ABAQUS热应力分析解析实例详解
ABAQUS热应力分析实例详解

热应力分析实例详解学习要点通过实例分析,学习如何进行热应力分析,并掌握ABAQUS/CAE 的以下功能:1)在Material 功能模块中,定义线胀系数;2)在Load 功能模块中,使用预定义场(predefined field)来定义温度场;实例1:带孔平板的热应力分析定义材料属性——Property Property——Material——Edit——steelMechanical——Elastic, 输入弹性模量和泊松比定义材料属性——Property Property——Material——Edit——steelMechanical——Expansion, 输入线胀系数定义边界条件——Load定义边界条件——Load定义边界条件——Load固支边界条件使用预定义场定义初始温度Load——PredefinedField Manager使用预定义场使模型温度升高至120℃网格划分——Mesh结果分析——Visualization小结在ABAQUS中进行热应力分析的基本步骤:⏹定义线胀系数⏹定义初始温度场⏹定义分析步中的温度场实例2:法兰盘感应淬火的残余应力场模拟问题描述:◆表面感应淬火是一种工程中常用的热处理工艺,其原理是使用感应器来对工件的局部进行加热,然后迅速冷却,从而使工件表面产生残余压应力,抵消工作载荷所产生的一部分拉应力。
◆表面感应淬火可显著提高工件弯曲疲劳抗力和扭转疲劳抗力,工件表面产生的马氏体具有良好的耐磨性。
实例2:法兰盘感应淬火的残余应力场模拟 本例中的法兰盘经淬火后,由试验测得法拉盘的内圆角表面残余压应力约为-420MPa。
法拉盘的一端固定,另一端的整个端面受向下的面载荷p=100MPa,法拉盘内孔直径为24mm,材料的弹性模量为210000MPa,泊松比为0.3,线胀系数为1.35e-5/ ℃。
要求:模拟分析感应淬火所产生的残余应力场,并分析此残余应力场在缓和应力集中方面所起的作用。
ABAQUS热传导与热应力分析详解

•点单元 •热容单元 HEATCAP 模拟在一点的集中热容 •热容可以是温度或场变量的函数
•该单元可以在 ABAQUS/Explicit 中使用
热传导单元定义 •壳单元
•一阶和二阶插值用于轴对称单元(DSAX1,DSAX2)和三维(DS3, DS4,DS6,DS8)应用的壳单元包含有单元库中。壳单元用于 模拟承受热载荷的薄壁结构如: 压力容器,管道系统和金属片元 件等。
边界条件与载荷
4. 向环境的辐射 辐射率 emissivity 是衡量一个表面有多接近理想黑体的指标
一些常用材料的辐射率: Commercial aluminum sheet: 0.09 Heavily oxidized aluminum sheet: 0.2 Polished gold: 0.02 Rusted iron plate: 0.6 Polished iron plate: 0.07 Turned, heated cast iron: 0.44 Type 301 stainless steel: 0.58 Red brick: 0.93 Black shiny lacquer on iron: 0.88 White vamish: 0.09 Water: 0.95
边界条件与载荷
4. 向环境的辐射 是否需要考虑辐射边界条件 Te = Room temp (23oC) h = 10W/m2/oC 辐射率=1 Heat flux 温度越高,辐射现象越强
*MATERIAL,NAME=MATERIAL-1 *CONDUCTIVITY 1.0 *DENSITY 1.0 *SPECIFIC HEAT 1.0
比热:*SPECIFIC HEAT, --比热可以定义为随温度与场变量变化 --大多数材料的比热随温度平稳变化
ABAQUS热应力分析实例详解

热应力分析实例详解学习要点通过实例分析,学习如何进行热应力分析,并掌握ABAQUS/CAE 的以下功能:1)在Material 功能模块中,定义线胀系数;2)在Load 功能模块中,使用预定义场(predefined field)来定义温度场;实例1:带孔平板的热应力分析定义材料属性——Property Property——Material——Edit——steelMechanical——Elastic, 输入弹性模量和泊松比定义材料属性——Property Property——Material——Edit——steelMechanical——Expansion, 输入线胀系数定义边界条件——Load定义边界条件——Load定义边界条件——Load固支边界条件使用预定义场定义初始温度Load——PredefinedField Manager使用预定义场使模型温度升高至120℃网格划分——Mesh结果分析——Visualization小结在ABAQUS中进行热应力分析的基本步骤:⏹定义线胀系数⏹定义初始温度场⏹定义分析步中的温度场实例2:法兰盘感应淬火的残余应力场模拟问题描述:◆表面感应淬火是一种工程中常用的热处理工艺,其原理是使用感应器来对工件的局部进行加热,然后迅速冷却,从而使工件表面产生残余压应力,抵消工作载荷所产生的一部分拉应力。
◆表面感应淬火可显著提高工件弯曲疲劳抗力和扭转疲劳抗力,工件表面产生的马氏体具有良好的耐磨性。
实例2:法兰盘感应淬火的残余应力场模拟 本例中的法兰盘经淬火后,由试验测得法拉盘的内圆角表面残余压应力约为-420MPa。
法拉盘的一端固定,另一端的整个端面受向下的面载荷p=100MPa,法拉盘内孔直径为24mm,材料的弹性模量为210000MPa,泊松比为0.3,线胀系数为1.35e-5/ ℃。
要求:模拟分析感应淬火所产生的残余应力场,并分析此残余应力场在缓和应力集中方面所起的作用。
ABAQUS应用培训-07 热分析实例

7. Mesh:seed part,mesh part, *** Assign element type: heat tr.. 根据傅里叶定律,解析解:
14
2015/7/5
7
ABAQUS传热分析-瞬态热分析
在稳态分析模型的接触上,做出如下修改
1. 2. 3. Material:conductivity 80W/(Cmm),Density,2.7e-9,Special heat 0.8 Step:Heat transfer Transient, time 0.00001
求解传热问题的提法为,在满足边界条件及初始条件的许可温度场中,真 实的温度场使以下泛函 I 取极小值,即
BC S1 , S 2 , S 3 T IC
min
I
1 T 2 T T T x ( ) y ( ) 2 z ( ) 2 2( Q cT )T d 2 x y z t
Fourier传热定律 能量守恒定律
控制方程
6
3
传热过程的基本方程
• Fourier定律:单位时间内通过单位截面积所传递的热量(热流密度, Heat Flux)正比于当地垂直于截面方向上的温度变化率(梯度),热 量传递的方向与温度升高的方向相反。
q k
t x
k为导热系数或热导率[W/(oC▪m)]
1
T 2 T 2 T 2 1 2 x ( x ) y ( y ) z ( z ) d S2 q f TdA 2 S3 hc T T dA
11
稳态传热过程的有限元分析列式
将物体离散为单元体,将单元的温度场表示为节点温度的插值关系,有
16
ABAQUS热应力分析解析实例详解

ABAQUS热应力分析解析实例详解ABAQUS是一种常用的有限元分析软件,可以进行各种不同类型的分析,包括热应力分析。
热应力分析是通过模拟材料受热后发生的变形来评估材料的热稳定性和耐久性。
在这篇文章中,我们将详细介绍ABAQUS热应力分析的步骤和实例。
首先,我们需要创建一个ABAQUS模型。
模型包括几何形状、材料属性和边界条件。
在热应力分析中,我们通常需要定义一个热源,以及材料的热传导、热膨胀和热辐射等属性。
在这个实例中,我们将模拟一个烤箱的加热过程。
模型是一个简单的长方体,材料是钢铁,边界条件是恒定的热流。
下一步是定义材料属性。
我们需要定义钢铁的热传导系数,热膨胀系数和热辐射系数。
这些属性通常可以从材料手册或实验中获得。
我们将使用以下参数:-热传导系数:40W/mK-热膨胀系数:12e-61/°C-热辐射系数:0.8接下来,我们需要定义边界条件。
在这个实例中,我们将模拟一个恒定的热流输入。
我们可以通过选择“控制模拟”菜单中的“载荷”选项来定义边界条件。
在强制边界条件下选择“热流”载荷,然后指定热流的大小和方向。
我们将选择1000W的热流输入。
然后,我们需要定义分析步骤。
在这个实例中,我们将使用一个稳态热分析步骤。
在强制模式下选择“热”分析步骤,然后指定步骤的参数,包括时间步长和总时间。
我们将选择0.1s的时间步长和10s的总时间。
在模拟之前,我们需要定义网格划分。
网格划分是将模型分解为多个小元素的过程,以便于进行数值计算。
ABAQUS中有多种网格划分方法可供选择。
我们可以通过选择“网格”菜单中的“划分”选项来进行网格划分,然后选择适当的网格划分方法和参数。
当所有定义都完成后,我们可以点击“开始模拟”按钮开始进行热应力分析。
ABAQUS将使用已定义的模型、材料属性、边界条件和分析步骤来进行数值计算。
计算结果将显示在ABAQUS的图形界面中。
在热应力分析完成后,我们可以查看结果并进行后处理。
基于ABAQUS的热应力分析

1.1基于ABAQUS的热应力分析1.1.1 温度场数据处理(1)打开INP_Generator.exe,出现如下软件界面:图1.数据处理软件(2)点击“浏览”按钮,选择由FLUENT导出的inp文件所在路径,如下图所示:图2.路径选择(3)点击“生成”按钮,则在inp文件所在路径下自动生成包含多个温度场的ABAQUS输入文件ABAQUSinputfile.inp。
图3.生成包含连续温度场INP文件1.1.2 复材工装模板热应力分析(1)打开ABAQUS,导入inp文件后,打开Tools菜单下“Set - Manager”,如下图所示。
检查是否有名为“PID6”的set,若没有则创建一个名为“PID*”的set,set为模板整体。
(“*”为任意数字或字母)图4.创建SET(2)打开Plug-ins菜单下“CAC Project - Composite Analyse”,弹出如下界面。
在Step1标签中输入用到的材料名称并选择工作路径;在Step2中定义铺层信息,可通过右键删除或添加行;按照Step3和Step4的提示,使用ABAQUS/CAE自身功能完成剩余分析工作。
(a)(b)(c)图5.定义材料及铺层(3)进入Load模块,定义垂直于模板表面平面部分的局部坐标系。
选择“Tools”菜单下“Datum”,Type选择“CSYS”Method选择“3Points”,然后默认点击“Continue”按钮。
依次在模板表面选择坐标原点、X轴上点和XY面上的点,生成局部坐标。
图6.定义模板局部坐标系(4)点击“Create Boundary Condition”按钮,弹出边界条件定义对话框。
Step设为“Initial”,Category选择为“Mechanical”,Types for Selected Step 选择为“Displacement/Rotation”,点击“Continue”,如下图所示:图7.选择约束类型(5)将“Select regions for the boundary condition”选为“by angle”,选中模板下表现所有结点(按住Shift键可多选),点击鼠标中键,弹出如下边界条件编辑对话框,给模板施加U3和UR3约束,CSYS选择为模板局部坐标系。
abaqus热应力分析实例_200105

Abaqus热应力分析实例1 说明:本例通过简单的杆状零件,介绍abaqus热分析的基本步骤。
利用abaqus/CAE分析图1所示的杆状零件,四面加热条件下(随时间升温T=20+5t)的温度场,并以该温度为初始条件,分析零部件受力状况。
图1为杆状零件截面的图2传热分析2.1创建part进入part模块,点击创建部件,name输入bar,模型所在空间选择3维,类型选择可变性,shape选择Solid,Type选择Extrusion,Approximate size 输入200,设置如下图,点击Continue,进入二维截面创建,分别输入(25,25)、(-25,-25)两两点,完成草图绘制,Depth(长度)输入500,完成部件的创建,如下图所示。
2.2 创建材料和截面切换到property模块,Density输入7.74e-09,Conductivity(传热率)、Specific Heat (比热)与温度有关,输入如下:2.3点击,弹出Create Section对话框,name输入Section-1,Categeory选择Solid,type选择Homogeneous,点击continue,弹出Edit Section,选择刚创建的材料Steel。
2.4赋予属性点击,选择部件,中键确定,完成材料赋予。
2.5创建分析步创建一个Heat Transfer(热传递)分析步,点击Continue,basic工具栏设置,选择Transient(瞬态分析),time period设置为100,切换到incrementation,设置如下图。
2.6 热传递与热辐射设置在杆四周面加载一个随时间变化的的温度T=20+5t,切换到interation模块,创建温度曲线,Tools》Amplitude》create,name输入Amp-1,Type选择Tabular,列表设置如下左图。
点击,分析步选择step-1,选择surface file condition,点击continue,film coefficient 设置为0.4,Sink temperature 为1,Sink amplitude 选择上述创建的温度曲线。
Abaqus热应力分析、热诱导振动分析简单实例

NUAA
NUAA--Kong Xianghong
Page � 3
2. Solution
2.2. Create Material & Section
壳厚度为3mm。
NUAA
NUAA--Kong Xianghong
Page � 4
2. Solution
2.3. Assign Section
NUAA
NUAA--Kong Xianghong
NUAA--Kong Xianghong
Page � 21
3. Comparative Study
3.2. Create Field Output
NUAA
NUAA--Kong Xianghong
Page � 22
3. Comparative Study
3.3. Define Element Type
2. Solution
2.16. Results & Visualization (2)
NUAA
NUAA--Kong Xianghong
Page � 18
2. Solution
2.17. Results & Visualization (3)
NUAA
NUAA--Kong Xianghong
Page � 19
NUAA
NUAA--Kong Xianghong
Page � 8
2. Solution
2.7. Edit Field Output Request
NUAA
NUAA--Kong Xianghong
Page � 9
2. Solution
2.8. Create a Set for History Output
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热应力分析实例详解
学习要点
通过实例分析,学习如何进行热应力分析,并掌握ABAQUS/CAE 的以下功能:
1)在Material 功能模块中,定义线胀系数;
2)在Load 功能模块中,使用预定义场(predefined field)来定义温度场;
实例1:带孔平板的热应力分析
定义材料属性——Property Property——Material——Edit——steel
Mechanical——Elastic, 输入弹性模量和泊松比
定义材料属性——Property Property——Material——Edit——steel
Mechanical——Expansion, 输入线胀系数
定义边界条件——Load
定义边界条件——Load
定义边界条件——Load
固支边界条件
使用预定义场定义初始温度
Load——Predefined
Field Manager
使用预定义场使模型温度升高至120℃
网格划分——Mesh
结果分析——Visualization
小结
在ABAQUS中进行热应力分析的基本步骤:⏹定义线胀系数
⏹定义初始温度场
⏹定义分析步中的温度场
实例2:法兰盘感应淬火的残余应力场模拟问题描述:
◆表面感应淬火是一种工程中常用的热处理工艺,
其原理是使用感应器来对工件的局部进行加热,
然后迅速冷却,从而使工件表面产生残余压应
力,抵消工作载荷所产生的一部分拉应力。
◆表面感应淬火可显著提高工件弯曲疲劳抗力和扭
转疲劳抗力,工件表面产生的马氏体具有良好的
耐磨性。
实例2:法兰盘感应淬火的残余应力场模拟 本例中的法兰盘经淬火后,由试验测得法拉盘的内圆角表面残余压应力约为-420MPa。
法拉盘的一端固定,另一端的整个端面受向下的面载荷p=100MPa,法拉盘内孔直径为24mm,材料
的弹性模量为210000MPa,泊松比为0.3,
线胀系数为1.35e-5/ ℃。
要求:模拟分析感应淬火所产生的残余
应力场,并分析此残余应力场在缓和应
力集中方面所起的作用。
建模要点说明
☐使用ABAQUS可以模拟感应淬火的完整过程,即通过分析工件与感应器之间以及工件和冷却液之间的传热过程来确定工件的温度场,从而得到相应的塑性应变场和冷却后的残余应力场。
这一模拟过程较复杂,下面介绍一种模拟残余应力的简化方法。
☐设置整个模型的初始温度为20℃,在分析步令淬硬层的温度升高至某一温度值T
(例如120℃),其余区域温度仍保持20℃。
high
这种温度差异会使高温区产生压应力,相当于所要模拟的残余
,使法兰盘内圆角表压应力。
经几次试算即可找到合适的T
high
面的压应力与试验结果大致吻合。
施加工作载荷时,仍保持上述温度场不变,就可以模拟在残余应力作用下的应力场了。
☐上述方法的优点是比较简便,不必进行复杂的传热分析和热弹塑性分析,并且通用性强,可用于模拟各种不同工艺所产生的残余应力场,但其缺点是模拟精度不高,通过选择T
high
只能保证工件局部区域的压应力值较准确。
☐一种改进的方法就是为淬硬层的不同区域设定不同的温度
值T
high
,从而得到与试验结果更加接近的残余应力场。
☐本实例中,为简单起见,只为整个淬硬层设定单一的温度
值T
high =120℃。
建模要点说明
几何建模
CAD平面图
几何建模
Part
12mm
旋转轴
几何建模
几何建模
定义材料属性——Property
E=210 000
=0.3
Expansion=1.03e-5
网格划分——Mesh 淬硬层以外区域:
Element type: Hex-dominated Technique: Sweep
Algorithm: Advancing front
淬硬层:
Element type: Hex
Technique: Sweep
Algorithm: Medial axis
(选中Minimize the mesh transition)
设置分析步——step
⏹1)第一个分析步HighTemper-Noload: 令淬硬层区域温度升
高至120℃,其余区域温度仍保持20℃,不施加外载荷;
⏹2)第二个分析步HighTemper-WithLoad:保持上述温度场不
变(相应的残余应力也不会变),施加外载荷;
⏹3)第三个分析步LowTemper-WithLoad:令整个工件的温
度都变为20℃(即去掉残余应力),保持外载荷不变,从而得到没有残余应力时的应力场,用来与第二个分析步的结果相比较。
边界条件——Load 一端固定
边界条件——Load
施加载荷——Load
p=100MPa
定义温度场——Load
定义温度场——Load
淬硬层
2020
120120
后处理
1)查看残余应力的模拟结果
1)查看残余应力的模拟结果
第一个分析步σminiP = 416.17MPa
与残余压应力的试验结果420MPa 基本吻合!565号节点
2)分析残余压应力在缓解应力集中方面的作用
σ
minP = 276MPa
第一个分析步
560号节点
2)分析残余压应力在缓解应力集中方面的作用
第二个分析步:存在残余应力!
σ
= 412MPa
maxP
560号节点
2)分析残余压应力在缓解应力集中方面的作用
第三个分析步:没有残余应力!
σ
= 683MPa
maxP
560号节点
2)分析残余压应力在缓解应力集中方面的作用
最大主应力降低的量:
683MPa -412MPa = 271MPa,大致等于残余压应
力的值276MPa。
结论:
可见残余压应力显著降低了应力集中处的最大主应力!。