高考数学专题复习讲练测——专题八直线与二次曲线专题复习讲练6解析几何的综合问题 (1)

合集下载

最新高三教案-高考数学专题复习讲练测——专题八直线与二次曲线专题方法总结 精品

最新高三教案-高考数学专题复习讲练测——专题八直线与二次曲线专题方法总结 精品

专题方法总结1本专题中体现的主要数学思想有:(1)集合与对应的思想.“曲线”与“方程”之间的对应关系,实质上就是两个集合之间的对应关系.(2)函数与方程的思想.求平面曲线的方程,实质就是将曲线上的点(或动点)所满足的几何条件(性质)表示为动点坐标x、y的方程或函数关系(参数方程);研究两条曲线的位置关系实质就是研究它们的方程组成的方程组的实数解的情况.(3)分类讨论的思想.表现为两个方面:一是问题本身就是分类,如根据含参数方程讨论方程的曲线的类型或讨论曲线的位置关系;二是问题本身并不是分类,而是在解决问题的过程中,为了严谨和全面,需进行分类讨论.(4)数形结合的思想.利用曲线方程研究曲线的几何性质,或由曲线的几何性质求曲线方程是“数”与“形”的有机结合.曲线的几何性质(形)必然在其方程(数)中有所反映;方程的数学特征(数)也必然在其曲线(形)中有所体现.(5)等价转化的思想.通过坐标系使“数”与“形”相互结合,在解决问题中又需要相互转化,这种转化必须是等价转化.本专题中涉及的数学方法主要有:坐标法、定义法、配方法、待定系数法、参数法、消元法、数形结合法、判别式法、差分法等.2在本专题的复习中,应注意如下解题规律和方法:(1)已知曲线求方程和已知方程画曲线图形是解析几何的两个基本问题(即坐标法).点在曲线上,点的坐标是曲线方程的解,两曲线交点的坐标就是两条曲线方程组成的方程组的实数解,这在解题中有广泛应用.根据方程画曲线图形时要注意曲线存在的范围,曲线与坐标轴的交点,对称性及渐近线等.(2)求轨迹的常用方法有直译法、定义法、动点转移法、参数法.与圆锥曲线有关的轨迹问题仍用一般的通法.应重视定义法、待定系数法在求特殊轨迹时的特殊作用.(3)根据圆锥曲线的方程求基本量时,应注意首先应将方程化为标准形式或“标准型”,然后再计算,对此类问题要达到熟练、准确的程度.(4)对于圆的问题,要注意运用圆的几何性质(平面几何知识);对于其它圆锥曲线要注意定义的作用,以简化运算.(5)在研究直线与二次曲线的位置关系问题(如弦长、中点弦、对称、垂直等)中,要注意韦达定理和判别式的作用,设而不求,整体代入,简化运算.在研究直线与二次曲线公共点的问题中,在得到一元二次方程Ax2+Bx+C=0时,要注意分A=0与A≠0两种情况讨论求解,勿忘A=0的情况.(6)由已知含参的方程讨论曲线类型,一般要对参数分类讨论,由已知含参数方程的曲线具有某种性质,求参数的取值范围,一般有两种方法:一是通过构造不等式(组)求解;二是通过建立目标函数转化为求函数的值域,如2000年高考理科第(22)题.数形结合也是求参数范围的有效方法,应引起同学们的重视.(7)有关涉及直线与二次曲线的最值问题,一般是要建立目标函数,转化为求目标函数的最值问题来解决.特别是涉及圆锥曲线上点的最值问题,运用圆锥曲线的参数方程,一般可转化为三角函数的最值.(8)对有关存在性问题,一般用“反证否定法”或“假设验证法”来处理,有关直线与圆锥曲线的综合问题一般是采用“化整为零法”,即就是将一个综合问题分解为若干简单问题,结合代数、三角、几何等知识来解决.3在本专题的复习中,一要继续夯实“三基”,二要加强代数推理能力的训练.这两点是本专题复习的核心和关键.4预计在未来的高考中,对本专题内容的考查将继续保持稳定,重基础、考能力的方向不会改变.直线与二次曲线的位置关系问题、求曲线(轨迹)方程问题、坐标法、曲线的基本量的讨论仍将是高考解析几何题的主要素材.解析几何的综合问题(如1998年理科(24)题,2000年理科第(22)题)是高考解析几何试题的一个新动向,应引起重视.有关最值问题、定值问题、对称问题、存在性问题、实际应用问题也不可忽视.。

高考数学专题复习讲练测——专题八直线与二次曲线专题复习讲练6解析几何的综合问题

高考数学专题复习讲练测——专题八直线与二次曲线专题复习讲练6解析几何的综合问题

§6解析几何的综合问题一、复习要点1本节的主要内容是解析几何与代数、三角等内容的横向综合.重点是解析几何与函数、方程、不等式、数列、三角等知识的综合应用.难点是能灵活运用所学知识将解析几何问题与代数、三角问题相互转化,沟通它们之间的联系.2在本节的复习中,应特别重视解析几何与函数、不等式、数列、三角知识的综合应用.解答解析几何综合问题,应根据曲线的几何特征,熟练运用解析几何的知识将曲线的几何特征转化为数量关系(如方程、函数等),再结合代数、三角知识解答.要重视函数与方程的思想、等价转化思想的运用.3有关直线与二次曲线的最值问题是解析几何综合问题的重要内容之一,它融解析几何知识与函数等知识为一体,综合性强.解答此类问题一般有两种方法:①代数法.即就是建立目标函数,转化为求函数的最值问题.根据目标函数的特点可分别采用配方法、判别式法、重要不等式及函数的单调性等方法求最值.要特别注意自变量的取值范围.②几何法.若题目条件和结论能明显体现几何特征及意义,则考虑用图形性质简捷求解.4由于解答解析几何综合问题有利于培养和提高同学们的数学综合能力,因而解析几何的综合问题已成为上海及全国近年来高考命题的热点,常作为高考数学的把关题.二、例题讲解例1 如图8-18,抛物线方程为y2=p(x+1)(p>0),直线x+y=m与x轴的交点在抛物线的准线的右边.图8-18(1)求证:直线与抛物线总有两个交点;(2)设直线与抛物线的交点为Q、R,OQ⊥OR,求p关于m的函数f(m)的表达式;(3)在(2)的条件下,若m变化,使得原点O到直线QR的距离不大于(/2),求p的取值范围.讲解:(1)欲证直线与抛物线总有两个交点,须证对满足题设条件的m、p的值,直线与抛物线的方程组成的方程组总有两个不同的实数解.由y2=p(x+1),消去y,得x2-(2m+p)x+(m2-p)=0,x+y=m,Δ=p(4m+p+4).Δ的表达式中含有两个参数p、m,欲知它大于0是否成立,须寻找它们之间的联系.∵抛物线的准线方程是x=-1-(p/4),直线与x轴的交点是(m,0),据题意m>-1-(p/4),即4m+p+4>0.又已知p>0,∴Δ>0成立.故直线与抛物线总有两个交点.(2)若设Q、R点的坐标分别为(x1,y1)、(x2,y2),由(1)的证明知x1、x2是方程x2-(2m+p)x+(m2-p)=0的两个根,则有x1+x2=2m+p,x1x2=m2-p.欲求p与m的函数关系p=f(m),须寻求x1+x2,x1x2与m或p的关系,这可由题设条件Q、R在直线x+y=m上及OQ⊥OR得到.∵OQ⊥OR,∴x1x2+y1y2=0.又∵Q、R均在直线x+y=m上,∴y1y2=(-x1+m)(-x2+m)=x1x2-(x1+x2)m+m2,∴2x1x2-m(x1+x2)+m2=0,∴2(m2-p)-m(2m+p)+m2=0.解得p=m2/(m+2).由p>0,得m>-2且m≠0.4m+4+p>0,故p关于m的函数f(m)=m2/(m+2)(m>-2且m≠0).(3)由(2)知p=f(m)=m2/(m+2)(m>-2且m≠0),求p的取值范围,即就是求函数f(m)在由给定条件所确定的定义域内的值域.故须从定义域入手.解法1.由题设条件有(|0+0-m|)/≤(/2),∴|m|≤1.又由(2)知m>-2且m≠0,∴m∈[-1,0)∪(0,1].当m∈[-1,0)时,根据函数单调性的定义,可证f(m)在[-1,0)上为减函数,∴当m∈[-1,0)时,f(0)<f(m)<f(-1),即p∈(0,1];当m∈(0,1]时,可证f(m)为增函数,从而p∈(0,(1/33)3〗].解法2.同解法1,得m∈[-1,0)∪(0,1].由(2)知p=f(m)=m2/(m+2)=(1/(1/m)+(2/m2)).设t=(1/m),g(t)=t+2t2,t∈(-∞,-1]∪[1,+∞),又g(t)=2(t+(1/4))2-(1/8),∴当t∈(-∞,-1]时,g(t)为减函数,∴g(t)∈[1,+∞);当t∈[1,+∞)时,g(t)为增函数,∴g(t)∈[3,+∞).∵p=f(m)=(1/g(t)),故当m∈[-1,0)时,p∈(0,1];当m∈(0,1]时,p∈(0,(1/3)].本题是解析几何与函数、不等式的综合题.在(2)中,求出函数解析式后注意不要忘记定义域的确定;在(3)中,解法1须证明函数f(m)在各区间上的单调性;解法2通过换元,将问题转化为二次函数的问题,利用二次函数的单调性求解,较解法1简捷.例2 设数列{an}的前n项和Sn=na+n(n-1)b(n∈N,a,b是常数,且b≠0).(1)证明以(an,(Sn/n)-1)为坐标的点Pn(n∈N)都落在同一条直线上,并写出此直线的方程;(2)设a=1,b=(1/2),C是以(r,r)为圆心、r为半径的圆(r>0),求使得点P1、P2、P3都落在圆C外时,r的取值范围.讲解:(1)因P1(a,a-1)为定点,欲证Pn(n∈N)共线,只须证kP1Pn为定值即可.由Sn=na+n(n-1)b,得an=2bn+a-2b,则kP1Pn=(((Sn/n)-1)-((S1/1)-1)/an-a1)=((n-1)b/2(n-1)b)=(1/2).故所有的点Pn(an,(Sn/n)-1)(n∈N)都落在经过点P1(a,a-1)且斜率为(1/2)的直线x-2y+a-2=0上.(2)根据点与圆的位置关系建立r的不等式组求解.当a=1,b=(1/2)时,Pn的坐标为(n,(n-1/2)),使P1(1,0),P2(2,(1/2)),P3(3,1)都落在圆(x-r)2+(y-r)2=r2外的条件是(r-1)2+r2>r2,(r-2)2+(r-(1/2))2>r2,(r-3)2+(r-1)2>r2.解得0<r<1或1<r<(5/2)-或r>4+.这是一道解析几何与数列、不等式等知识的综合问题.例3已知椭圆(x2/a2)+(y2/b2)=1(a>b>0)的两焦点为F1、F2,P为椭圆上任一点.使∠F1PF2=2θ,试证:(1)|PF1|·|PF2|=b2sec2θ;(2)△F1PF2的面积S=b2tgθ;(3)设∠PF1F2=α,∠PF2F1=β,则tg(α/2)·tg(β/2)=(1-e)/(1+e).讲解:我们从条件与结论的结构联系中寻求解题思路.(1)由于|PF1|+|PF2|=2a,要出现|PF1|·|PF2|,平方得|PF1|2+2|PF1|·|PF2|+|PF2|2=4a2.①再联系结论,在△F1PF2中,由余弦定理知(2c)2=|PF1|2+|PF2|2-2|PF1|·|PF2|cos2θ.②要消掉|PF1|2、|PF2|2,用①、②两式相减,得2|PF1|·|PF2|(1-cos2θ)=4a2-4c2=4b2.于是不难得到|PF1|·|PF2|=b2sec2θ.(2)由(1),S=(1/2)|PF1|·|PF2|sin2θ=(1/2)b2sec2θ·sin2θ=b2tgθ.(3)对结论进行结构分析.∵tg(α/2)·tg(β/2)=(1-e)/(1+e)e=cos[(α+β)/2]/cos[(α-β)/2](c/a)=[cos(α+β)/2]/[cos(α-β)/2)],于是只需对△F1PF2用正弦定理:(|PF1|/sinβ)=(|PF2|/sinα)=|F1F2|/(sin(α+β)).再由等比定理知2c/[sin(α+β)]=(|PF1|+|PF2|)/(sinα+sinβ)=2a/(sinα+sinβ).∴(c/a)=sin(α+β)/(sinα+sinβ)=[cos(α+β)/2]/[cos(α-β)/2].结论得证.数学是结构的科学,结构决定着方法、蕴含着方法、提示着方法,尤其是对一些较复杂的数学问题,只要我们善于从条件与结论的结构联系及差异中寻求解题途径,问题便不难解决.本题是解析几何与三角知识的综合问题.此外,请同学们关注该题结论的应用价值.例4 已知圆C1的方程为(x-2)2+(y-1)2=(20/3),椭圆C2的方程为(x2/a2)+(y2/b2)=1(a>b>0),C2的离心率为(/2).如果C1与C2相交于A、B两点,且线段AB恰好为圆C1的直径,求直线AB的方程和椭圆C2的方程.讲解:此题可先求直线AB的方程.一方面AB是圆的直径,只需待定出其斜率k,另一方面AB又是椭圆的弦,所以要求其斜率,可用差分法.设A(x1,y1)、B(x2,y2).∵线段AB为C1的直径,∴x1+x2=4,y1+y2=2.又由e=(/2),∴(c/a)=(/2),∴a2=2c2,b2=c2.于是椭圆方程为(x2/2b2)+(y2/b2)=1.而A、B又在C2上,∴(x12/2b2)+(y12/b2)=1,(x22/2b2)+(y22/b2)=1.两式相减,得(x1+x2)(x1-x2)+2(y1+y2)(y1-y2)=0.∴(y1-y2)/(x1-x2)=-1,∴直线AB的方程为y=-x+3.以下待定b2,求椭圆方程.由y=-x+3,(x2/2b2)+(y2/b2)=1,知3x2-12x+18-2b2=0.由Δ>0,易知b2>3.又由|AB|=|x1-x2|=2,可得b2=8.∴C2的方程为(x2/16)+(y2/8)=1.这是一道解析几何的综合问题,它涉及到直线、圆及椭圆等知识点.该题的关键是要抓住相交弦的二重性:一方面线段AB为圆的直径,另一方面线段AB又是椭圆C2的弦.三、专题训练1若抛物线y2=2px(p>0)上三点的纵坐标的平方成等差数列,则这三点的焦半径的关系是().A.成等差数列B.成等比数列C.既成等差数列,也成等比数列D.以上结论都不对2.抛物线y2=2px(p>0)在顶点张直角的弦必过定点().A.(2p,0)B.(p,0)C.((p/2),0)D.以上结论都不对3用与底面成30°角的平面截圆柱得一椭圆截线,则该椭圆的离心率是().A.(1/4)B.(1/2)C./3D./24.以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,椭圆长轴的最小值是().A.(/2)B.C.2D.25.从点P(x,3)向圆(x+2)2+(y+2)2=1作切线,切线长度的最小值为______________.6.椭圆(x2/9)+(y2/4)=1的焦点为F1、F2,点P为其上的动点.当∠F1PF2为钝角时,点P的横坐标的取值范围是______________.7在双曲线(y2/12)-(x2/13)=1的一支上有不同的三点A(x1,y1)、B(,6)、C(x2,y2)与焦点F(0,5)的距离成等差数列,那么y1+y2的值是______________.8已知直线l与椭圆3x2+y2=3相交于A、B两点.若弦AB的中点M到椭圆中心的距离为1,求当弦长|AB|取得最大值时直线l的方程.9已知抛物线的方程为y=-(1/2)x2+m,点A、B及P(2,4)均在抛物线上,且直线PA、PB的倾斜角互补.(1)求证:直线AB的斜率为定值;(2)当直线AB在y轴上截距为正时,求△PAB面积的最大值.10.如图8-19所示,A、F分别是椭圆的一个顶点与一个焦点,位于x轴的正半轴上的点T(t,0)与F的连线交射线OA于Q.图8-19(1)求点A、F的坐标及直线TQ的方程;(2)求△OTQ的面积S与t的函数关系式S=f(t)及该函数的最小值;(3)写出S=f(t)的单调区间,并证明之.。

高考数学专题复习讲练测——专题直线与次曲线专题复习讲练解析几何的综合问题

高考数学专题复习讲练测——专题直线与次曲线专题复习讲练解析几何的综合问题

§6解析几何的综合问题一、复习要点1本节的主要内容是解析几何与代数、三角等内容的横向综合.重点是解析几何与函数、方程、不等式、数列、三角等知识的综合应用.难点是能灵活运用所学知识将解析几何问题与代数、三角问题相互转化,沟通它们之间的联系.2在本节的复习中,应特别重视解析几何与函数、不等式、数列、三角知识的综合应用.解答解析几何综合问题,应根据曲线的几何特征,熟练运用解析几何的知识将曲线的几何特征转化为数量关系(如方程、函数等),再结合代数、三角知识解答.要重视函数与方程的思想、等价转化思想的运用.3有关直线与二次曲线的最值问题是解析几何综合问题的重要内容之一,它融解析几何知识与函数等知识为一体,综合性强.解答此类问题一般有两种方法:①代数法.即就是建立目标函数,转化为求函数的最值问题.根据目标函数的特点可分别采用配方法、判别式法、重要不等式及函数的单调性等方法求最值.要特别注意自变量的取值范围.②几何法.若题目条件和结论能明显体现几何特征及意义,则考虑用图形性质简捷求解.4由于解答解析几何综合问题有利于培养和提高同学们的数学综合能力,因而解析几何的综合问题已成为上海及全国近年来高考命题的热点,常作为高考数学的把关题.二、例题讲解例1 如图8-18,抛物线方程为y2=p(x+1)(p>0),直线x+y=m与x轴的交点在抛物线的准线的右边.图8-18(1)求证:直线与抛物线总有两个交点;(2)设直线与抛物线的交点为Q、R,OQ⊥OR,求p关于m的函数f(m)的表达式;(3)在(2)的条件下,若m变化,使得原点O到直线QR的距离不大于(/2),求p的取值范围.讲解:(1)欲证直线与抛物线总有两个交点,须证对满足题设条件的m、p的值,直线与抛物线的方程组成的方程组总有两个不同的实数解.由y2=p(x+1),消去y,得x2-(2m+p)x+(m2-p)=0,x+y=m,Δ=p(4m+p+4).Δ的表达式中含有两个参数p、m,欲知它大于0是否成立,须寻找它们之间的联系.∵抛物线的准线方程是x=-1-(p/4),直线与x轴的交点是(m,0),据题意m>-1-(p/4),即4m+p+4>0.又已知p>0,∴Δ>0成立.故直线与抛物线总有两个交点.(2)若设Q、R点的坐标分别为(x1,y1)、(x2,y2),由(1)的证明知x1、x2是方程x2-(2m+p)x+(m2-p)=0的两个根,则有x1+x2=2m+p,x1x2=m2-p.欲求p与m的函数关系p=f(m),须寻求x1+x2,x1x2与m或p的关系,这可由题设条件Q、R在直线x+y=m上及OQ⊥OR得到.∵OQ⊥OR,∴x1x2+y1y2=0.又∵Q、R均在直线x+y=m上,∴y1y2=(-x1+m)(-x2+m)=x1x2-(x1+x2)m+m2,∴2x1x2-m(x1+x2)+m2=0,∴2(m2-p)-m(2m+p)+m2=0.解得p=m2/(m+2).由p>0,得m>-2且m≠0.4m+4+p>0,故p关于m的函数f(m)=m2/(m+2)(m>-2且m≠0).(3)由(2)知p=f(m)=m2/(m+2)(m>-2且m≠0),求p的取值范围,即就是求函数f(m)在由给定条件所确定的定义域内的值域.故须从定义域入手.解法1.由题设条件有(|0+0-m|)/≤(/2),∴|m|≤1.又由(2)知m>-2且m≠0,∴m∈[-1,0)∪(0,1].当m∈[-1,0)时,根据函数单调性的定义,可证f(m)在[-1,0)上为减函数,∴当m∈[-1,0)时,f(0)<f(m)<f(-1),即p∈(0,1];当m∈(0,1]时,可证f(m)为增函数,从而p∈(0,(1/33)3〗].解法2.同解法1,得m∈[-1,0)∪(0,1].由(2)知p=f(m)=m2/(m+2)=(1/(1/m)+(2/m2)).设t=(1/m),g(t)=t+2t2,t∈(-∞,-1]∪[1,+∞),又g(t)=2(t+(1/4))2-(1/8),∴当t∈(-∞,-1]时,g(t)为减函数,∴g(t)∈[1,+∞);当t∈[1,+∞)时,g(t)为增函数,∴g(t)∈[3,+∞).∵p=f(m)=(1/g(t)),故当m∈[-1,0)时,p∈(0,1];当m∈(0,1]时,p∈(0,(1/3)].本题是解析几何与函数、不等式的综合题.在(2)中,求出函数解析式后注意不要忘记定义域的确定;在(3)中,解法1须证明函数f(m)在各区间上的单调性;解法2通过换元,将问题转化为二次函数的问题,利用二次函数的单调性求解,较解法1简捷.例2 设数列{an}的前n项和Sn=na+n(n-1)b(n∈N,a,b是常数,且b≠0).(1)证明以(an,(Sn/n)-1)为坐标的点Pn(n∈N)都落在同一条直线上,并写出此直线的方程;(2)设a=1,b=(1/2),C是以(r,r)为圆心、r为半径的圆(r>0),求使得点P1、P2、P3都落在圆C外时,r的取值范围.讲解:(1)因P1(a,a-1)为定点,欲证Pn(n∈N)共线,只须证kP1Pn为定值即可.由Sn=na+n(n-1)b,得an=2bn+a-2b,则kP1Pn=(((Sn/n)-1)-((S1/1)-1)/an-a1)=((n-1)b/2(n-1)b)=(1/2).故所有的点Pn(an,(Sn/n)-1)(n∈N)都落在经过点P1(a,a-1)且斜率为(1/2)的直线x-2y+a-2=0上.(2)根据点与圆的位置关系建立r的不等式组求解.当a=1,b=(1/2)时,Pn的坐标为(n,(n-1/2)),使P1(1,0),P2(2,(1/2)),P3(3,1)都落在圆(x-r)2+(y-r)2=r2外的条件是(r-1)2+r2>r2,(r-2)2+(r-(1/2))2>r2,(r-3)2+(r-1)2>r2.解得0<r<1或1<r<(5/2)-或r>4+.这是一道解析几何与数列、不等式等知识的综合问题.例3已知椭圆(x2/a2)+(y2/b2)=1(a>b>0)的两焦点为F1、F2,P为椭圆上任一点.使∠F1PF2=2θ,试证:(1)|PF1|·|PF2|=b2sec2θ;(2)△F1PF2的面积S=b2tgθ;(3)设∠PF1F2=α,∠PF2F1=β,则tg(α/2)·tg(β/2)=(1-e)/(1+e).讲解:我们从条件与结论的结构联系中寻求解题思路.(1)由于|PF1|+|PF2|=2a,要出现|PF1|·|PF2|,平方得|PF1|2+2|PF1|·|PF2|+|PF2|2=4a2.①再联系结论,在△F1PF2中,由余弦定理知(2c)2=|PF1|2+|PF2|2-2|PF1|·|PF2|cos2θ.②要消掉|PF1|2、|PF2|2,用①、②两式相减,得2|PF1|·|PF2|(1-cos2θ)=4a2-4c2=4b2.于是不难得到|PF1|·|PF2|=b2sec2θ.(2)由(1),S=(1/2)|PF1|·|PF2|sin2θ=(1/2)b2sec2θ·sin2θ=b2tgθ.(3)对结论进行结构分析.∵tg(α/2)·tg(β/2)=(1-e)/(1+e)e=cos[(α+β)/2]/cos[(α-β)/2](c/a)=[cos(α+β)/2]/[cos(α-β)/2)],于是只需对△F1PF2用正弦定理:(|PF1|/sinβ)=(|PF2|/sinα)=|F1F2|/(sin(α+β)).再由等比定理知2c/[sin(α+β)]=(|PF1|+|PF2|)/(sinα+sinβ)=2a/(sinα+sinβ).∴(c/a)=sin(α+β)/(sinα+sinβ)=[cos(α+β)/2]/[cos(α-β)/2].结论得证.数学是结构的科学,结构决定着方法、蕴含着方法、提示着方法,尤其是对一些较复杂的数学问题,只要我们善于从条件与结论的结构联系及差异中寻求解题途径,问题便不难解决.本题是解析几何与三角知识的综合问题.此外,请同学们关注该题结论的应用价值.例4 已知圆C1的方程为(x-2)2+(y-1)2=(20/3),椭圆C2的方程为(x2/a2)+(y2/b2)=1(a>b>0),C2的离心率为(/2).如果C1与C2相交于A、B两点,且线段AB恰好为圆C1的直径,求直线AB的方程和椭圆C2的方程.讲解:此题可先求直线AB的方程.一方面AB是圆的直径,只需待定出其斜率k,另一方面AB又是椭圆的弦,所以要求其斜率,可用差分法.设A(x1,y1)、B(x2,y2).∵线段AB为C1的直径,∴x1+x2=4,y1+y2=2.又由e=(/2),∴(c/a)=(/2),∴a2=2c2,b2=c2.于是椭圆方程为(x2/2b2)+(y2/b2)=1.而A、B又在C2上,∴(x12/2b2)+(y12/b2)=1,(x22/2b2)+(y22/b2)=1.两式相减,得(x1+x2)(x1-x2)+2(y1+y2)(y1-y2)=0.∴(y1-y2)/(x1-x2)=-1,∴直线AB的方程为y=-x+3.以下待定b2,求椭圆方程.由y=-x+3,(x2/2b2)+(y2/b2)=1,知3x2-12x+18-2b2=0.由Δ>0,易知b2>3.又由|AB|=|x1-x2|=2,可得b2=8.∴C2的方程为(x2/16)+(y2/8)=1.这是一道解析几何的综合问题,它涉及到直线、圆及椭圆等知识点.该题的关键是要抓住相交弦的二重性:一方面线段AB为圆的直径,另一方面线段AB又是椭圆C2的弦.三、专题训练1若抛物线y2=2px(p>0)上三点的纵坐标的平方成等差数列,则这三点的焦半径的关系是().A.成等差数列B.成等比数列C.既成等差数列,也成等比数列D.以上结论都不对2.抛物线y2=2px(p>0)在顶点张直角的弦必过定点().A.(2p,0)B.(p,0)C.((p/2),0)D.以上结论都不对3用与底面成30°角的平面截圆柱得一椭圆截线,则该椭圆的离心率是().A.(1/4)B.(1/2)C./3D./24.以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,椭圆长轴的最小值是().A.(/2)B.C.2D.25.从点P(x,3)向圆(x+2)2+(y+2)2=1作切线,切线长度的最小值为______________.6.椭圆(x2/9)+(y2/4)=1的焦点为F1、F2,点P为其上的动点.当∠F1PF2为钝角时,点P的横坐标的取值范围是______________.7在双曲线(y2/12)-(x2/13)=1的一支上有不同的三点A(x1,y1)、B(,6)、C(x2,y2)与焦点F(0,5)的距离成等差数列,那么y1+y2的值是______________.8已知直线l与椭圆3x2+y2=3相交于A、B两点.若弦AB的中点M到椭圆中心的距离为1,求当弦长|AB|取得最大值时直线l的方程.9已知抛物线的方程为y=-(1/2)x2+m,点A、B及P(2,4)均在抛物线上,且直线PA、PB的倾斜角互补.(1)求证:直线AB的斜率为定值;(2)当直线AB在y轴上截距为正时,求△PAB面积的最大值.10.如图8-19所示,A、F分别是椭圆的一个顶点与一个焦点,位于x轴的正半轴上的点T(t,0)与F的连线交射线OA于Q.图8-19(1)求点A、F的坐标及直线TQ的方程;(2)求△OTQ的面积S与t的函数关系式S=f(t)及该函数的最小值;(3)写出S=f(t)的单调区间,并证明之.。

2009.4.8专题八 直线与二次曲线

2009.4.8专题八 直线与二次曲线

x + ( y + 1) = 18
解答题训练:( 2008 辽宁理) 解答题训练:(2008 辽宁理) :( 在直角坐标系 xOy 中 , 点 P 到两点 (0, − 3),(0, 3) 4,设点 的距离之和为 4,设点 P 的轨迹为 C ,直线 y = kx + 1 与 C 交 两点. 于 A, B 两点. 的方程; (1) 写出 C 的方程; 的值; (2) 若 OA ⊥ OB ,求 k 的值; 在第一象限,证明: (3) 若点 A 在第一象限 ,证明:当 k > 0 时,恒有 OA > OB .
4. 直线 y = x − 1 被抛物线 y = 4 x 截得线段的 中点坐标是________. ________ 中点坐标是________. (3, 2)
2
y = x −1 2 , 消去 y ,化简得 x − 6 x + 1 = 0, 由 2 y = 4x
设 此 方 程 二 根 为 x1,x2 , 所 截 线 段 的 中 点 坐 标 为
专题八 直线与二次曲线
知识点拨
速度训练
解答题评讲
课外攻 突破》 课外攻《突破》 P26 例1 , P29 3 , P30 4 , 8 , 11
专题八 直线与二次曲线
直线与二次曲线的内容也可以说是必考点, 大题、 直线与二次曲线的内容也可以说是必考点, 大题、 小题都会涉及. 小题考查的重点在于基础知识, 小题都会涉及. 小题考查的重点在于基础知识,如直线 的方程、圆的方程、圆锥曲线的离心率等.大题考查 的方程、圆的方程、圆锥曲线的离心率等.大题考查直 线与二次曲线之间的关系以及轨迹问题, 常与向量、 线与二次曲线之间的关系以及轨迹问题,经常与向量、 不等式等知识相结合, 难度属中等偏难, 主要考查方 不等式等知识相结合, 难度属中等偏难, 主要考查方 程思想及用韦达定理处理问题 的方法, 处理问题的方法 程思想及用韦达定理 处理问题 的方法 , 基本技能的掌 握与应用情况. 握与应用情况.

高考数学专题复习讲练测——专题八 直线与二次曲线 专题复习讲练 坐标法

高考数学专题复习讲练测——专题八 直线与二次曲线 专题复习讲练  坐标法

§ 1 坐标法一、复习要点1本节的主要内容是用坐标法研究几何问题的思想和方法.包括由曲线方程研究曲线的性质(如曲线的图形、对称性、范围等)和由给定条件求曲线方程两个基本问题.其中,由给定条件选择适当的坐标系求出曲线的方程是本节的重点,同时也是难点.2最新《考试说明》中仍要求:“能够根据所给条件,选择适当的直角坐标系求曲线的方程,并画出方程所表示的曲线”.“了解用坐标法研究几何问题的思想,初步掌握利用方程研究曲线性质的方法.”这里既有“思想”又有“方法”,因而本节内容成为高考考查的热点.3在本节的复习中,一要进一步深刻理解曲线与方程的概念;二要熟练掌握求曲线(轨迹)方程的方法和一般步骤.在求曲线方程中,要重视建立坐标系这一关键环节,从中体会“适当”二字的含意,即所选择的坐标系应尽量使点的坐标简单,使图形相对于坐标轴具有对称性,这样便于方程的化简.求曲线方程的第(5)步可以省略不写,但仍需验证其轨迹的纯粹性和完备性.二、例题讲解例1 设曲线C的方程是y=x3-x,将C沿x轴、y轴正向分别平行移动t、s单位长度后得曲线C1.(1)写出曲线C1的方程;(2)证明曲线C与C1关于点A((t/2),(s/2))对称;(3)如果曲线C与C1有且仅有一个公共点,证明s=(t3/4)-t,且t≠0.讲解:(1)思路1利用函数图象平移法,得C1的方程y=(x-t)3-(x-t)+s.思路2可看作曲线不动,坐标轴平移.将原点移至O′(-t,-s),得平移公式x=x′-t,代入C的方程,得y′-s=(x′-t)3-(x′-t),即y=(x-t)3-(x-t)+s.y=y′-s,(2)欲证曲线C与C1关于点A((t/2),(s/2))对称,须证:①C上任一点关于A的对称点在C1上;②C1上任一点关于A的对称点在C上.简证:在曲线C上任取一点P1(x1,y1),设P1关于A的对称点为P2(x2,y2),则有(x1+x2)/2=(t/2),(y1+y2)/2=(s/2),故x1=t-x2,y1=s-y2.代入C的方程,得y2=(x2-t)3-(x2-t)+s,可知点P2(x2,y2)在曲线C1上.反过来,同样可证曲线C上关于A的对称点都在曲线C1上,因此C与C1关于点A对称.(3)根据曲线C与C1有且仅有一个公共点,可知方程组y=x3-x,y=(x-t)3-(x-t)+s有且仅有一个解,转化为研究方程组解的问题.消去y,整理,得3tx2-3t2x+(t3-t-s)=0,若t=0,s=0,则方程有无数个解;若t=0,s≠0,则方程无解;若t≠0,则必有Δ=9t4-12t(t3-t-s)=0.∴s=(t3/4)-t,且t≠0.从本例的解答中,同学们可以体会到,研究曲线的性质可转化为研究曲线的方程(组)的解,这是解析几何的重要思想方法之一.另外,利用现有的知识、思想和方法研究未知的较复杂问题(三次曲线),这体现了高考对学生创新能力的朴素要求和关注!例2 如图8-1,直线l1和l2相交于M,l1⊥l2,点N∈l1,以A、B为端点的曲线C上任一点到直线l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C的方程.图8-1讲解:据题设条件及抛物线的定义可知曲线段C是抛物线的一部分.要求曲线段C的方程,首先要考虑建立适当的坐标系.因为l1、l2为定直线,M、N均为定点,故可取l1为x轴,原点可选在点M,也可选在点N,究竟选在何处?据题设条件知点N为曲线段C所在抛物线的焦点,l2为准线,若将原点选在M或N点时,抛物线的顶点都不在坐标原点,抛物线的方程就不是标准形式,这就不符合选择坐标系的基本要求——尽量使方程简单.考虑到抛物线的顶点在线段MN的中点O处,故应选取MN的中点O为坐标原点建立平面直角坐标系.则曲线段C所在抛物线的方程便可设为y2=2px(p>0,y>0),对于曲线段C,则有xA≤x≤xB.问题转化为求参数p的值及确定A、B两点的横坐标xA、xB的值.思路1.∵|MN|=p,∴M(-(p/2),0),N((p/2),0).由|AM|=,|AN|=3,得(xA+(p/2))2+2pxA=17,①(xA-(p/2))2+2pxA=9.②由①、②解得xA=(4/p).再代入①,并注意到p>0可解得p=4,p=2,xA=1,xA=2.因△AMN是锐角三角形,所以(p/2)>xA,故舍去p=2,xA=2.∴p=4,xA=1.由点B在曲线C上,得xB=|BN|-(p/2)=6-(p/2)=4.故曲线段C的方程为y2=8x(1≤x≤4,y>0).思路2.因p=|MN|,欲求曲线段C的方程,须先求得|MN|.过A作AD⊥MN,垂足为D,∵△AMN为锐角三角形,∴D在线段MN上.过A作AK⊥l2,垂足为K,在Rt△AKM中,∵|AM|=,|AK|=|AN|=3,∴|KM|=2.在Rt△AMD及Rt△ADN中,∵|AD|=|KM|=2,∴|MD|=3,|DN|=1.∴p=|MN|=|MD|+|DN|=4.xA=xD=3-(p/2)=1,xB=6-(p/2)=4.故曲线段C的方程是y2=8x(y>0,1≤x≤4).思路3.过A作AK⊥l2,垂足为K,则|AK|=|AN|=3,设∠AMN=∠MAK=θ,则cosθ=|AK|/2|AM|=(3/.在△AMN中,据余弦定理,得|MN|2+|AM|2-2|MN|·|AM|cosθ=|AN|2,注意到|MN|=p,∴p2+17-2p··(3/)=9,解得p=2或p=4.∵△AMN为锐角三角形,∴p=2应舍去(否则当p=2时,|AK|>|MN|,△AMN必为钝角三角形).∴p=4,又xA=3-(p/2)=1,xB=6-(p/2)=4.故曲线段C的方程为y2=8x(1≤x≤4,y>0).在解答本题中,应特别注意轨迹的纯粹性和完备性,即曲线段C是抛物线y2=8x的一部分,必须求出x、y的范围,并要在方程中注明,否则就不是所求曲线段的方程.若只写y2=8x便是错误答案.例3 如图8-2,已知梯形ABCD中,|AB|=2|CD|,点E分有向线段AC所成的比为λ,双曲线过C、D、E三点,且以A、B为焦点.当(2/3)≤λ≤(3/4)时,求离心率e的取值范围.图8-2讲解:已知λ的范围,求离心率e的范围,需建立e与λ的函数关系λ=f(e),进而由λ的范围,求得e的范围.而e与λ的关系的建立,依赖于双曲线的几何性质.研究双曲线的几何性质,需要通过方程去研究,故需建立坐标系.以AB所在的直线为x轴,线段AB的中点为原点建立直角坐标系xOy,则CD⊥y轴.因双曲线经过C、D且以A、B为焦点,故C、D关于y轴对称.记A(-c,0)、C((c/2),h)、E(x0,y0),其中c=(1/2)|AB|为双曲线的半焦距,h是梯形的高.由定比分点公式,得x0=[-c+(c/2)]λ/(1+λ)=[(λ-2)c]/[2(1+λ)],y0=(λh)/(1+λ).设双曲线的方程为(x2/a2)-(y2/b2)=1,则离心率e=(c/a).∵点C、E在双曲线上,且e=(c/a),∴(e2/4)-(h2/b2)=1,①(e2/4)[(λ-2)/(λ+1)]2-(λ/(λ+1))2·(h2/b2)=1.②由①得(h2/b2)=(e2/4)-1,代入②,得(e2/4)(4-4λ)=1+2λ,∴λ=1-3/(e2+2).由(2/3)≤λ≤(3/4),得(2/3)≤1-3/(e2+2)≤(3/4).解得≤e≤.故双曲线的离心率e的取值范围是[,].解题时,一定要有“目标”意识.本题的目标是建立e与λ的关系λ=f(e),而不是去求双曲线的方程.在2000年的高考中,许多考生由于解题目标意识不强,纠缠在求双曲线方程中而不能自拔.本题还可以通过建立e与λ的函数关系e=f(λ),转化为求函数f(λ)在区间[(2/3),(3/4)]内的值域.三、专题训练1方程y=loga(1-x2)/(1+x)2)的图象的对称性是().A.关于y轴对称B.关于x轴对称C.关于原点对称D.无对称轴或对称中心2直角坐标系内到两坐标轴距离之差等于1的点的轨迹方程是().A.|x|-|y|=1B.|x-y|=1C.(|x|-|y|)2=1D.(x-y)2=13方程|x|-1=表示的曲线是().A.两条射线B.一个圆C.两个圆D.两个半圆4若方程x+y-4+2m=0表示一条直线,则m的取值范围是().A.m=2B.m=2或m<0C.m=2或m>0D.以上答案都不对5已知点P(x0,y0)是圆x2+y2=r2外一点,过P作圆的切线,切点为A、B,则过A、B两点的直线方程是_______________.6方程(|x|-|y|-1)(x2-4)=0表示的曲线所围成的封闭图形的面积是_______________.7过点A(0,1)作直线与双曲线(x2/9)-(y2/4)=1有且只有1个公共点,则这样的直线共有_______________条.8已知两同心圆的半径分别为5和4,AB为小圆的直径.(1)求以大圆的切线为准线,且过A、B两点的抛物线的焦点的轨迹M;(2)设过轨迹M的中心的弦为PQ,F是轨迹M的焦点,求S△PQF的最大值.9在面积为1的△PMN中,tgM=(1/2),tgΝ=-2.建立适当的坐标系,求出以M、N 为焦点且过点P的椭圆方程.10如图8-3,M、C为定点,线段AB过M.M为AB的中点且|AB|=20,|MC|=8.图8-3(1)建立适当坐标系,写出以M、C为焦点,(1/2)AB为长轴长的椭圆方程;(2)求证△ABC的外心在(1)中所求椭圆的准线上.。

最新高三教案-高考数学专题复习讲练测——专题八直线与二次曲线专题内容概要 精品

最新高三教案-高考数学专题复习讲练测——专题八直线与二次曲线专题内容概要 精品

直线与二次曲线专题内容概要通过第一轮的复习,同学们已经掌握了直线和圆锥曲线的基础知识,初步掌握了解决直线与圆锥曲线有关问题的基本技能和基本方法.但由于直线与圆锥曲线是高考考查的重点内容,选择、填空题题目灵活多变,思维能力要求较高,解答题背景新颖、综合性强,代数推理能力要求高,因此我们有必要对直线与圆锥曲线的重点内容、高考的热点问题作深入的研究.在第一轮复习的基础上,再通过纵向深入、横向联系,进一步掌握解决直线与二次曲线问题的思想和方法,提高我们分析问题、解决问题的能力.本专题中,我们将要进一步复习好如下几个重点内容:(1)坐标法.坐标法是研究几何问题的重要方法,也是解析几何的基本思想方法,坐标法包括由曲线方程研究曲线的性质和由给定条件求曲线方程两个基本问题,其中由给定条件求曲线方程是本专题的重点内容之一;(2)系统掌握求曲线(轨迹)方程的常用方法(直译法、定义法、待定系数法、动点转移法、参数法等);(3)掌握综合运用直线和圆的知识解答直线与圆有关问题的思想方法;(4)熟练掌握圆锥曲线的标准方程、几何性质及其应用;(5)掌握与圆锥曲线有关的参数讨论问题的解法;(6)掌握解答解析几何综合问题的思想方法,提高解答解析几何综合问题的能力.解析几何是衔接初等数学和高等数学的纽带,而直线与圆锥曲线是解析几何的重点内容,因而成为高考考查的重点.以下是近六年来全国高考试题中考查涉及直线与二次曲线内容的题型、题量、分值情况统计表(以理科为准):题型1996年1997年1998年1999年2000年2001年题量分值题量分值题量分值题量分值题量分值题量分值选择题 3 14 3 13 3 13 3 13 3 15 3 15 填空题 1 4 1 4 1 4 1 4 1 4 1 4 解答题 1 12 1 12 2 23 1 14 1 14 1 12上表统计表明,近六年全国高考试题对本专题内容考查的题型、题量、分值基本稳定.一般是选择题3道(文科2道)、填空题1道、解答题1道,分值30分左右.选择题、填空题主要考查有关直线、圆锥曲线的概念、方程、几何性质及直线与圆锥曲线的位置关系等;解答题考查的主要内容有:求曲线(轨迹)方程(1996~1999年),曲线基本量的讨论(1996年、2000年),坐标法及运用曲线方程研究曲线性质(1998年、2000年),直线与圆锥曲线的位置关系(1998年、2001年),等等.。

高考数学二轮复习 专题08 解析几何精品资料(教师版)

高考数学二轮复习 专题08 解析几何精品资料(教师版)

2012届高考数学二轮复习资料 专题八 解析几何(教师版)【考纲解读】1.掌握直线斜率与倾斜角、直线方程、两条直线平行垂直、距离等.2.掌握确定圆的几何要素、圆的标准方程与一般方程、点与圆的位置关系、直线与圆的位置关系、圆与圆的位置关系;初步了解用代数方法处理几何问题的思想.3.掌握椭圆的定义、标准方程和椭圆的简单几何性质;理解数形结合的思想;了解圆锥曲线的简单应用.4.了解双曲线的定义、几何性质,掌握双曲线的标准方程,会利用定义、标准方程和几何性质解决一些简单的问题.5. 了解抛物线的定义、几何性质,掌握抛物线的标准方程,会利用定义、标准方程和几何性质解决一些简单的问题.6.了解圆锥曲线的简单应用,理解直线与椭圆、直线与抛物线的位置关系.【考点预测】本章知识的高考命题热点有以下两个方面:1.直线与圆是历年高考的重点考查内容,在客观题中出现,一般只有一个选择或填空,考查求圆的方程以及直线与圆的位置关系,难度较低;在解答题中出现,经常与圆锥曲线相结合。

2.圆锥曲线是高考的一个热点内容,多数考查圆锥曲线的定义、方程和性质。

在客观题中主要考查离心率、渐近线、定义和方程等,所以要熟练它们基本量之间的关系,掌握它们之间转化的技巧与方法。

解答题多对圆锥曲线方程、直线与圆锥曲线的位置关系(包括弦长、中点弦、曲线方程求法等)综合考查,多在与其它知识的交汇点处(如平面向量等)命题,组成探索性及综合性大题,考查学生分析问题、解决问题的能力,难度较大。

【要点梳理】 1.直线的倾斜角与斜率:tan (90)k αα=≠, 211221()y y k x x x x -=≠-.2.直线方程的几种形式:经常用的有点斜式、斜截式、一般式、截距式,注意其各自的适应条件.3.平行与垂直:掌握两直线平行与垂直的条件,同时要注意其各自的适应范围.4.距离: 熟练点到直线的距离与两条件平行直线的距离公式.5.熟记圆的标准方程与一般方程.6.位置关系:点与圆的位置关系、直线与圆的位置关系、圆与圆的位置关系.7.熟记椭圆、双曲线、抛物线的定义、方程及几何性质.8.熟练弦长公式、中点弦的求法(联立方程组与点差法). 【考点在线】考点一 两条直线的位置关系(平行与垂直)例1.(2010年高考安徽卷文科4)过点(1,0)且与直线x-2y-2=0平行的直线方程是 (A )x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D )x+2y-1=0 【答案】.A【解析】设直线方程为20x y c -+=,又经过(1,0),故1c =-,所求方程为210x y --=.【名师点睛】本小题考查两直线平行关系及直线方程的求解.因为所求直线与与直线x-2y-2=0平行,所以设平行直线系方程为20x y c -+=,代入此直线所过的点的坐标,得参数值,进而得直线方程.也可以用验证法,判断四个选项中方程哪一个过点(1,0)且与直线x-2y-2=0平行.【备考提示】:两条直线的位置关系是高考考查的重点之一,熟练其基础知识是解答好本类题的关键.练习1: (2011年高考浙江卷文科12)若直线与直线250x y -+=与直线260x my +-=互相垂直,则实数m =_______ 【答案】1 【解析】121212,,12k k k k m ==-∴⋅=-直线互相垂直,,即12()1,12m m⋅-=-∴=. 考点二 圆的方程例2.(2010年高考山东卷文科16) 已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线l :1y x =-被该圆所截得的弦长为C 的标准方程为 . 【答案】22(3)4x y -+=【解析】由题意,设圆心坐标为(a,0),则由直线l :1y x =-被该圆所截得的弦长为22+2=(a-1),解得a=3或-1,又因为圆心在x 轴的正半轴上,所以a=3,故圆心坐标为(3,0),又已知圆C 过点(1,0),所以所求圆的半径为2,故圆C 的标准方程为22(3)4x y -+=。

2020届高考数学(文)总复习专题综合练:专题八解析几何

2020届高考数学(文)总复习专题综合练:专题八解析几何
专题八 解 +析几何
1、已知直线 l 经过 A 2,1 , B 1,3 两点,则直线 l 的斜率为 ( )
A. 3 2
2、已知双曲线
y2 C:
9
B. 3 2
x2 b 2 1(b
C. 2 3
D. 2 3
0) ,其焦点 F 到 C 的一条渐近线的距离为 2,该双曲线的
离心率为 ( )
A. 13
B.
3
x2
36
2
x D.
18
y2 1
27
2
y 1
9
6、圆心在抛物线
2
y
2 x 上 , 且与 x 轴和该抛物线的准线都相切的一个圆的方程是
(
)
A. x2 y2 x 2 y 1 0 4
B. x2 y2 x 2 y 1 0
C. x2 y2 x 2 y 1 0
D. x2 y2 x 2 y 1 0 4
7、已知 F1, F2 分别是椭圆

A.4 5
B. 2 5
C. 2
D.4
x2 y 2 9、设 F 是双曲线 C : a2 b 2 的一个端点 ,则 C 的离心率为
1 的一个焦点 ,若 C 上存在点 P,使线段 PF 的中点恰为其虚轴 .
10、已知椭圆 5x2 ky2 5 的一个焦点是 (0,2) ,则 k __________.
11、在平面直角坐标系 xOy 中,已知抛物线关于 x 轴对称 ,顶点为坐标原点 O,且过点 P(2,4) ,
3、已知椭圆 C : 2
a
13
2 y2 2 1a b
C.
2
D.
3
3
2
b 0 的左、 右顶点分别为 A1、 A2 ,且以线段 A1 A2 为直径的圆
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§6解析几何的综合问题一、复习要点1本节的主要内容是解析几何与代数、三角等内容的横向综合.重点是解析几何与函数、方程、不等式、数列、三角等知识的综合应用.难点是能灵活运用所学知识将解析几何问题与代数、三角问题相互转化,沟通它们之间的联系.2在本节的复习中,应特别重视解析几何与函数、不等式、数列、三角知识的综合应用.解答解析几何综合问题,应根据曲线的几何特征,熟练运用解析几何的知识将曲线的几何特征转化为数量关系(如方程、函数等),再结合代数、三角知识解答.要重视函数与方程的思想、等价转化思想的运用.3有关直线与二次曲线的最值问题是解析几何综合问题的重要内容之一,它融解析几何知识与函数等知识为一体,综合性强.解答此类问题一般有两种方法:①代数法.即就是建立目标函数,转化为求函数的最值问题.根据目标函数的特点可分别采用配方法、判别式法、重要不等式及函数的单调性等方法求最值.要特别注意自变量的取值范围.②几何法.若题目条件和结论能明显体现几何特征及意义,则考虑用图形性质简捷求解.4由于解答解析几何综合问题有利于培养和提高同学们的数学综合能力,因而解析几何的综合问题已成为上海及全国近年来高考命题的热点,常作为高考数学的把关题.二、例题讲解例1 如图8-18,抛物线方程为y2=p(x+1)(p>0),直线x+y=m与x轴的交点在抛物线的准线的右边.图8-18(1)求证:直线与抛物线总有两个交点;(2)设直线与抛物线的交点为Q、R,OQ⊥OR,求p关于m的函数f(m)的表达式;(3)在(2)的条件下,若m变化,使得原点O到直线QR的距离不大于(/2),求p的取值范围.讲解:(1)欲证直线与抛物线总有两个交点,须证对满足题设条件的m、p的值,直线与抛物线的方程组成的方程组总有两个不同的实数解.由y2=p(x+1),消去y,得x2-(2m+p)x+(m2-p)=0,x+y=m,Δ=p(4m+p+4).Δ的表达式中含有两个参数p、m,欲知它大于0是否成立,须寻找它们之间的联系.∵抛物线的准线方程是x=-1-(p/4),直线与x轴的交点是(m,0),据题意m>-1-(p/4),即4m+p+4>0.又已知p>0,∴Δ>0成立.故直线与抛物线总有两个交点.(2)若设Q、R点的坐标分别为(x1,y1)、(x2,y2),由(1)的证明知x1、x2是方程x2-(2m+p)x+(m2-p)=0的两个根,则有x1+x2=2m+p,x1x2=m2-p.欲求p与m的函数关系p=f(m),须寻求x1+x2,x1x2与m或p的关系,这可由题设条件Q、R在直线x+y=m上及OQ⊥OR得到.∵OQ⊥OR,∴x1x2+y1y2=0.又∵Q、R均在直线x+y=m上,∴y1y2=(-x1+m)(-x2+m)=x1x2-(x1+x2)m+m2,∴2x1x2-m(x1+x2)+m2=0,∴2(m2-p)-m(2m+p)+m2=0.解得p=m2/(m+2).由p>0,得m>-2且m≠0.4m+4+p>0,故p关于m的函数f(m)=m2/(m+2)(m>-2且m≠0).(3)由(2)知p=f(m)=m2/(m+2)(m>-2且m≠0),求p的取值范围,即就是求函数f(m)在由给定条件所确定的定义域内的值域.故须从定义域入手.解法1.由题设条件有(|0+0-m|)/≤(/2),∴|m|≤1.又由(2)知m>-2且m≠0,∴m∈[-1,0)∪(0,1].当m∈[-1,0)时,根据函数单调性的定义,可证f(m)在[-1,0)上为减函数,∴当m∈[-1,0)时,f(0)<f(m)<f(-1),即p∈(0,1];当m∈(0,1]时,可证f(m)为增函数,从而p∈(0,(1/33)3〗].解法2.同解法1,得m∈[-1,0)∪(0,1].由(2)知p=f(m)=m2/(m+2)=(1/(1/m)+(2/m2)).设t=(1/m),g(t)=t+2t2,t∈(-∞,-1]∪[1,+∞),又g(t)=2(t+(1/4))2-(1/8),∴当t∈(-∞,-1]时,g(t)为减函数,∴g(t)∈[1,+∞);当t∈[1,+∞)时,g(t)为增函数,∴g(t)∈[3,+∞).∵p=f(m)=(1/g(t)),故当m∈[-1,0)时,p∈(0,1];当m∈(0,1]时,p∈(0,(1/3)].本题是解析几何与函数、不等式的综合题.在(2)中,求出函数解析式后注意不要忘记定义域的确定;在(3)中,解法1须证明函数f(m)在各区间上的单调性;解法2通过换元,将问题转化为二次函数的问题,利用二次函数的单调性求解,较解法1简捷.例2 设数列{an}的前n项和Sn=na+n(n-1)b(n∈N,a,b是常数,且b≠0).(1)证明以(an,(Sn/n)-1)为坐标的点Pn(n∈N)都落在同一条直线上,并写出此直线的方程;(2)设a=1,b=(1/2),C是以(r,r)为圆心、r为半径的圆(r>0),求使得点P1、P2、P3都落在圆C外时,r的取值范围.讲解:(1)因P1(a,a-1)为定点,欲证Pn(n∈N)共线,只须证kP1Pn为定值即可.由Sn=na+n(n-1)b,得an=2bn+a-2b,则kP1Pn=(((Sn/n)-1)-((S1/1)-1)/an-a1)=((n-1)b/2(n-1)b)=(1/2).故所有的点Pn(an,(Sn/n)-1)(n∈N)都落在经过点P1(a,a-1)且斜率为(1/2)的直线x-2y+a-2=0上.(2)根据点与圆的位置关系建立r的不等式组求解.当a=1,b=(1/2)时,Pn的坐标为(n,(n-1/2)),使P1(1,0),P2(2,(1/2)),P3(3,1)都落在圆(x-r)2+(y-r)2=r2外的条件是(r-1)2+r2>r2,(r-2)2+(r-(1/2))2>r2,(r-3)2+(r-1)2>r2.解得0<r<1或1<r<(5/2)-或r>4+.这是一道解析几何与数列、不等式等知识的综合问题.例3已知椭圆(x2/a2)+(y2/b2)=1(a>b>0)的两焦点为F1、F2,P为椭圆上任一点.使∠F1PF2=2θ,试证:(1)|PF1|·|PF2|=b2sec2θ;(2)△F1PF2的面积S=b2tgθ;(3)设∠PF1F2=α,∠PF2F1=β,则tg(α/2)·tg(β/2)=(1-e)/(1+e).讲解:我们从条件与结论的结构联系中寻求解题思路.(1)由于|PF1|+|PF2|=2a,要出现|PF1|·|PF2|,平方得|PF1|2+2|PF1|·|PF2|+|PF2|2=4a2.①再联系结论,在△F1PF2中,由余弦定理知(2c)2=|PF1|2+|PF2|2-2|PF1|·|PF2|cos2θ.②要消掉|PF1|2、|PF2|2,用①、②两式相减,得2|PF1|·|PF2|(1-cos2θ)=4a2-4c2=4b2.于是不难得到|PF1|·|PF2|=b2sec2θ.(2)由(1),S=(1/2)|PF1|·|PF2|sin2θ=(1/2)b2sec2θ·sin2θ=b2tgθ.(3)对结论进行结构分析.∵tg(α/2)·tg(β/2)=(1-e)/(1+e)e=cos[(α+β)/2]/cos[(α-β)/2](c/a)=[cos(α+β)/2]/[cos(α-β)/2)],于是只需对△F1PF2用正弦定理:(|PF1|/sinβ)=(|PF2|/sinα)=|F1F2|/(sin(α+β)).再由等比定理知2c/[sin(α+β)]=(|PF1|+|PF2|)/(sinα+sinβ)=2a/(sinα+sinβ).∴(c/a)=sin(α+β)/(sinα+sinβ)=[cos(α+β)/2]/[cos(α-β)/2].结论得证.数学是结构的科学,结构决定着方法、蕴含着方法、提示着方法,尤其是对一些较复杂的数学问题,只要我们善于从条件与结论的结构联系及差异中寻求解题途径,问题便不难解决.本题是解析几何与三角知识的综合问题.此外,请同学们关注该题结论的应用价值.例4 已知圆C1的方程为(x-2)2+(y-1)2=(20/3),椭圆C2的方程为(x2/a2)+(y2/b2)=1(a>b>0),C2的离心率为(/2).如果C1与C2相交于A、B两点,且线段AB恰好为圆C1的直径,求直线AB的方程和椭圆C2的方程.讲解:此题可先求直线AB的方程.一方面AB是圆的直径,只需待定出其斜率k,另一方面AB又是椭圆的弦,所以要求其斜率,可用差分法.设A(x1,y1)、B(x2,y2).∵线段AB为C1的直径,∴x1+x2=4,y1+y2=2.又由e=(/2),∴(c/a)=(/2),∴a2=2c2,b2=c2.于是椭圆方程为(x2/2b2)+(y2/b2)=1.而A、B又在C2上,∴(x12/2b2)+(y12/b2)=1,(x22/2b2)+(y22/b2)=1.两式相减,得(x1+x2)(x1-x2)+2(y1+y2)(y1-y2)=0.∴(y1-y2)/(x1-x2)=-1,∴直线AB的方程为y=-x+3.以下待定b2,求椭圆方程.由y=-x+3,(x2/2b2)+(y2/b2)=1,知3x2-12x+18-2b2=0.由Δ>0,易知b2>3.又由|AB|=|x1-x2|=2,可得b2=8.∴C2的方程为(x2/16)+(y2/8)=1.这是一道解析几何的综合问题,它涉及到直线、圆及椭圆等知识点.该题的关键是要抓住相交弦的二重性:一方面线段AB为圆的直径,另一方面线段AB又是椭圆C2的弦.三、专题训练1若抛物线y2=2px(p>0)上三点的纵坐标的平方成等差数列,则这三点的焦半径的关系是().A.成等差数列B.成等比数列C.既成等差数列,也成等比数列D.以上结论都不对2.抛物线y2=2px(p>0)在顶点张直角的弦必过定点().A.(2p,0)B.(p,0)C.((p/2),0)D.以上结论都不对3用与底面成30°角的平面截圆柱得一椭圆截线,则该椭圆的离心率是().A.(1/4)B.(1/2)C./3D./24.以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,椭圆长轴的最小值是().A.(/2)B.C.2D.25.从点P(x,3)向圆(x+2)2+(y+2)2=1作切线,切线长度的最小值为______________.6.椭圆(x2/9)+(y2/4)=1的焦点为F1、F2,点P为其上的动点.当∠F1PF2为钝角时,点P的横坐标的取值范围是______________.7在双曲线(y2/12)-(x2/13)=1的一支上有不同的三点A(x1,y1)、B(,6)、C(x2,y2)与焦点F(0,5)的距离成等差数列,那么y1+y2的值是______________.8已知直线l与椭圆3x2+y2=3相交于A、B两点.若弦AB的中点M到椭圆中心的距离为1,求当弦长|AB|取得最大值时直线l的方程.9已知抛物线的方程为y=-(1/2)x2+m,点A、B及P(2,4)均在抛物线上,且直线PA、PB的倾斜角互补.(1)求证:直线AB的斜率为定值;(2)当直线AB在y轴上截距为正时,求△PAB面积的最大值.10.如图8-19所示,A、F分别是椭圆的一个顶点与一个焦点,位于x轴的正半轴上的点T(t,0)与F的连线交射线OA于Q.图8-19(1)求点A、F的坐标及直线TQ的方程;(2)求△OTQ的面积S与t的函数关系式S=f(t)及该函数的最小值;(3)写出S=f(t)的单调区间,并证明之.。

相关文档
最新文档