洛必达法则在高考解答题中的应用

合集下载

洛必达法则在高考解答题中的应用高二下

洛必达法则在高考解答题中的应用高二下

导数结合洛必达法则巧解高考压轴题一.洛必达法则:法则 1.若函数)(x f 和)(x g 满足下列条件:(1) ()lim 0x af x →= 及()lim 0x ag x →=; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ;(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='. 法则 2.若函数)(x f 和)(x g 满足下列条件:(1) ()lim x af x →=∞及()lim x ag x →=∞; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ;(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='. 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:○1将上面公式中的a x →,∞→x 换成+∞→x ,-∞→x ,+→a x ,-→a x 洛必达法则也成立.○2洛必达法则可处理00,∞∞,0⋅∞,∞1,0∞,00,∞-∞型. ○3在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,∞1,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限.○4若条件符合,洛必达法则可连续多次使用,直到求出极限为止. 二.高考例题讲解1. 函数2()1x f x e x ax =---.(Ⅰ)若0a =,求()f x 的单调区间;(Ⅱ)若当0x ≥时()0f x ≥,求实数a 的取值范围.2. 已知函数xb x x a x f ++=1ln )(,曲线()y f x =在点))1(,1(f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x >+-,求k 的取值范围. 3.若不等式3sin ax x x ->对于)2,0(π∈x 恒成立,求实数a 的取值范围. 4.设函数xx x f cos 2sin )(+=。

新人教版高中数学《洛必达法则在高考中的应用》精品PPT课件

新人教版高中数学《洛必达法则在高考中的应用》精品PPT课件

注意:lim6x 2 为已定式,不能再用洛必达法则。
x1 6 x
例5.若f(x0 )
2
,求lim h0
f(x0

2h) 5h
f(x0

h)
解析:l i m h0
f(
x0

2 h ) 5h
f
( x0

h)

lim 2f(x0
h0

2
h ) 5
f( x0

h)

3 5
f( x0
2a
g(3) 9a 1 0
①若g(1) a 1 0 a 1 时,
g(t)
则 g(t) 在 [1,3]必有唯一零点t0
所以 y(t) 在[1, t0 ] 减,[t0 ,3]增
1 t0 3
又y(1) 0 ,所以 y(t0 ) 0不适合。
②若g(1) a 1 0 a 1时,
若 x (0,),则
ax 1 0 ax 1 x f (x)

a

1 1 ex

1 x

xex ex 1 x(ex 1)

h(x)恒成立。
下面求 h(x),x (0,) 的最小值或最小极限值。
用导数法判断单调性难以解决,所以猜测最小
极限值点在0或 位置,由洛必达法则:
g(x) xe x 2e x x 2 0(x 0)
因为 g(x) xex ex 1 ,g (x) xe x 0
所以 g(x) 在(0,) 增
g(x) g(0) 0 所以 g(x) 在(0,)增
g(x) g(0) 0 h(x) 1

最新洛必达法则在高考解答题中的应用(高二下)复习课程

最新洛必达法则在高考解答题中的应用(高二下)复习课程

导数结合洛必达法则巧解高考压轴题一.洛必达法则:法则1.若函数)(x f 和)(x g 满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x ag x →=; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ;(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='. 法则2.若函数)(x f 和)(x g 满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞;(2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ;(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='. 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:○1将上面公式中的a x →,∞→x 换成+∞→x ,-∞→x ,+→a x ,-→a x 洛必达法则也成立.○2洛必达法则可处理00,∞∞,0⋅∞,∞1,0∞,00,∞-∞型. ○3在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,∞1,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限.○4若条件符合,洛必达法则可连续多次使用,直到求出极限为止. 二.高考例题讲解1. 函数2()1x f x e x ax =---.(Ⅰ)若0a =,求()f x 的单调区间;(Ⅱ)若当0x ≥时()0f x ≥,求实数a 的取值范围.2. 已知函数xb x x a x f ++=1ln )(,曲线()y f x =在点))1(,1(f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x>+-,求k 的取值范围.3.若不等式3sin ax x x ->对于)2,0(π∈x 恒成立,求实数a 的取值范围. 4.设函数xx x f cos 2sin )(+=。

利用洛必达法则来处理高考中的恒成立问题

利用洛必达法则来处理高考中的恒成立问题

利用洛必达法则来处理高考中的恒成立问题全国新课标卷中的第21题中的第○2步,由不等式恒成立来求参数的取值范围问题,分析难度大,但用洛必达法则来处理却可达到事半功倍的效果。

一.洛必达法则法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x af x →= 及()lim 0x ag x →=;(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0;(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。

法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞= 及()lim 0x g x →∞=;(2)0A ∃,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0; (3)()()limx f x l g x →∞'=', 那么 ()()lim x f x g x →∞=()()lim x f x l g x →∞'='。

法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x af x →=∞及()lim x ag x →=∞;(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0;(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。

利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a+→,x a-→洛必达法则也成立。

○2洛必达法则可处理00,∞∞,0⋅∞,1∞,0∞,00,∞-∞型。

洛必达法则在高考解答题中的应用(高二下)

洛必达法则在高考解答题中的应用(高二下)

洛必达法则在高考解答题中的应用(高二下)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN导数结合洛必达法则巧解高考压轴题一.洛必达法则:法则1.若函数)(x f 和)(x g 满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x ag x →=; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ;(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='. 法则2.若函数)(x f 和)(x g 满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞;(2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ;(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='. 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○1将上面公式中的a x →,∞→x 换成+∞→x ,-∞→x ,+→a x ,-→a x 洛必达法则也成立.○2洛必达法则可处理00,∞∞,0⋅∞,∞1,0∞,00,∞-∞型. ○3在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,∞1,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限. ○4若条件符合,洛必达法则可连续多次使用,直到求出极限为止. 二.高考例题讲解1. 函数2()1x f x e x ax =---.(Ⅰ)若0a =,求()f x 的单调区间;(Ⅱ)若当0x ≥时()0f x ≥,求实数a 的取值范围.2. 已知函数xb x x a x f ++=1ln )(,曲线()y f x =在点))1(,1(f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x>+-,求k 的取值范围. 3.若不等式3sin ax x x ->对于)2,0(π∈x 恒成立,求实数a 的取值范围. 4.设函数xx x f cos 2sin )(+=。

冲刺高考数学洛必达法则的使用条件与限制

冲刺高考数学洛必达法则的使用条件与限制

冲刺高考数学洛必达法则的使用条件与限制在高考数学的战场上,许多同学都渴望拥有一件强大的“武器”来攻克难题,洛必达法则便是其中之一。

然而,要想正确且有效地运用这一法则,就必须清楚地了解其使用条件与限制,否则可能会陷入误区,导致丢分。

首先,我们来谈谈洛必达法则是什么。

简单来说,洛必达法则是在一定条件下,通过对分子分母分别求导来计算未定式极限的方法。

那么,洛必达法则的使用条件是什么呢?条件一:只有当分式满足“零比零”型或者“无穷比无穷”型的未定式时,才能考虑使用洛必达法则。

这意味着,当我们面对一个极限问题,如果分子和分母都趋近于零或者都趋近于无穷大,才有使用洛必达法则的可能。

条件二:在求导之后,新得到的分式的极限必须存在或者为无穷大。

如果求导后的新分式的极限不存在,那么就不能使用洛必达法则来求解。

条件三:使用洛必达法则时,求导的过程必须是在定义域内可导。

也就是说,分子分母在所讨论的区间内必须是可导的函数。

接下来,我们看看洛必达法则的限制有哪些。

限制一:高考中,洛必达法则并没有被明确列入考纲范围。

这就意味着,如果直接使用洛必达法则来解题,可能会被扣分。

但是,如果我们能够巧妙地利用其思路,通过构造函数等方法来解决问题,往往能够达到事半功倍的效果。

限制二:洛必达法则并不是万能的解题工具。

有些问题可能在使用一次洛必达法则后仍无法得出结论,需要多次使用,但多次使用可能会使问题变得更加复杂,甚至走入死胡同。

限制三:在使用洛必达法则求导的过程中,计算容易出错。

尤其是对于复杂的函数,求导的过程可能会涉及到复合函数求导、乘积求导等多种规则,如果不小心就会出现错误。

为了更好地理解洛必达法则的使用条件与限制,我们来看几个具体的例子。

例 1:求极限$\lim_{x \to 0} \frac{\sin x}{x}$这是一个“零比零”型的未定式,满足洛必达法则的使用条件。

对分子分母分别求导,得到:$\lim_{x \to 0} \frac{\cos x}{1} = 1$例 2:求极限$\lim_{x \to +\infty} \frac{x^2}{e^x}$这是一个“无穷比无穷”型的未定式,使用洛必达法则:$\lim_{x \to +\infty} \frac{2x}{e^x}$再次使用洛必达法则:$\lim_{x \to +\infty} \frac{2}{e^x} = 0$但是,并不是所有的极限问题都能通过洛必达法则轻松解决。

洛必达法则在高考解答题中的应用

一.洛必达法则:法则1.若函数)(x f 和)(x g 满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x ag x →=; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ;(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='. 法则2.若函数)(x f 和)(x g 满足下列条件:(1) ()lim x a f x →=∞及()lim x ag x →=∞; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ;(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='. 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:○1将上面公式中的a x →,∞→x 换成+∞→x ,-∞→x ,+→a x ,-→a x 洛必达法则也成立.○2洛必达法则可处理00,∞∞,0⋅∞,∞1,0∞,00,∞-∞型. ○3在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,∞1,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限.○4若条件符合,洛必达法则可连续多次使用,直到求出极限为止. 二.高考例题讲解1. 函数2()1x f x e x ax =---.(Ⅰ)若0a =,求()f x 的单调区间;(Ⅱ)若当0x ≥时()0f x ≥,求实数a 的取值范围.2. 已知函数xb x x a x f ++=1ln )(,曲线()y f x =在点))1(,1(f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x >+-,求k 的取值范围. 3.若不等式3sin ax x x ->对于)2,0(π∈x 恒成立,求实数a 的取值范围.4.设函数xx x f cos 2sin )(+=。

新人教版高中数学《洛必达法则在高考中的应用》精品PPT课件


例1.求 lim sinx x0 x
解析: 0 型 0
limsinx x0 x

l i m( s i n x) x0 x

lim
x0
c
os 1
x

1
二、洛必达法则求极限
例2.求 limxlnx x 0
解析:不适合条件,需转化
1
lim
x 0
x
l
n
x
lim
x 0
ln 1 x

cos2 x 2 cos (2 cos x)
x
2

1

0
所以 g(x) g(0) 0 h(x) 1 3
所以 a 1
3
例 3.(10 全国理 2)设函数 f (x) 1 ex .
(1)证明:当 x 1 时, f (x) x ; x 1
(2)设当 x 0 时, f (x) x , ax 1
c os x
1
x0
x0 2 cosx x sin x 3
为必要条件
下证 h(x) 1 sin x 1 , (x 0) 3 x(2 cos x) 3
g(x) x sin x 0, (x 0) 3 2 cos x
因为
g ( x)

1 3

2 cos x 1 (2 cos x)2
l
n
(
x
1
)
1
x
x
l
n
x
ln(x1)lnx 0(x 0)
所以a 0
说明:对 0 和 哪个端点求极限?
法1、两个都求取小; 法2、取特殊值比较取舍。

例析“洛必达法则”在高考数学中的应用

例析“洛必达法则”在高考数学中的应用作者:何长斌来源:《中学生理科应试》2017年第01期纵观近些年来的高考数学试题,许多省份的高考数学压轴题都是与导数的应用有关的数学问题,这类问题的特点是难度较大、综合性较强,其中求解参数的取值范围是这一类问题考查的重点题型.对于此类问题,学生的传统做法是利用分离变量法来求解,但由于这种方法往往分类的情况比较多、过程过于繁杂,学生实际操作起来非常困难,许多学生很容易漏解.且有些题型利用分离变量法解决时,还会出现“00”“∞∞”型等函数值不存在的情况,而这是大学数学中的不定式问题,若此类问题采用洛必达法则进行解决,便会迅速破解.一、洛必达法则介绍:法则1若函数fx 和g(x)满足下列条件:(1)limx→afx=0 及limx→agx=0;(2)在点a的去心邻域内,fx与g(x)可导且g′(x)≠0;(3)limx→af ′xg′x=l,那么limx→afxgx=limx→af ′xg′x=l.法则2若函数fx 和g(x)满足下列条件:(1)limx→∞fx=0及limx→∞gx=0;(2)A>0,fx 和g(x)在-∞,A与A,+∞上可导,且g′(x)≠0;(3)limx→∞f ′xg′x=l,那么limx→∞fxgx=limx→∞f ′xg′x=l.法则3若函数fx和g(x)满足下列条件:(1)limx→afx=∞及limx→agx=∞;(2)在点a的去心邻域内,fx与g(x)可导且g′(x)≠0;(3)limx→af ′xg′x=l,那么limx→afxgx=limx→af ′xg′x=l.二、洛必达法则在高考试题中的应用1.(2010年全国新课标理)设函数f(x)=ex-1-x-ax2.(Ⅰ)若a=0,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.解析(Ⅰ)a=0时,f(x)=ex-1-x,f ′(x)=ex-1.当x∈(-∞,0)时,f ′(x)0.故f(x)在(-∞,0)单调减少,在(0,+∞)单调增加.(Ⅱ)当x=0时,f(x)=0,对任意实数a,均有f(x)≥0;当x>0时,f(x)≥0等价于a≤ex-x-1x2令gx=ex-x-1x2(x>0),则g′(x)=xex-2ex+x+2x3,令 hx=xex-2ex+x+2x>0,则h′x=xex-ex+1,h″x=xex>0,知h′x在0,+∞上为增函数,h′x>h′0=0;知hx在0,+∞上为增函数, hx>h0=0;∴g′x>0,g(x)在0,+∞上为增函数.由洛必达法则知,limx→0+ex-x-1x2=limx→0+ex-12x=limx→0+ex2=12,故a≤12综上,知a的取值范围为-∞,12.2.(2011年全国新课标理)已知函数f(x)=alnxx+1+bx,曲线y=f(x)在点(1,f (1))处的切线方程为x+2y-3=0.(Ⅰ)求a,b的值;(Ⅱ)如果当x>0且x≠1时,f(x)>lnxx-1+kx,求k的取值范围.解析(Ⅰ)f ′(x)=a(x+1x-lnx)(x+1)2-bx2,由于直线x+2y-3=0的斜率为-12,且过点(1,1).故f(1)=1f ′(1)=-12,解得a=1,b=1.(Ⅱ)由题设可得,当x>0,x≠1时,k令g(x)= 2xlnx1-x2+1(x>0,x≠1),则g′x=2·x2+1lnx-x2+11-x22,再令hx=x2+1lnx-x2+1(x>0,x≠1),则h′x=2xlnx+1x-x,h″x=2lnx+1-1x2,易知h″x=2lnx+1-1x2在0,+∞上为增函数,且h″1=0;故当x∈(0,1)时,h″x0;∴h′x在0,1上为减函数,在1,+∞上为增函数;故h′x>h′1=0∴hx在0,+∞上为增函数∵h1=0∴当x∈(0,1)时,hx当x∈(1,+∞)时,hx>0∴当x∈(0,1)时,g′x当x∈(1,+∞)时,g′x>0∴gx在0,1上为减函数,在1,+∞上为增函数∵由洛必达法则知:limx→1gx=2limx→1xlnx1-x2+1=2limx→11+lnx-2x+1=2×-12+1=0∴k≤0,即k的取值范围为(-∞,0\].3.(2010海南宁夏文21题)已知函数f(x)=x(ex-1)-ax2.(Ⅰ)若f(x)在x=-1时有极值,求函数f(x)的解析式;(Ⅱ)当x≥0时,f(x)≥0,求a的取值范围.解(Ⅰ)略(Ⅱ)当x≥0时,f(x)≥0,即x(ex-1)≥ax2.①当x=0时,a∈R;②当x>0时,x(ex-1)≥ax2等价于ex-1≥ax,也即a≤ex-1x.记g(x)=ex-1x,x∈(0,+∞),则g'(x)=(x-1)ex+1x.记h(x)=(x-1)ex+1,x∈(0,+∞),则h′(x)=xex>0,因此h(x)=(x-1)ex+1在(0,+∞)上单调递增,且h(x)>h(0)=0,所以g′(x)=h(x)x>0.从而g(x)=ex-1x在(0,+∞)上单调递增.由洛必达法则有limx→0g(x)=limx→0ex-1x=limx→0ex1=1,即当x→0时,g(x)→1.所以g(x)>1,即有a≤1.综上所述,当a≤1,x≥0时,f(x)≥0成立.总之,纵观近年来全国各地高考试题,利用高等数学解决高考数学问题的题型屡见不鲜,当然此类问题也可用高中数学方法求解,但一般过程繁琐或技巧性较强,许多学生大都见而恐之.若学生能掌握一些有关高等数学的知识和方法,去解决这些问题,往往事半功倍.比如在学习导数知识后,笔者向学生讲解了洛必达法则,并介绍了洛必达法则适用的条件和具体用法,并通过一些简单的练习后,绝大部分学生都能利用洛必达法则处理部分简单繁琐的数学问题.(收稿日期:2016-10-18)。

洛必达法则在高考解答题中的应用

一.洛必达法例:法例 1. 若函数f (x)和g (x)知足以下条件: (1) lim f x0 及 lim g x0 ;x a x a(2) 在点a的去心邻域内, f (x) 与 g(x) 可导且 g '( x)0 ;f xl ,那么f x f xl .(3) lim lim= limx a g x x a g x x a g x法例 2. 若函数f (x)和g (x)知足以下条件: (1)lim f x及 lim g x;x a x a(2) 在点a的去心邻域内, f (x) 与 g(x)可导且 g' ( x)0 ;f xl ,那么f x f xl .(3) lim lim= limx a g x x a g x x a g x利用洛必达法例求不决式的极限是微分学中的要点之一,在解题中应注意:○1 将上边公式中的x a , x换成 x, x, x a, x a 洛必达法例也建立.○2 洛必达法例可办理0 ,, 0, 1,, 00,型.0 ,○3 在着手求极限从前,第一要检查能否知足,0, 1 ,0,00,型定式,不然滥用洛必达法例会犯错.当不知足三个前提条件时,就不可以用洛必达法例,这时称洛必达法例不合用,应从此外门路求极限.○4 若条件切合,洛必达法例可连续多次使用,直到求出极限为止.二.高考例题解说1.函数 f ( x)e x 1 x ax2.(Ⅰ)若 a0 ,求 f ( x)的单一区间;(Ⅱ)若当 x0 时f ( x)0 ,务实数 a 的取值范围.2. 已知函数aln x by f (x) 在点(1, f (1))处的切线方程为f ( x)1,曲线x xx 2 y 30 .(Ⅰ)求 a 、b的值;(Ⅱ)假如当 x0 ,且 x 1时, f ( x)ln x k,求 k 的取值范围.x 1x3. 若不等式sin x x ax3关于x (0,) 恒建立,务实数 a 的取值范围.24. 设函数 f ( x)sin x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数结合洛必达法则巧解高考压轴题
一.洛必达法则:
法则1.若函数)(x f 和)(x g 满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a
g x →=; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ;
(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()
lim x a f x l g x →'='. 法则2.若函数)(x f 和)(x g 满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞;
(2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ;
(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()
lim x a f x l g x →'='. 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:

1将上面公式中的a x →,∞→x 换成+∞→x ,-∞→x ,+→a x ,-→a x 洛必达法则也成立.
○2洛必达法则可处理00,∞
∞,0⋅∞,∞1,0∞,00,∞-∞型. ○3在着手求极限以前,首先要检查是否满足00,∞∞
,0⋅∞,∞1,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限.

4若条件符合,洛必达法则可连续多次使用,直到求出极限为止. 二.高考例题讲解
1. 函数2()1x f x e x ax =---.
(Ⅰ)若0a =,求()f x 的单调区间;
(Ⅱ)若当0x ≥时()0f x ≥,求实数a 的取值范围.
2. 已知函数x
b x x a x f ++=1ln )(,曲线()y f x =在点))1(,1(f 处的切线方程为230x y +-=.
(Ⅰ)求a 、b 的值;
(Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x
>+-,求k 的取值范围.
3.若不等式3sin ax x x ->对于)2,
0(π∈x 恒成立,求实数a 的取值范围. 4.设函数x
x x f cos 2sin )(+=。

(Ⅰ)求函数)(x f 的单调区间;
(Ⅱ)如果对0≥∀x ,都有ax x f ≤)(,求实数a 的取值范围.
5. 设函数()1x f x e -=-.
(Ⅰ)证明:当1->x 时,()1x f x x ≥
+; (Ⅱ)设当0x ≥时,()1x f x ax ≤
+,求实数a 的取值范围. 6.已知函数2)1()(ax e x x f x --=。

(Ⅰ)若函数)(x f 在1-=x 时有极值,求函数)(x f 的解析式;
(Ⅱ)当0x ≥时()0f x ≥,求实数a 的取值范围.
总结:通过以上例题的分析,我们不难发现应用洛必达法则解决的问题应满足:
1. 能够分离变量;
2. 用导数能够确定分离变量后另一侧所得新函数的单调性;
3. 出现“
00”、“ ∞∞”型式子。

相关文档
最新文档