洛必达法则解高考题
(完整word版)导数结合洛必达法则巧解高考压轴题

6 0001lim()limlim11xxxxxeegxx, 即当0x时,()1gx 所以()1gx,即有1a. 综上所述,当1a,0x时,()0fx成立. (全国大纲理)设函数()1xfxe. (Ⅰ)证明:当1x时,()1xfxx; (Ⅱ)设当0x时,()1xfxax,求a的取值范围. 解:(Ⅰ)略 (Ⅱ)应用洛必达法则和导数 由题设0x,此时()0fx. ①当0a时,若1xa,则01xax,()1xfxax不成立; ②当0a时,当0x时,()1xfxax,即11xxeax; 若0x,则aR; 若0x,则11xxeax等价于111xexax,即1xxxxeeaxex. 记1()xxxxeegxxex,则2222221'()=(2)()()xxxxxxxxexeeegxexexexxex. 记2()2xxhxexe,则'()2xxhxexe,''()+20xxhxee. 因此,'()2xxhxexe在(0),上单调递增,且'(0)0h,所以'()0hx, 即()hx在(0),上单调递增,且(0)0h,所以()0hx. 因此2'()=()0()xxegxhxxex,所以()gx在(0),上单调递增. 由洛必达法则有 000011lim()limlimlim122xxxxxxxxxxxxxxxeexeexegxxexexeexe,即当0x时, 1()2gx,即有1()2gx,所以12a.综上所述,a的取值范围是1(,]2. (全国2理)设函数sin()2cosxfxx. (Ⅰ)求()fx的单调区间; (Ⅱ)如果对任何0x≥,都有()fxax≤,求a的取值范围. 解:(Ⅰ)22(2cos)cossin(sin)2cos1()(2cos)(2cos)xxxxxfxxx. 当2π2π2π2π33kxk(kZ)时,1cos2x,即()0fx;
(完整版)洛必达法则巧解高考压轴题

洛必达法则巧解高考压轴题 洛必达法则:法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x ag x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0;(3)()()lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。
00型 法则2 若函数f(x) 和g(x)满足下列条件:(1) ()lim x a f x →=∞及()lim x ag x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0;(3)()()lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。
∞∞型 注意: ○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a +→,x a -→洛必达法则也成立。
○2若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
典例剖析例题1。
求极限(1)xx x 1ln lim 0+→ (∞∞型) (2)lim x ®p 2sin x -1cos x (00型) (3) 20cos ln lim x x x → (00型) (4)x x x ln lim +∞→ (∞∞型) 变式练习: 求极限(1)x x x )1ln(lim 0+→ (2)a x a x a x --→sin sin lim (3)x e e x x x sin lim 0-→- (4)22)2(sin ln lim x x x -→ππ 例题2。
已知函数R m x e x m x f x ∈+-=,)1()(2(1)当1-=m 时,求)(x f 在[]1,2-上的最小值(2)若)()2('2x f x m x >++在()0,∞-上恒成立,求m 的取值范围 例题3.已知函数)0(,)(>++=a c xb ax x f 的图像在点())1(,1f 处的切线方程为1-=x y , (1)用a 表示c b , (2)若x x f ln )(≥在[)+∞,1上恒成立,求a 的取值范围例题4.若不等式3sin ax x x ->在⎪⎭⎫ ⎝⎛∈2,0πx 是恒成立,求a 的取值范围 例题5.已知2)1()(ax e x x f x --=(1)若)(x f 在1-=x 时有极值,求函数)(x f 的解析式(2)当0≥x 时,0)(≥x f ,求a 的取值范围强化训练1. 设函数x e x f -1)(-=(1)证明:当1->x 时,1)(+≥x x x f 。
(word完整版)导数结合洛必达法则巧解高考压轴题.doc

导数结合洛必达法则巧解高考压轴题○2 洛必达法则可处理0 0, ,0 ,1 ,,0 , 型。
2010 年和 2011 年高考中的全国新课标卷中的第 21 题中的第 ○2 步,由不等式恒成立来求参数的0 0取值范围问题,分析难度大,但用洛必达法则来处理却可达到事半功倍的效果。
则不适用,应从另外途径求极限。
洛必达法则简介: ○4 若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
法则 1 若函数 f(x) 和 g(x) 满足下列条件: (1) lim f x 0 及 lim g x 0;x a x a(2) a f(x) g(x) g'(x) 0 在点 的去心邻域内, 与 可导且 ≠ ;二.高考题处理1.(2010 年全国新课标理 )设函数x 2f (x) e 1 x ax 。
(3) limx af xg xl ,(1) 若a 0,求 f (x) 的单调区间; (2) 若当 x 0时 f (x) 0,求 a 的取值范围那么 limx af xg x= limx af xg xl 。
x x原解:(1) a 0时, ( ) 1f x e x , f '( x) e 1.法则 2 若函数 f(x) 和 g(x) 满足下列条件: (1) lim f x 0 及lim g x 0;x x当 x ( ,0) 时, f '( x) 0;当 x (0, ) 时, f '( x) 0 .故 f (x) 在( ,0) 单调减少,在(2) A f 0,f(x) 和 g(x) 在 ,A 与 A, 上可导,且 g'(x) ≠0;(0, ) 单调增加(3) limxf xg x l ,x(II ) '( ) 1 2f x e ax那么 limxf xg x=limxf xg xl。
x 由(I )知 1e x ,当且仅当 x 0时等号成立 .故f '( x) x 2ax (1 2a)x ,法则 3 若函数 f(x) 和 g(x) 满足下列条件: (1) limx af x 及 lim x ag x ;从而当 1 2a 0,即 1 a 时, f '( x) 0 ( x 0) ,而 f (0) 0 ,2(2) 在点 a 的去心邻域内, f(x) 与 g(x) 可导且 g'(x) ≠0;于是当 x 0时, f (x) 0 .(3) limx af xg xl ,x x由 e 1 x(x 0) 可得 e 1 x(x 0) .从而当1 a 时, 2那么 limf x= limx af xl 。
2023年高考数学复习:洛必达法则

lim
x→0+
ex2-x 1=xl→ im0+
e2x=12,故 a≤12.
综上,实数 a 的取值范围是-∞,12.
则h′(x)=xex-ex+1,
记φ(x)=h′(x),则φ′(x)=xex>0,
∴h′(x)在(0,+∞)上单调递增,h′(x)>h′(0)=0,
∴h(x)在(0,+∞)上单调递增,h(x)>h(0)=0,
∴g′(x)>0,g(x)在(0,+∞)上单调递增.
由洛必达法则知
lim
x→0+
ex-xx2-1=
gf′′xx=A(可连续使用).
例 已知函数f(x)=x2ln x-a(x2-1),a∈R.若当x≥1时,f(x)≥0恒成立, 求实数a的取值范围.
解 方法一 由f(x)=x2ln x-a(x2-1)≥0,
当x=1时,不等式成立,
当 x>1 时,a≤xx22-ln 1x, 令 g(x)=xx22-ln 1x(x>1),则 g′(x)=xx2- x21--122ln x,
因为 x>1,则(x2-1-2ln x)′=2x-2x>0,
故y=x2-1-2ln x在(1,+∞)上单调递增,
则y=x2-1-2ln x>0,
故
g′(x)=xx2- x21--122ln
x >0.
所以g(x)在(1,+∞)上单调递增.
则 g(x)>g(1),由洛必达法则知lim x→1
x2ln x x2-1
2 a 1
所以f(x)min=f( e 2 )
2 a 1
=(e 2
)2·2a2-1-a[( e
2a1 2
导数结合洛必达法则巧解高考压轴题

导数结合洛必达法则巧解高考压轴题第一部分:历届导数高考压轴题(全国2理)设函数f (x )=(x +1)ln(x +1),若对所有的x ≥0,都有f (x )≥ax 成立,求实数a 的取值范围.(全国1理)已知函数()11axx f x e x -+=-.(Ⅰ)设0a >,讨论()y f x =的单调性;(Ⅱ)若对任意()0,1x ∈恒有()1f x >,求a 的取值范围.(全国1理)设函数()e e x x f x -=-. (Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围.(全国2理)设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.(辽宁理)设函数ln ()ln ln(1)1xf x x x x=-+++. ⑴求()f x 的单调区间和极值;⑵是否存在实数a ,使得关于x 的不等式()f x a …的解集为(0,)+∞?若存在,求a 的取值范围;若不存在,试说明理由.(新课标理)设函数)(x f =21x e x ax ---. (Ⅰ)若0=a ,求)(x f 的单调区间;(Ⅱ)若当x ≥0时)(x f ≥0,求a 的取值范围.(新课标文)已知函数2()(1)x f x x e ax =--.(Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式; (Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围.(全国大纲理)设函数()1x f x e -=-. (Ⅰ)证明:当1x >-时,()1xf x x ≥+; (Ⅱ)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围.(新课标理)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.例题:若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围第二部分:泰勒展开式1.2311,1!2!3!!(1)!n n xx x x x x x e e n n θ+=+++++++其中(01)θ<<; 2. 231ln(1)(1),2!3!!n n n x x x x x R n -+=-+-+-+其中111(1)()(1)!1n nn n x R n x θ++=-++; 3.35211sin (1)3!5!(21)!k k n x x x x x R k --=-+-+-+-,其中21(1)cos (21)!k kn x R x k θ+=-+;4. 24221cos 1(1)2!4!(22)!k k n x x x x R k --=-+-+-+-,其中2(1)cos (2)!kk n x R x k θ=-;第三部分:洛必达法则及其解法洛必达法则:设函数()f x 、()g x 满足: (1)lim ()lim ()0x ax af xg x →→==;(2)在()U a 内,()f x '和()g x '都存在,且()0g x '≠; (3)()lim()x a f x A g x →'=' (A 可为实数,也可以是±∞).则()()lim lim ()()x a x a f x f x A g x g x →→'=='.1.(新课标理)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. 常规解法(Ⅰ)略解得1a =,1b =.(Ⅱ)方法一:分类讨论、假设反证法由(Ⅰ)知ln 1()1x f x x x =++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x---+=+--. 考虑函数()2ln h x x =+2(1)(1)k x x --(0)x >,则22(1)(1)2'()k x x h x x -++=. (i)当0k ≤时,由222(1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <.因为(1)0h =,所以当(0,1)x ∈时,()0h x >,可得21()01h x x⋅>-;当(1,)x ∈+∞时,()0h x <,可得21()01h x x ⋅>-,从而当0x >且1x ≠时,ln ()()01x k f x x x -+>-,即ln ()1x kf x x x>+-; (ii )当01k <<时,由于当1(1,)1x k∈-时,2(1)(1)20k x x -++>,故'()0h x >,而(1)0h =,故当1(1,)1x k∈-时,()0h x >,可得21()01h x x ⋅<-,与题设矛盾. (iii )当1k ≥时, '()0h x >,而(1)0h =,故当(1,)x ∈+∞时,()0h x >,可得21()01h x x⋅<-,与题设矛盾.综上可得,k 的取值范围为(0]-∞,. 注:分三种情况讨论:①0k ≤;②01k <<;③1k ≥不易想到.尤其是②01k <<时,许多考生都停留在此层面,举反例1(1,)1x k∈-更难想到.而这方面根据不同题型涉及的解法也不相同,这是高中阶段公认的难点,即便通过训练也很难提升.洛必达法则解法当0x >,且1x ≠时,ln ()1x k f x x x >+-,即ln 1ln 11x x kx x x x+>++-, 也即2ln 1ln 2ln 1111x x x x x x k x x x x <+-=++--,记22ln ()11x xg x x =+-,0x >,且1x ≠则2222222222(1)ln 2(1)2(1)1'()=(ln )(1)(1)1x x x x x g x x x x x ++-+-=+--+, 记221()ln 1x h x x x -=++,则22222214(1)'()+=0(1+)(1+)x x h x x x x x --=>, 从而()h x 在(0,)+∞上单调递增,且(1)0h =,因此当(0,1)x ∈时,()0h x <,当(1,)x ∈+∞时,()0h x >;当(0,1)x ∈时,'()0g x <,当(1,)x ∈+∞时,'()0g x >,所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增. 由洛必达法则有2211112ln 2ln 2ln 2lim ()lim(1)1lim 1lim 0112x x x x x x x x x g x x x x→→→→+=+=+=+=---,即当1x →时,()0g x →,即当0x >,且1x ≠时,()0g x >.因为()k g x <恒成立,所以0k ≤.综上所述,当0x >,且1x ≠时,ln ()1x kf x x x>+-成立,k 的取值范围为(0]-∞,.注:本题由已知很容易想到用分离变量的方法把参数k 分离出来.然后对分离出来的函数22ln ()11x xg x x=+-求导,研究其单调性、极值.此时遇到了“当=1x 时,函数()g x 值没有意义”这一问题,很多考生会陷入困境.如果考前对优秀的学生讲洛必达法则的应用,再通过强化训练就能掌握解决此类难题的这一有效方法.2.(新课标理)设函数2()1x f x e x ax =---. (Ⅰ)若0a =,求()f x 的单调区间; (Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围. 应用洛必达法则和导数(Ⅱ)当0x ≥时,()0f x ≥,即21x e x ax --≥.①当0x =时,a R ∈;②当0x >时,21xe x ax --≥等价于21x e xa x--≤. 记21()x e x g x x --= (0+)x ∈∞,,则3(2)2'()x x e x g x x -++=. 记()(2)2x h x x e x =-++ (0+)x ∈∞,,则'()(1)1xh x x e =-+,当(0+)x ∈∞,时,''()0xh x x e =>,所以'()(1)1x h x x e =-+在(0+)∞,上单调递增,且'()'(0)0h x h >=,所以()(2)2xh x x e x =-++在(0+)∞,上单调递增,且()(0)0h x h >=,因此当(0+)x ∈∞,时,3()'()0h x g x x=>,从而21()x e x g x x --=在(0+)∞,上单调递增. 由洛必达法则有,20000111lim ()lim lim lim 222x x x x x x x e x e e g x x x →→→→---==== 即当0x →时,1()2g x →,所以当(0+)x ∈∞,时,所以1()2g x >,因此12a ≤. 综上所述,当12a ≤且0x ≥时,()0f x ≥成立.例题:若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围.应用洛必达法则和导数当(0,)2x π∈时,原不等式等价于3sin x xa x ->. 记3sin ()x x f x x -=,则43sin cos 2'()x x x xf x x --=. 记()3sin cos 2g x x x x x =--,则'()2cos sin 2g x x x x =+-.因为''()cos sin cos (tan )g x x x x x x x =-=-,'''()sin 0g x x x =-<,所以''()g x 在(0,)2π上单调递减,且''()0g x <,所以'()g x 在(0,)2π上单调递减,且'()0g x <.因此()g x 在(0,)2π上单调递减,且()0g x <,故4()'()0g x f x x =<,因此3sin ()x x f x x -=在(0,)2π上单调递减. 由洛必达法则有3200000sin 1cos sin cos 1lim ()lim lim lim lim 3666x x x x x x x x x x f x x x x →→→→→--=====, 即当0x →时,1()6g x →,即有1()6f x <.故16a ≥时,不等式3sin x x ax >-对于(0,)2x π∈恒成立. 通过以上例题的分析,我们不难发现应用洛必达法则解决的试题应满足: ① 可以分离变量;②用导数可以确定分离变量后一端新函数的单调性;③出现“00”型式子.(海南宁夏文)已知函数2()(1)x f x x e ax =--.(Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式;(Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围.解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数当0x ≥时,()0f x ≥,即2(1)x x e ax -≥. ①当0x =时,a R ∈;②当0x >时,2(1)xx e ax -≥等价于1xe ax -≥,也即1x e a x-≤.记1()x e g x x-=,(0,)x ∈+∞,则(1)1'()x x e g x x -+=.记()(1)1x h x x e =-+,(0,)x ∈+∞,则'()0x h x xe =>,因此()(1)1xh x x e =-+在(0,)+∞上单调递增,且()(0)0h x h >=,所以()'()0h x g x x=>,从而1()x e g x x -=在(0,)+∞上单调递增.由洛必达法则有0001lim ()lim lim 11x xx x x e e g x x→→→-===, 即当0x →时,()1g x → 所以()1g x >,即有1a ≤.综上所述,当1a ≤,0x ≥时,()0f x ≥成立.(全国大纲理)设函数()1x f x e -=-. (Ⅰ)证明:当1x >-时,()1xf x x ≥+; (Ⅱ)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围. 解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数 由题设0x ≥,此时()0f x ≥.①当0a <时,若1x a >-,则01x ax <+,()1xf x ax ≤+不成立; ②当0a ≥时,当0x ≥时,()1x f x ax ≤+,即11x xe ax --≤+;若0x =,则a R ∈;若0x >,则11xxe ax --≤+等价于111x e x ax --≤+,即1x x x xe e a xe x -+≤-. 记1()x x xxe e g x xe x-+=-,则2222221'()=(2)()()x x x x x x x x e x e e e g x e x e xe x xe x ---+=--+--. 记2()2x x h x e x e -=--+,则'()2x x h x e x e -=--,''()+20x x h x e e -=->. 因此,'()2x x h x e x e -=--在(0)+∞,上单调递增,且'(0)0h =,所以'()0h x >, 即()h x 在(0)+∞,上单调递增,且(0)0h =,所以()0h x >.因此2'()=()0()xx e g x h x xe x >-,所以()g x 在(0)+∞,上单调递增. 由洛必达法则有000011lim ()lim lim lim 122x x x x x x x x x x x x x x xe e xe e xe g x xe x e xe e xe →→→→-++====-+-+,即当0x →时, 1()2g x →,即有1()2g x >,所以12a ≤.综上所述,a 的取值范围是1(,]2-∞.(全国2理)设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围. 解:(Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++.当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>;当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<. 因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数, ()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数.解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数sin ()2cos xf x ax x=≤+若0x =,则a R ∈; 若0x >,则sin 2cos xax x≤+等价于sin (2cos )x a x x ≥+,即sin ()(2cos )x g x x x =+ 则222cos 2sin sin cos '()(2cos )x x x x x xg x x x --+=+. 记()2cos 2sin sin cos h x x x x x x x =--+,2'()2cos 2sin 2cos cos212sin cos212sin 2sin 2sin (sin )h x x x x x x x x x x x x x x x =---+=--+=-=-因此,当(0,)x π∈时,'()0h x <,()h x 在(0,)π上单调递减,且(0)0h =,故'()0g x <,所以()g x 在(0,)π上单调递减, 而00sin cos 1lim ()limlim (2cos )2+cos sin 3x x x x x g x x x x x x →→→===+-.另一方面,当[,)x π∈+∞时,sin 111()(2cos )3x g x x x x π=≤≤<+,因此13a ≥.。
导数结合洛必达法则巧解高考压轴题

导数结合洛必达法则巧解高考压轴题第一部分:历届导数高考压轴题(全国2理)设函数f (x )=(x +1)ln(x +1),若对所有的x ≥0,都有f (x )≥ax 成立,求实数a 的取值范围.(全国1理)已知函数()11axx f x e x -+=-.(Ⅰ)设0a >,讨论()y f x =的单调性;(Ⅱ)若对任意()0,1x ∈恒有()1f x >,求a 的取值范围. (全国1理)设函数()e e x x f x -=-. (Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (全国2理)设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.(辽宁理)设函数ln ()ln ln(1)1xf x x x x=-+++. ⑴求()f x 的单调区间和极值;⑵是否存在实数a ,使得关于x 的不等式()f x a …的解集为(0,)+∞?若存在,求a 的取值范围;若不存在,试说明理由. (新课标理)设函数)(x f =21x e x ax ---. (Ⅰ)若0=a ,求)(x f 的单调区间;(Ⅱ)若当x ≥0时)(x f ≥0,求a 的取值范围. (新课标文)已知函数2()(1)x f x x e ax =--.(Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式; (Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围. (全国大纲理)设函数()1x f x e -=-. (Ⅰ)证明:当1x >-时,()1xf x x ≥+; (Ⅱ)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围. (新课标理)已知函数ln ()1a x bf x x x =++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.例题:若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围第二部分:泰勒展开式1.2311,1!2!3!!(1)!n n xx x x x x x e e n n θ+=+++++++其中(01)θ<<; 2.231ln(1)(1),2!3!!nn n x x x x x R n -+=-+-+-+其中111(1)()(1)!1n nn n x R n xθ++=-++;3.35211sin (1)3!5!(21)!k k nx x x x x R k --=-+-+-+-,其中21(1)cos (21)!k kn xR x k θ+=-+;4. 24221cos 1(1)2!4!(22)!k k nx x xx R k --=-+-+-+-,其中2(1)co s(2)!k kn x R x k θ=-; 第三部分:洛必达法则及其解法洛必达法则:设函数()f x 、()g x 满足:(1)lim ()lim ()0x ax af xg x →→==;(2)在()U a 内,()f x '和()g x '都存在,且()0g x '≠; (3)()lim()x a f x A g x →'=' (A 可为实数,也可以是±∞).则()()lim lim ()()x a x a f x f x A g x g x →→'=='. 1.(新课标理)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. 常规解法(Ⅰ)略解得1a =,1b =.(Ⅱ)方法一:分类讨论、假设反证法由(Ⅰ)知l n1()1x f x x x=++,所以22l n 1(1)(1()()(2ln11x kk x f x x x x x x---+=+--.考虑函数()2lh x x =+2(1)(1)k x x--(0x >,则22(1)(1)2'()k x x h x x -++=.(i)当0k ≤时,由222(1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <.因为(1)0h =,所以当(0,1)x ∈时,()0h x >,可得21()01h x x⋅>-;当(1,)x ∈+∞时,()0h x <,可得21()01h x x ⋅>-,从而当0x >且1x ≠时,ln ()()01x kf x x x-+>-,即ln ()1x k f x x x>+-;(ii )当01k <<时,由于当1(1,)1x k∈-时,2(1)(1)20k x x -++>,故'()0h x >,而(1)0h =,故当1(1,)1x k∈-时,()0h x >,可得21()01h x x ⋅<-,与题设矛盾. (iii )当1k ≥时, '()0h x >,而(1)0h =,故当(1,)x ∈+∞时,()0h x >,可得21()01h x x⋅<-,与题设矛盾.综上可得,k 的取值范围为(0]-∞,.注:分三种情况讨论:①0k ≤;②01k <<;③1k ≥不易想到.尤其是②01k <<时,许多考生都停留在此层面,举反例1(1,)1x k∈-更难想到.而这方面根据不同题型涉及的解法也不相同,这是高中阶段公认的难点,即便通过训练也很难提升. 洛必达法则解法当0x >,且1x ≠时,ln ()1x k f x x x >+-,即ln 1ln 11x x kx x x x+>++-, 也即2ln 1ln 2ln 1111x x x x x x k x x x x <+-=++--,记22ln ()11x xg x x=+-,0x >,且1x ≠则2222222222(1)ln 2(1)2(1)1'()=(ln )(1)(1)1x x x x x g x x x x x ++-+-=+--+, 记221()ln 1x h x x x -=++,则22222214(1)'()+=0(1+)(1+)x x h x x x x x --=>, 从而()h x 在(0,)+∞上单调递增,且(1)0h =,因此当(0,1)x ∈时,()0h x <,当(1,)x ∈+∞时,()0h x >;当(0,1)x ∈时,'()0g x <,当(1,)x ∈+∞时,'()0g x >,所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增. 由洛必达法则有2211112ln 2ln 2ln 2lim ()lim(1)1lim 1lim 0112x x x x x x x x x g x x x x→→→→+=+=+=+=---, 即当1x →时,()0g x →,即当0x >,且1x ≠时,()0g x >. 因为()k g x <恒成立,所以0k ≤.综上所述,当0x >,且1x ≠时,ln ()1x kf x x x>+-成立,k 的取值范围为(0]-∞,. 注:本题由已知很容易想到用分离变量的方法把参数k 分离出来.然后对分离出来的函数22ln ()11x xg x x =+-求导,研究其单调性、极值.此时遇到了“当=1x 时,函数()g x 值没有意义”这一问题,很多考生会陷入困境.如果考前对优秀的学生讲洛必达法则的应用,再通过强化训练就能掌握解决此类难题的这一有效方法. 2.(新课标理)设函数2()1x f x e x ax =---. (Ⅰ)若0a =,求()f x 的单调区间; (Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围. 应用洛必达法则和导数(Ⅱ)当0x ≥时,()0f x ≥,即21x e x ax --≥.①当0x =时,a R ∈;②当0x >时,21x e x a x --≥等价于21x e xa x--≤. 记21()x e x g x x --= (0+)x ∈∞,,则3(2)2'()x x e x g x x -++=. 记()(2)2x h x x e x =-++ (0+)x ∈∞,,则'()(1)xh x x e =-+,当(0+)x ∈∞,时,''()0x h x xe =>,所以'()(1)1x h x x e =-+在(0+)∞,上单调递增,且'()'(0)0h x h >=,所以()(2)2x h x x e x =-++在(0+)∞,上单调递增,且()(0)0h x h >=,因此当(0+)x ∈∞,时,3()'()0h x g x x=>,从而21()x e x g x x --=在(0+)∞,上单调递增. 由洛必达法则有, 即当0x →时,1()2g x →,所以当(0+)x ∈∞,时,所以1()2g x >,因此12a ≤. 综上所述,当12a ≤且0x ≥时,()0f x ≥成立. 例题:若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围.应用洛必达法则和导数当(0,)2x π∈时,原不等式等价于3sin x xa x->. 记3sin ()x x f x x -=,则43sin cos 2'()x x x xf x x --=.记()3sin cos 2g x x x x x =--,则'()2cos sin 2g x x x x =+-. 因为''()cos sin cos (tan )g x x x x x x x =-=-,'''()sin 0g x x x =-<,所以''()g x 在(0,)2π上单调递减,且''()0g x <,所以'()g x 在(0,)2π上单调递减,且'()0g x <.因此()g x 在(0,)2π上单调递减,且()0g x <,故4()'()0g x f x x =<,因此3sin ()x x f x x -=在(0,)2π上单调递减.由洛必达法则有3200000sin 1cos sin cos 1lim ()lim lim lim lim 3666x x x x x x x x x x f x x x x →→→→→--=====, 即当0x →时,1()6g x →,即有1()6f x <.故16a ≥时,不等式3sin x x ax >-对于(0,)2x π∈恒成立. 通过以上例题的分析,我们不难发现应用洛必达法则解决的试题应满足:① 可以分离变量;②用导数可以确定分离变量后一端新函数的单调性;③出现“0”型式子.(海南宁夏文)已知函数2()(1)x f x x e ax =--.(Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式;(Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围.解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数当0x ≥时,()0f x ≥,即2(1)x x e ax -≥.①当0x =时,a R ∈;②当0x >时,2(1)xx e ax -≥等价于1xe ax -≥,也即1x e a x-≤.记1()x e g x x -=,(0,)x ∈+∞,则(1)1'()x x e g x x -+=.记()(1)1x h x x e =-+,(0,)x ∈+∞,则'()0xh x x e=>,因此()(1)1x h x x e =-+在(0,)+∞上单调递增,且()(0)0h x h >=,所以()'()0h x g x x=>,从而1()x e g x x -=在(0,)+∞上单调递增. 由洛必达法则有0001lim ()lim lim 11x xx x x e e g x x→→→-===, 即当0x →时,()1g x → 所以()1g x >,即有1a ≤.综上所述,当1a ≤,0x ≥时,()0f x ≥成立.(全国大纲理)设函数()1x f x e -=-. (Ⅰ)证明:当1x >-时,()1xf x x ≥+; (Ⅱ)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围.解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数 由题设0x ≥,此时()0f x ≥.①当0a <时,若1x a >-,则01x ax <+,()1xf x ax ≤+不成立;②当0a ≥时,当0x ≥时,()1x f x ax ≤+,即11x xe ax --≤+;若0x =,则a R ∈;若0x >,则11xxe ax --≤+等价于111x e x ax --≤+,即1x x x xe e a xe x-+≤-.记1()x x x xe e g x xe x-+=-,则2222221'()=(2)()()x x x xx x x x e x e e e g x e x e xe x xe x ---+=--+--. 记2()2x xh x e x e -=--+,则'()x xh x e x e -=--,''()+20x x h x e e -=->.因此,'()2x x h x e x e -=--在(0)+∞,上单调递增,且'(0)0h =,所以'()0h x >,即()h x 在(0)+∞,上单调递增,且(0)0h =,所以()0h x >.因此2'()=()0()xx e g x h x xe x >-,所以()g x 在(0)+∞,上单调递增.由洛必达法则有000011lim ()lim lim lim 122x x x x x x x x x x x x x x xe e xe e xe g x xe x e xe e xe →→→→-++====-+-+,即当0x →时,1()2g x →,即有1()2g x >,所以12a ≤.综上所述,a 的取值范围是1(,]2-∞.(全国2理)设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围. 解:(Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++. 当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<. 因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数, ()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数. 解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数 若0x =,则a R ∈; 若0x >,则sin 2cos xax x≤+等价于sin (2cos )x a x x ≥+,即sin ()(2cos )xg x x x =+则222cos 2sin sin cos '()(2cos )x x x x x xg x x x --+=+. 记()2cos 2sin sin cos h x x x x x x x =--+,因此,当(0,)x π∈时,'()0h x <,()h x 在(0,)π上单调递减,且(0)0h =,故'()0g x <,所以()g x 在(0,)π上单调递减,而00sin cos 1lim ()limlim (2cos )2+cos sin 3x x x x x g x x x x x x →→→===+-.另一方面,当[,)x π∈+∞时,sin 111()(2cos )3x g x x x x π=≤≤<+,因此13a ≥.。
2023届高考数学专项练习洛必达法则含解析

洛必达法则思路引导“洛必达法则”是高等数学中的一个重要定理,用分离参数法(避免分类讨论)解决成立、或恒成立命题时,经常需要求在区间端点处的函数(最)值,若出现00型或∞∞型可以考虑使用洛必达法则。
法则1 若函数f(x)和g(x)满足下列条件:(1)limx→a f(x)=0及limx→ag(x)=0;(2)在点a的某去心邻域内,f(x)与g(x)可导且g′(x)≠0;(3)limx→a f′xg′x=A,那么limx→af xg x=limx→af′xg′x=A.法则2 若函数f(x)和g(x)满足下列条件:(1)limx→a f(x)=∞及limx→ag(x)=∞;(2)在点a的某去心邻域内,f(x)与g(x)可导且g′(x)≠0;(3)limx→a f′xg′x=A,那么limx→af xg x=limx→af′xg′x=A.例题讲解类型一:用洛必达法则处理00型函数【例1】已知函数f(x)=x(e x-1)-ax2,当x≥0时,f(x)≥0,求a的取值范围.【方法总结】用洛必达法则处理00型函数的步骤:1.可以分离变量;2.出现“0”型式子;3.运用洛必达法则求值2023届高考数学专项练习【针对训练】若∀x∈[1,+∞),不等式ln x≤m x-1 x恒成立,求实数m的取值范围.类型二:用洛必达法则处理∞∞型函数【例2】已知函数f(x)=(x+1)ln x-a(x-1),若当x∈(1,+∞)时,f(x)>0,求a的取值范围.【方法总结】用洛必达法则处理∞∞型函数的步骤:1.可以分离变量;2.出现“∞∞”型式子;3.运用洛必达法则求值【针对训练】设函数f(x)=e x-1-x-ax2,若当x≥0时f(x)≥0,求a的取值范围模拟训练1.已知函数f(x)=a ln x+bx(a,b∈R)在x=12处取得极值,且曲线y=f(x)在点(1,f(1))处的切线与直线x-y+1=0垂直.(1)求实数a,b的值;(2)若∀x∈[1,+∞),不等式f(x)≤(m-2)x-m x恒成立,求实数m的取值范围.2.已知函数f(x)=x(e x-1)-ax2.(1)若f(x)在x=-1时有极值,求函数f(x)的解析式;(2)当x≥0时,f(x)≥0,求a的取值范围.3.已知函数f(x)=a ln xx+1+bx,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0。
高考数学备考之端点效应(洛必达法则)专题

高考数学备考之端点效应(洛必达法则)专题洛必达法制:若函数)(x f 和函数)(x g 满足:①当a x →时 函数)(x f 和)(x g 趋于0②在点a 的去心临域内 )('x f 与)('x g 存在且0)('≠x g③)()()()(''lim lim x g x f x g x f ax a x ===→→ 例如:当0>x 时 求xe x 1-的值.解:由洛必达法制可知11lim 1lim00==-→→xx x x e x e解答:(由题设可得 当0,1x x >≠时 k<22ln 11x xx +-恒成立。
令g (x)=22ln 11x xx+-(0,1x x >≠),则()()()22221ln 121x x x g x x +-+'=⋅- 再令()()221ln 1h x x x x =+-+(0,1x x >≠)则()12ln h x x x x x'=+- ()212ln 1h x x x ''=+-易知()212ln 1h x x x''=+-在()0,+∞上为增函数 且()10h ''= 故当(0,1)x ∈时 ()0h x ''< 当x ∈(1 +∞)时 ()0h x ''>∴()h x '在()0,1上为减函数 在()1,+∞上为增函数 故()h x '>()1h '=0∴()h x 在()0,+∞上为增函数()1h =0∴当(0,1)x ∈时 ()0h x < 当x ∈(1 +∞)时 ()0h x > ∴当(0,1)x ∈时 ()0g x '< 当x ∈(1 +∞)时 ()0g x '>∴()g x 在()0,1上为减函数 在()1,+∞上为增函数由洛必达法则知()2111ln 1ln 1lim 2lim12lim 1210122x x x x x x g x x x →→→+⎛⎫=+=+=⨯-+= ⎪--⎝⎭∴0k ≤ 即k 的取值范围为(-∞ 0]2(个人原创)已知函数322()f x x ax bx a =+++ 当1a =-时 若(,0)x ∀∈-∞ 都有()x f x e ≤恒成立 求b 的取值范围.解答:当0x <时 321xx x bx e -++≤恒成立 等价于321x e x x b x-+-≥恒成立令321()x e x x g x x -+-= 则22(1)(21)'()x x e x x g x x ----=再令2()21x h x e x x =---由'()41x h x e x =--得''()4x h x e =-∴ 当0x <时 ''()4x h x e =-<0, ∴ '()41x h x e x =-- 在(,0)-∞单调递减 ∴ (,0)x ∀∈-∞ '()'(0)h x h >即'()0h x >∴2()21x h x e x x =---在(,0)-∞单调递增 ∴(,0)x ∀∈-∞ ()(0)h x h <即()0h x <∴(,0)x ∀∈-∞ 22(1)(21)'()0x x e x x g x x ----=>∴321()x e x x g x x-+-=在(,0)-∞单调递增∴由洛必达法则可得3201limx x e x x x →-+-320(1)'lim 'x x e x x x →-+-= =2032lim 1x x e x x→-+=1 ∴(,0)x ∀∈-∞ ()g x <1∴要使321x e x x b x -+-≥恒成立 只需1b ≥∴b 的取值范围是[1,)+∞【解析】当(0,)2x π∈时 原不等式等价于3sin x xa x->. 记3sin ()x x f x x -=则43sin cos 2'()x x x xf x x --=.记()3sin cos 2g x x x x x =-- 则'()2cos sin 2g x x x x =+-. 因为''()cos sin cos (tan )g x x x x x x x =-=-'''()sin 0g x x x =-< 所以''()g x 在(0,)2π上单调递减 且''()0g x <所以'()g x 在(0,)2π上单调递减 且'()0g x <.因此()g x 在(0,)2π上单调递减且()0g x < 故4()'()0g x f x x =< 因此3sin ()x x f x x -=在(0,)2π上单调递减. 由洛必达法则有320000sin 1cos sin cos 1lim ()limlim lim lim 3666x x x x x x x x x x f x x x x →→→→→--=====即当0x →时 1()6g x → 即有1()6f x <.故16a ≥时 不等式3sin x x ax >-对于(0,)2x π∈恒成立. 【评注】通过以上例题的分析 我们不难发现应用洛必达法则解决的试题应满足: ①可以分离变量③ 用导数可以确定分离变量后一端新函数的单调性③出现“00”型或∞∞型式子.解:由题设0x ≥ 此时()0f x ≥.①当0a <时 若1x a >- 则01x ax <+ ()1xf x ax ≤+不成立 ②当0a ≥时 当0x ≥时 ()1x f x ax ≤+ 即11x xe ax --≤+若0x = 则a R ∈若0x > 则11xxe ax --≤+等价于111x e x ax --≤+ 即1x x x xe e a xe x -+≤-. 记1()x x x xe e g x xe x -+=-则2222221'()=(2)()()x x x xx x x x e x e e e g x e x e xe x xe x ---+=--+--. 记2()2x x h x e x e -=--+ 则'()2x x h x e x e -=-- ''()+20x x h x e e -=->. 因此 '()2x x h x e x e -=--在(0)+∞,上单调递增 且'(0)0h = 所以'()0h x > 即()h x 在(0)+∞,上单调递增 且(0)0h = 所以()0h x >.因此2'()=()0()xx e g x h x xe x >- 所以()g x 在(0)+∞,上单调递增. 由洛必达法则有000011lim ()lim lim lim 122x x x x x x x x x x x x x x xe e xe e xe g x xe x e xe e xe →→→→-++====-+-+ 即当0x →时 1()2g x →即有1()2g x > 所以12a ≤.综上所述 a 的取值范围是1(,]2-∞.5 (2010年全国新课标理)设函数2()1x f x e x ax =--- 若当0x ≥时()0f x ≥ 求a 的取值范围.解:当0x =时 ()0f x = 对任意实数a,均在()0f x ≥当0x >时 ()0f x ≥等价于21x e x a x --≤令()21x e x g x x --=()0x >,则322()x x xe e x g x x -++'=令()()220x x h x xe e x x =-++> 则()1x x h x xe e '=-+ ()0x h x xe ''=>知()h x '在()0,+∞上为增函数 ()()00h x h ''>= 知()h x 在()0,+∞上为增函数()()00h x h >= ()0g x '∴> g(x)在()0,+∞上为增函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
洛必达法则解高考题2010年和2011年高考中的全国新课标卷中的第21题中的第○2步,由不等式恒成立来求参数的取值范围问题,分析难度大,但用洛必达法则来处理却可达到事半功倍的效果。
洛必达法则简介:法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x af x →= 及()lim 0x ag x →=;(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()()limx af x lg x →'=', 那么 ()()lim x a f x g x →=()()limx a f x l g x →'='。
法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞= 及()lim 0x g x →∞=;(2)0A∃,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0;(3)()()limx f x l g x →∞'=', 那么 ()()limx f x g x →∞=()()limx f x l g x →∞'='。
法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x af x →=∞及()lim x ag x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()()limx af x lg x →'=', 那么 ()()lim x a f x g x →=()()limx a f x l g x →'='。
利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a+→,x a-→洛必达法则也成立。
○2洛必达法则可处理00,∞∞,0⋅∞,1∞,0∞,00,∞-∞型。
○3在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,1∞,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错。
当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。
○4若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
二.高考题处理1.(2010年全国新课标理)设函数2()1x f x e x ax =---。
(1) 若0a =,求()f x 的单调区间; (2) 若当0x ≥时()0f x ≥,求a 的取值范围 原解:(1)0a =时,()1xf x e x =--,'()1xf x e =-.当(,0)x ∈-∞时,'()0f x <;当(0,)x ∈+∞时,'()0f x >.故()f x 在(,0)-∞单调减少,在(0,)+∞单调增加(II )'()12xf x e ax =--由(I )知1xe x ≥+,当且仅当0x =时等号成立.故'()2(12)f x x ax a x ≥-=-,从而当120a -≥,即12a ≤时,'()0 (0)f x x ≥≥,而(0)0f =, 于是当0x ≥时,()0f x ≥. 由1(0)xe x x >+≠可得1(0)xe x x ->-≠.从而当12a >时,'()12(1)(1)(2)x x x x x f x e a e e e e a --<-+-=--,故当(0,ln 2)x a ∈时,'()0f x <,而(0)0f =,于是当(0,ln 2)x a ∈时,()0f x <.综合得a 的取值范围为1,2⎛⎫-∞ ⎪⎝⎭原解在处理第(II )时较难想到,现利用洛必达法则处理如下: 另解:(II )当0x =时,()0f x =,对任意实数a,均在()0f x ≥;当0x >时,()0f x ≥等价于21xx a e x--≤令()21xx g x ex--=(x>0),则322()xxx x g x e e x-++'=,令()()220xxh x xx x ee =-++>,则()1xxh x x e e '=-+,()0xh x x e ''=>,知()h x '在()0,+∞上为增函数,()()00h x h ''>=;知()h x 在()0,+∞上为增函数,()()00h x h >=;()0g x '∴>,g(x)在()0,+∞上为增函数。
由洛必达法则知,200011222limlim lim xx xx x x x x ee e x+++→→→--===,故12a ≤综上,知a 的取值范围为1,2⎛⎫-∞ ⎪⎝⎭。
2.(2011年全国新课标理)已知函数,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。
(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围。
原解:(Ⅰ)221(ln )'()(1)x x b x f x x xα+-=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =。
(Ⅱ)由(Ⅰ)知ln 1f ()1x x x x=++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x---+=+--。
考虑函数()2ln h x x =+2(1)(1)k x x --(0)x >,则22(1)(1)2'()k x xh x x -++=。
(i )设0k ≤,由222(1)(1)'()k x x h x x+--=知,当1x ≠时,'()0h x <,h (x )递减。
而(1)0h =故当(0,1)x ∈时, ()0h x >,可得21()01h x x >-; 当x ∈(1,+∞)时,h (x )<0,可得211x- h (x )>0 从而当x>0,且x ≠1时,f (x )-(1ln -x x +x k )>0,即f (x )>1ln -x x +xk. (ii )设0<k<1.由于2(1)(1)2k x x -++=2(1)21k x x k -++-的图像开口向下,且244(1)0k ∆=-->,对称轴x=111k >-.当x ∈(1,k -11)时,(k-1)(x 2 +1)+2x>0,故'h (x )>0,而h (1)=0,故当x ∈(1,k -11)时,h (x )>0,可得211x-h (x )<0,与题设矛盾。
(iii )设k ≥1.此时212x x +≥,2(1)(1)20k x x -++>⇒'h (x )>0,而h (1)=0,故当x ∈(1,+∞)时,h (x )>0,可得211x - h (x )<0,与题设矛盾。
综合得,k 的取值范围为(-∞,0]原解在处理第(II )时非常难想到,现利用洛必达法则处理如下:另解:(II )由题设可得,当0,1x x >≠时,k<22ln 11x xx+-恒成立。
令g (x)= 22ln 11x xx +-(0,1x x >≠),则()()()22221ln 121x x x g x x +-+'=⋅-, 再令()()221ln 1h x x x x =+-+(0,1x x >≠),则()12ln h x x x x x '=+-,()212ln 1h x x x ''=+-,易知()212ln 1h x x x''=+-在()0,+∞上为增函数,且()10h ''=;故当(0,1)x ∈时,()0h x ''<,当x ∈(1,+∞)时,()0h x ''>;∴()h x '在()0,1上为减函数,在()1,+∞上为增函数;故()h x '>()1h '=0 ∴()h x 在()0,+∞上为增函数()1h =0∴当(0,1)x ∈时,()0h x <,当x ∈(1,+∞)时,()0h x > ∴当(0,1)x ∈时,()0g x '<,当x ∈(1,+∞)时,()0g x '>∴()g x 在()0,1上为减函数,在()1,+∞上为增函数由洛必达法则知()2111ln 1ln 12121210221lim limlim x x x x x x g x x x →→→+⎛⎫=+=+=⨯-+= ⎪--⎝⎭ ∴0k ≤,即k 的取值范围为(-∞,0]规律总结:对恒成立问题中的求参数取值范围,参数与变量分离较易理解,但有些题中的求分离出来的函数式的最值有点麻烦,利用洛必达法则可以较好的处理它的最值,是一种值得借鉴的方法。
自编:若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a的取值范围. 解:应用洛必当(0,)2x π∈记()x f x -=记()3sig x =因为''()g x ='''()sg x x =-所以'()g x 在且()0g x <,由洛必达法则有00lim ()limx x f x →→=即当0x →时,故16a ≥时,不通过以上例① 可以分②用导数可③出现“00。