD 的法向量为2=(m ,p ,q ),则 2·AP →=(m ,p ,q )·(2,0,2)=0, 2·AD →=(m ,p ,q )·(2,-2,0)=0,可得m +q =0,m -p =0.取m =1,得p =1,q =-1,故2=(1,1,-1). 于是cos 〈,2〉=n 1·n 2|n 1||n 2|=-63.由于〈,2〉等于二面角A -PD -C 的平面角,所以二面角A -PD -C 的大小为π-arccos63. 20.、 甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结果相互独立,第1局甲当裁判.(1)求第4局甲当裁判的概率;(2)X 表示前4局中乙当裁判的次数,求X 的数学期望. 20.解:(1)记A 1表示事件“第2局结果为甲胜”, A 2表示事件“第3局甲参加比赛,结果为甲负”, A 表示事件“第4局甲当裁判”. 则A =A 1·A 2.P (A )=P (A 1·A 2)=P (A 1)P (A 2)=14.(2)X 的可能取值为0,1,2.记A 3表示事件“第3局乙和丙比赛时,结果为乙胜丙”, B 1表示事件“第1局结果为乙胜丙”,B 2表示事件“第2局乙和甲比赛时,结果为乙胜甲”, B 3表示事件“第3局乙参加比赛时,结果为乙负”. 则P (X =0)=P (B 1·B 2·A 3)=P (B 1)P (B 2)P (A 3)=18,P (X =2)=P (B 1·B 3)=P (B 1)P (B 3)=14,P (X =1)=1-P (X =0)-P (X =2)=1-18-14=58,E (X )=0·P (X =0)+1·P (X =1)+2·P (X =2)=98.21.、、 已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为3,直线y =2与C 的两个交点间的距离为 6.(1)求a ,b ;(2)设过F 2的直线l 与C 的左、右两支分别交于A ,B 两点,且|AF 1|=|BF 1|,证明:|AF 2|,|AB |,|BF 2|成等比数列.21.解:(1)由题设知ca =3,即a 2+b 2a 2=9,故b 2=8a 2.所以C 的方程为8x 2-y 2=8a 2. 将y =2代入上式,求得x =±a 2+12.由题设知,2a 2+12=6,解得a 2=1.所以a =1,b =2 2.(2)证明:由(1)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8.① 由题意可设l 的方程为y =k (x -3),|k |<2 2,代入①并化简得(k 2-8)x 2-6k 2x +9k 2+8=0. 设A (x 1,y 1),B (x 2,y 2),则 x 1≤-1,x 2≥1,x 1+x 2=6k 2k 2-8,x 1x 2=9k 2+8k 2-8.于是|AF 1|=(x 1+3)2+y 21=(x 1+3)2+8x 21-8=-(3x 1+1),|BF 1|=(x 2+3)2+y 22=(x 2+3)2+8x 22-8=3x 2+1.由|AF 1|=|BF 1|得-(3x 1+1)=3x 2+1,即x 1+x 2=-23.故6k 2k 2-8=-23,解得k 2=45,从而x 1x 2=-199.由于|AF 2|=(x 1-3)2+y 21=(x 1-3)2+8x 21-8=1-3x 1,|BF 2|=(x 2-3)2+y 22=(x 2-3)2+8x 22-8=3x 2-1, 故|AB |=|AF 2|-|BF 2|=2-3(x 1+x 2)=4, |AF 2|·|BF 2|=3(x 1+x 2)-9x 1x 2-1=16. 因而|AF 2|·|BF 2|=|AB |2,所以|AF 2|,|AB |,|BF 2|成等比数列.22. 已知函数f (x )=ln(1+x )-x (1+λx )1+x .(1)若x ≥0时f (x )≤0,求λ的最小值;(2)设数列{a n }的通项a n =1+12+13+…+1n ,证明:a 2n -a n +14n >ln 2.22.解:(1)由已知f (0)=0,f ′(x )=(1-2λ)x -λx 2(1+x )2,f ′(0)=0.若λ<12,则当0<x <2(1-2λ)时,f ′(x )>0,所以f (x )>0.若λ≥12,则当x >0时,f ′(x )<0,所以当x >0时,f (x )<0.综上,λ的最小值是12.(2)令λ=12.由(1)知,当x >0时,f (x )<0,即x (2+x )2+2x>ln (1+x ).取x =1k ,则2k +12k (k +1)>ln k +1k .于是a 2n -a n +14n =∑k =n 2n -1 ⎣⎡⎦⎤12k +12(k +1)=∑k =n2n -12k +12k (k +1)>k =n 2n -1lnk +1k=ln 2n-ln n =ln 2.所以a2n-a n+14n>ln 2.。

2013年高考理科数学全国新课标卷1试题与答案word解析版

2013年高考理科数学全国新课标卷1试题与答案word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷I)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,理1)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( ). A .A ∩B = B .A ∪B =R C .B ⊆A D .A ⊆B2.(2013课标全国Ⅰ,理2)若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ).A .-4B .45-C .4D .45 3.(2013课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样4.(2013课标全国Ⅰ,理4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为52,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x± D .y =±x5.(2013课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]6.(2013课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ).A .500π3cm3B .866π3cm3C .1372π3cm3D .2048π3cm37.(2013课标全国Ⅰ,理7)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ).A .3B .4C .5D .68.(2013课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π9.(2013课标全国Ⅰ,理9)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).A .5B .6C .7D .8 10.(2013课标全国Ⅰ,理10)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y + D .22=1189x y +11.(2013课标全国Ⅰ,理11)已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是( ).A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]12.(2013课标全国Ⅰ,理12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n n b a +,则( ). A .{Sn}为递减数列 B .{Sn}为递增数列C .{S2n -1}为递增数列,{S2n}为递减数列D .{S2n -1}为递减数列,{S2n}为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅰ,理13)已知两个单位向量a ,b 的夹角为60°,c =ta +(1-t )b .若b ·c =0,则t =__________.14.(2013课标全国Ⅰ,理14)若数列{an}的前n 项和2133n n S a =+,则{an}的通项公式是an =_______.15.(2013课标全国Ⅰ,理15)设当x =θ时,函数f(x)=sin x -2cos x 取得最大值,则cos θ=__________.16.(2013课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax +b)的图像关于直线x =-2对称,则f(x)的最大值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC 中,∠ABC =90°,ABBC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求PA ; (2)若∠APB =150°,求tan ∠PBA.18.(2013课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.19.(2013课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(2013课标全国Ⅰ,理20)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|. 21.(2013课标全国Ⅰ,理21)(本小题满分12分)设函数f(x)=x2+ax+b,g(x)=e x(cx+d).若曲线y =f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(2013课标全国Ⅰ,理22)(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC,延长CE交AB于点F,求△BCF外接圆的半径.23.(2013课标全国Ⅰ,理23)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程为45cos,55sinx ty t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(2013课标全国Ⅰ,理24)(本小题满分10分)选修4—5:不等式选讲:已知函数f(x)=|2x-1|+|2x +a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈1,22a⎡⎫-⎪⎢⎣⎭时,f(x)≤g(x),求a的取值范围.2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:B解析:∵x (x -2)>0,∴x <0或x >2.∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R ,故选B.2.答案:D解析:∵(3-4i)z =|4+3i|, ∴55(34i)34i 34i (34i)(34i)55z +===+--+. 故z 的虚部为45,选D. 3.答案:C解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样.4.答案:C解析:∵c e a ==,∴22222254c a b e a a +===. ∴a 2=4b 2,1=2b a ±. ∴渐近线方程为12b y x x a =±±.5.答案:A解析:若t ∈[-1,1),则执行s =3t ,故s ∈[-3,3).若t ∈[1,3],则执行s =4t -t 2,其对称轴为t =2.故当t =2时,s 取得最大值4.当t =1或3时,s 取得最小值3,则s ∈[3,4].综上可知,输出的s ∈[-3,4].故选A.6.答案:A解析:设球半径为R ,由题可知R ,R -2,正方体棱长一半可构成直角三角形,即△OBA 为直角三角形,如图.BC =2,BA =4,OB =R -2,OA =R ,由R 2=(R -2)2+42,得R =5, 所以球的体积为34500π5π33=(cm 3),故选A. 7.答案:C解析:∵S m -1=-2,S m =0,S m +1=3,∴a m =S m -S m -1=0-(-2)=2,a m +1=S m +1-S m =3-0=3.∴d =a m +1-a m =3-2=1.∵S m =ma 1+12m m (-)×1=0,∴112m a -=-. 又∵a m +1=a 1+m ×1=3,∴132m m --+=. ∴m =5.故选C.8.答案:A解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A. 9.答案:B解析:由题意可知,a =2C m m ,b =21C m m +,又∵13a =7b ,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+), 即132171m m +=+.解得m =6.故选B. 10.答案:D解析:设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上, ∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①-②,得1212121222=0x x x x y y y y a b(+)(-)(+)(-)+, 即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2, 而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9. ∴椭圆E 的方程为22=1189x y +.故选D. 11.答案:D解析:由y =|f (x )|的图象知:①当x >0时,y =ax 只有a ≤0时,才能满足|f (x )|≥ax ,可排除B ,C.②当x ≤0时,y =|f (x )|=|-x 2+2x |=x 2-2x .故由|f (x )|≥ax 得x 2-2x ≥ax .当x =0时,不等式为0≥0成立.当x <0时,不等式等价于x -2≤a .∵x -2<-2,∴a ≥-2.综上可知:a ∈[-2,0].12.答案:B第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.答案:2解析:∵c =t a +(1-t )b ,∴b ·c =t a ·b +(1-t )|b |2.又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c ,∴0=t |a ||b |cos 60°+(1-t ),0=12t +1-t . ∴t =2.14.答案:(-2)n -1解析:∵2133n n S a =+,① ∴当n ≥2时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-, 即1n n a a -=-2. ∵a 1=S 1=12133a +, ∴a 1=1.∴{a n }是以1为首项,-2为公比的等比数列,a n =(-2)n -1.15.答案:5- 解析:f (x )=sin x -2cos xx x ⎫⎪⎭, 令cos αsin α=- 则f (x )α+x ),当x =2k π+π2-α(k ∈Z )时,sin(α+x )有最大值1,f (x )即θ=2k π+π2-α(k ∈Z ), 所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α==. 16.答案:16解析:∵函数f (x )的图像关于直线x =-2对称,∴f (x )满足f (0)=f (-4),f (-1)=f (-3),即15164,0893,b a b a b =-(-+)⎧⎨=-(-+)⎩解得8,15.a b =⎧⎨=⎩∴f (x )=-x 4-8x 3-14x 2+8x +15.由f ′(x )=-4x 3-24x 2-28x +8=0,得x 1=-2x 2=-2,x 3=-2易知,f (x )在(-∞,-2)上为增函数,在(-22)上为减函数,在(-2,-2上为增函数,在(-2∴f (-2=[1-(-22][(-22+8(-2)+15]=(-8--=80-64=16.f (-2)=[1-(-2)2][(-2)2+8×(-2)+15]=-3(4-16+15)=-9.f (-2)=[1-(-22][(-22+8(-2+15]=(-8++=80-64=16.故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=11732cos 30424+-︒=.故PA . (2)设∠PBA =α,由已知得PB =sin α.在△PBA 中,由正弦定理得sin sin150sin(30)αα=︒︒-,cos α=4sin α.所以tan α=4,即tan ∠PBA =4. 18.(1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B .因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)解:由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz .由题设知A (1,0,0),A 1(0,3,0),C (0,0,B (-1,0,0).则BC =(1,0,1BB =1AA =(-1,0),1AC =(0,. 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,2013 全国新课标卷1理科数学 第11页 则10,0,BC BB ⎧⋅=⎪⎨⋅=⎪⎩n n即0,30.x x y ⎧=⎪⎨-+=⎪⎩可取n =1,-1).故cos 〈n ,1AC 〉=11A CA C ⋅n n =5-. 所以A 1C 与平面BB 1C 1C 所成角的正弦值为5. 19.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A ,依题意有A =(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以 P (A )=P (A 1B 1)+P (A 2B 2)=P (A 1)P (B 1|A 1)+P (A 2)P (B 2|A 2) =41113161616264⨯+⨯=. (2)X 可能的取值为400,500,800,并且 P (X =400)=41111161616--=,P (X =500)=116,P (X =800)=14. 所以X 的分布列为EX =1111400+500+80016164⨯⨯⨯=506.25. 20.解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2的椭圆(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP R QM r =,可求得Q (-4,0),所以可设l :y=k (x +4).由l 与圆M , 解得k =当k y x =代入22=143x y +, 并整理得7x 2+8x -8=0,解得x1,2=47-±.所以|AB|2118|7x x-=.当k=|AB|=187.综上,|AB|=|AB|=187.21.解:(1)由已知得f(0)=2,g(0)=2,f′(0)=4,g′(0)=4.而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4.从而a=4,b=2,c=2,d=2.(2)由(1)知,f(x)=x2+4x+2,g(x)=2e x(x+1).设函数F(x)=kg(x)-f(x)=2k e x(x+1)-x2-4x-2,则F′(x)=2k e x(x+2)-2x-4=2(x+2)(k e x-1).由题设可得F(0)≥0,即k≥1.令F′(x)=0得x1=-ln k,x2=-2.①若1≤k<e2,则-2<x1≤0.从而当x∈(-2,x1)时,F′(x)<0;当x∈(x1,+∞)时,F′(x)>0.即F(x)在(-2,x1)单调递减,在(x1,+∞)单调递增.故F(x)在[-2,+∞)的最小值为F(x1).而F(x1)=2x1+2-21x-4x1-2=-x1(x1+2)≥0.故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x-e-2).从而当x>-2时,F′(x)>0,即F(x)在(-2,+∞)单调递增.而F(-2)=0,故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2,则F(-2)=-2k e-2+2=-2e-2(k-e2)<0.从而当x≥-2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围是[1,e2].请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(1)证明:连结DE,交BC于点G.由弦切角定理得,∠ABE=∠BCE.而∠ABE=∠CBE,故∠CBE=∠BCE,BE=CE.又因为DB⊥BE,所以DE为直径,∠DCE=90°,由勾股定理可得DB=DC.(2)解:由(1)知,∠CDE=∠BDE,DB=DC,故DG是BC的中垂线,所以BG设DE的中点为O,连结BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°,所以CF⊥BF,故Rt△BCF.23.解:(1)将45cos,55sinx ty t=+⎧⎨=+⎩消去参数t,化为普通方程(x-4)2+(y-5)2=25,即C1:x2+y2-8x-10y+16=0.2013 全国新课标卷1理科数学第12页2013 全国新课标卷1理科数学 第13页 将cos ,sin x y ρθρθ=⎧⎨=⎩代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0.由2222810160,20x y x y x y y ⎧+--+=⎨+-=⎩ 解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩ 所以C 1与C 2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭. 24.解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}.(2)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立. 故2a -≥a -2,即43a ≤. 从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年普通高等学校招生全国统一考试(全国卷)理科数学本试卷分第I 卷(选择题)和第H 卷(非选择题)两部分,共6页•考试时间120分钟.满 分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在第 I 卷答题卡和第n 卷答题纸规定的位置. 参考公式:样本数据X-i , X 2 ,X n 的标准差球的面积公式s 4 R 2第I 卷(选择题共60 分)注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮 擦干净后,再选涂其它答案,不能答在试题卷上. 2 .第I 卷只有选择题一道大题.一、选择题:本大题共 12小题,每小题5分,共60分.在每小题给出的四个选项中,只有 一项是符合题目要求的.1 2i1.复数1 2i( i 是虚数单位)的虚部是3A .—21 B.-2C .3 D . 12.已知R 是实数集,Mx 2 1 ,N y y J x 1 1 ,则 N C R MX3. 现有10个数,其平均数是 4,且这10个数的平方和是200,那么这个数组的标准差是 A . 1B . 2C. 3D . 44. 设S n 为等比数列{a .}的前n 项和,8a 2 0 则鱼,S 2A . 5B . 8C.8D . 15的值是(X n2X)其中X 为样本平均数A . (1,2)B . 0,2C.D . 1,25.已知函数f (X ) sin(2x-),若存在a(0,),使得 f (x a) f (x a )恒成立,则aA. B . C. D .63426.已知m、n表示直线,,, 表示平面,给出下列四个命题, 其中真命题为(1) m,n,n m,则(2) m,n,则n m(3) m , m,则//(4) m , n,m n,则A.( 1 )、(2)B. (3)、 (4)C. (2)、(3)D. (2)、 (4)■- ■- | AB |7.已知平面上不共线的四点O,A,B,C,若OA 3OB 2OC,则等于|BC|A. 1B. 2C. 3D. 48.已知三角形ABC的三边长成公差为2的等差数列,且最大角的正弦值为—,则这个三2 角形的周长是A. 18B. 21C. 24D. 159.函数f (x) lg x 1的零点所在的区间是xA. 0,1B. 1,10C. 10,100D. (100,)10.过直线y 2x上一点P引圆x6x 7 0的切线,则切线长的最小值为2A.2B. D. ■■ 211.已知函数f (x) ax 2b.若a,b都是区间0,4 内的数,则使f(1) 0成立的概率是3 A.-4 B.5D.-812.已知双曲线的标准方程为9 161 , F为其右焦点,A1, A2是实轴的两端点,设P为双曲线上不同于A1,A2的任意一点, 直线AP,A2P与直线x a分别交于两点M , N ,若FM FN 0,则a的值为第口卷(非选择题共90 分)注意事项:1.请用0.5毫米的黑色签字笔将每题的答案填写在第n 卷答题纸的指定位置•书写的答案如需改动,要先划掉原来的答案,然后再写上新答案.2 •不在指定答题位置答题或超出答题区域书写的答案无效•在试题卷上答题无效.3 •第n 卷共包括填空题和解答题两道大题. 二、填空题:本大题共 4小题,每小题4分,共16分.13. _______________________________________ 如图所示的程序框图输出的结果为 ____________________________ .14. 若一个底面是正三角形的三棱柱的正视图如下图所示,其一个球面上,则该球的表面积为 _____________ .的能量是2008年地震能量的 __________ 倍.16. 给出下列命题:① 已知a ,b 都是正数,且旦,则a b ;b 1 b② 已知f (x)是f(x)的导函数,若 x R,f(x) 0,贝y f (1) f(2)—定成立; ③ 命题“ x R ,使得x 2 2x 10 ”的否定是真命题;④ “ x 1,且y T 是“ x y 2 ”的充要条件. 其中正确命题的序号是________ .(把你认为正确命题的序号都填上)15.地震的震级R 与地震释放的能量E 的关系为R 彳(IgE311.4) • 2011 年 3 月 11 日,日本东海岸发生了 9.0级特大地震,2008年中国汶川的地震级别为8.0级,那么2011年地震第14题图三、解答题:本大题共6小题,共 74分•解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12分)已知向量a (1, cos-)与b C 3sin° cos X , y)共线,且有函数y f (x). 2 2 22(i)若 f (x) 1,求 cos(-2x)的值;3(n)在 ABC 中,角A, B,C ,的对边分别是a, b, c ,且满足2a cosC c 2b ,求函数f (B)的取值范围.18.(本小题满分 12分)已知等差数列 a n 的前n 项和为S n ,公差d 0,且S 3 S 5 50, a 1,a 4,a 13成等比数列. (I )求数列a n 的通项公式;b n是首项为1,公比为3的等比数列,求数列a nb n 的前n 项和T n .(本小题满分12分)在某种产品表面进行腐蚀性检验,得到腐蚀深度y 与腐蚀时间x 之间对应的一组数据:时间x (秒)5 10 15 20 30 40 深度y (微米)61010131617现确定的研究方案是:先从这 6组数据中选取2组,用剩下的4组数据求线性回归方程, 再对被选取的2组数据进行检验.(I )求选取的2组数据恰好不相邻的概率;(n )若选取的是第2组和第5组数据,根据其它 4组数据,求得y 关于x 的线性回归方4139程? x,规定由线性回归方程得到的估计数据与所选出的检验数据的误13 26差均不超过2微米,则认为得到的线性回归方程是可靠的,判断该线性回归方程是 否可靠.19.(本小题满分12分)已知四棱锥A BCDE ,其中AB BC // CD , F 为AD 的中点•(I )求证:EF //面 ABC ; (n)求证:面ADE 面ACD ; (III )求四棱锥 A BCDE 的体积•AC BE 1, CD 2 ,CD 面 ABC , BE20. B21.(本小题满分12分)ax b已知函数f(x) 2在点(1, f( 1))的切线方程为x y 3 0.x 1(I)求函数f(x)的解析式;(n)设g(x) ln x,求证:g(x) f (x)在x [1,)上恒成立.22.(本小题满分14分)实轴长为4 •. 3的椭圆的中心在原点, 其焦点F2在x轴上.抛物线的顶点在原点0 ,对称轴为y轴,两曲线在第一象限内相交于点A,且AF1 AF2, △ AF1F2的面积为3.(I )求椭圆和抛物线的标准方程;(n )2参考答案及评分标准•选择题(本大题共 12小题,每小题5分,共60分.)B D B A D B B D BC C B•填空题(本大题共 4小题,每小题4分,共16分.)三•解答题17.(本小题满分12分) 解:(I ): a 与b 共线13 s in x cos-2 2y .3.x x 2sin cos cosx3 .sin x 丄(1 cosx) sin(x )1...... 3分2 222 26 2• f(x) sin(x1 2 1 , 即 sin(x 6) 12……4分cos( 32x) cos2( 3 x) 2cos 2(— x) 1 2si n 2(x6) 112............................. 6分(n)已知 2acosC c 2b2sin AcosC sin C 2sin B 2si n(A C)2sin AcosC sin C 2sin AcosC 2cosAsinC• cosA -, •••在 ABC 中 / A -.............. 8分23f (B) sin(B6) 12•••/ A —• 0B 2,B —5.............. 10分由正弦定理得:33 666 13. 214. 19315. 10216.①③x cos 2 ysin(B 点)1,1 f(B)•••函数 3f (B )的取值范围为(1,12分18. (本小题满分12 分、)解: (I )依题〕意得3 24 53a1d21 5a12d 50 ......... 2分3d)2a1(a112d)解得a13.......... 4分d 2a n a1 (n 1)d 3 :2(n 1) 2n 1,即a. 2n 1 .......................... 6分(n) b n3n 1, b n a n3n 1(2n 1) 3n 1 ............. ............ 7分a nT n 3 5 37 32(2n1) 3n 13T n33 5 327 33(2n1) 3n 1(2n 1) 3n-....... 9分2T n 3 2 3232 2 3n1(2n n1)3n 1、3(1 3 )3 2 (2n 1)31 32n 3n••• T n n 3n19.(本小题满分12分)解:(I)取AC中点G连结FG BG,••• F,G分别是AD,AC的中点1• FG// CD且FG=—DC=12 '•/ BE// CD • FG与BE平行且相等•EF// BG. ................... 2 分EF 面ABC, BG 面ABC•EF //面ABC ................ 4 分(n ) •/ △ ABC为等边三角形• BG丄AC又T DC丄面ABC,BG 面ABC • DC丄BGA••• BG 垂直于面ADC 的两条相交直线 ACQC , ••• BG 丄面 ADC . ................. •/ EF// BG• EF 丄面ADC•/ EF 面 ADE,.••面 ADE 丄面 ADC .• CD AO,BC CD C,•- AO 平面 BCDE , •- AO 为 V A BCDE 的高,-J3 一(1 2) 1 3V A BCDE1 3、33 AO - ,S BCDE2223 2 2420.(本小题满分12 分)V A BCDE1V E ABC V E ACD—1 v 3 V3 1 -V3 V3....... 12分3 432 126 4另法:取 BC 的中点为0,连结 AO ,则 AO BC ,又 CD 平面ABC ,(川)连结EC 该四棱锥分为两个三棱锥E - ABC 和 E - ADC ...............................8分 解:(I )设6组数据的编号分别为123,4,5,6.设抽到不相邻的两组数据为事件A , 从 6组数据中选取2组数据共有15种情况: (1,2 ) (1,3 ) (1,4 ) (1,5 ) (1,6 ) (2,3 ) (2,4 ) (2,5 ) (2,6 ) ( 3,4 ) ( 3,5 ) ( 3,6 ) ( 4,5 ) (4,6 ) ( 5,6 ),其中事件A 包含的基本事件有10种.所以10 P (A )15| .所以选取的2组数据恰好不相邻的概率是x 10 时, ?- 1310 139 26 219 |21926 ,126 10| 2;x 30 时,30139 26所以,该研究所得到的回归方程是可靠的.379 |379 26112616| 2;12分21.(本小题满分12分) 解:(I )将x1代入切线方程得y 2 b af( 1) 2,化简得 b a 4.1 1............................. 2分f (x)2a(x 1) (ax b) 2x2 2(1 x )设 h(x) x 21n x ln x 2x 2 ,1 h (x) 2xlnx x 2x1 T x 1 2xlnx 0, x 2,即 h (x) 0 .x••• h(x)在[1,)上单调递增,h(x) h(1)(2)设直线 l 的方程为 y 1 k(x 2 2), B(x 1, y 1), C(x 2, y 2)f (1)2a 2( b a) 2bb442解得:a 2,b2• f (x)2x 22x12x 2(n )由已知得ln x 在[1,2x 1..............................6分即 x 2 ln x ln x 2x 20在[1, )上恒成立............................. 8分10分• g(x) f (x)在x [1,)上恒成立............................. 12分解(1)设椭圆方程为2 2X2y21 (a ba b22 , 2m n 4c由题意知 m n i 4 3mn 6 解得c 29 , •• b 2 12 93 .2 2•椭圆的方程为x y1123I A c 3, …y A1,代入椭圆的方程得将点A 坐标代入得抛物线方程为X 20), AF 1 m, AF 2 n.......................... 2分............................. 4分X A 2 2 , 8y ........................... 6 分1)上恒成化简得(x 21)lnx 2x 222.(本小题满分14分)由 AC 2AB 得 x 2 2 . 2 2(x 1 2、、2),化简得2x 1 x 2 2 •、2 联立直线与抛物线的方程y 1 k(X 2-'2),2 cx 8y 得 x 2 8kx 16 .、2k 8 0二 x 1 2 •一 2 8k ① .......................... 10 分 联立直线与椭圆的方程y 1 k(X 2,2)x 2 4y 2 12得(1 4k 2)x 2 (8k 16..2k 2)x 32k 2 16.2k 8 0••• 2x 1 x 2 2(8k 2..2)吟护 2、2 “•— .?2k整理得:(16k 4,2)(1 — ) 01 4k2••• k ,所以直线l 的斜率为 — 4 4 --X 2 2 ■- 2 2 162k 8k 1 4 k 2 12分 ............................. 14分。

相关文档
最新文档