ABAQUS应用培训热分析实例
ABAQUS热应力分析实例详解

热应力分析实例详解学习要点通过实例分析,学习如何进行热应力分析,并掌握ABAQUS/CAE 的以下功能:1)在Material 功能模块中,定义线胀系数;2)在Load 功能模块中,使用预定义场(predefined field)来定义温度场;实例1:带孔平板的热应力分析定义材料属性——Property Property——Material——Edit——steelMechanical——Elastic, 输入弹性模量和泊松比定义材料属性——Property Property——Material——Edit——steelMechanical——Expansion, 输入线胀系数定义边界条件——Load定义边界条件——Load定义边界条件——Load固支边界条件使用预定义场定义初始温度Load——PredefinedField Manager使用预定义场使模型温度升高至120℃网格划分——Mesh结果分析——Visualization小结在ABAQUS中进行热应力分析的基本步骤:⏹定义线胀系数⏹定义初始温度场⏹定义分析步中的温度场实例2:法兰盘感应淬火的残余应力场模拟问题描述:◆表面感应淬火是一种工程中常用的热处理工艺,其原理是使用感应器来对工件的局部进行加热,然后迅速冷却,从而使工件表面产生残余压应力,抵消工作载荷所产生的一部分拉应力。
◆表面感应淬火可显著提高工件弯曲疲劳抗力和扭转疲劳抗力,工件表面产生的马氏体具有良好的耐磨性。
实例2:法兰盘感应淬火的残余应力场模拟 本例中的法兰盘经淬火后,由试验测得法拉盘的内圆角表面残余压应力约为-420MPa。
法拉盘的一端固定,另一端的整个端面受向下的面载荷p=100MPa,法拉盘内孔直径为24mm,材料的弹性模量为210000MPa,泊松比为0.3,线胀系数为1.35e-5/ ℃。
要求:模拟分析感应淬火所产生的残余应力场,并分析此残余应力场在缓和应力集中方面所起的作用。
ABAQUS顺序热力耦合分析实例

ABAQUS顺序热力耦合分析实例此实例中需要确定一个冷却栅管的温度场分布。
温度场的求解采用稳态热分析,在此之后还将进行热应力分析来求出冷却栅管在温度作用下产生的位移和应力分布。
由于冷却栅管比较长,并且是轴对称结构,根据上述特点,可以简化有限元分析模型。
此实例中使用国际单位制。
1、part中创建轴对称可变形壳体,大致尺寸为1,通过creat line创建一个封闭曲线(0.127,0)(0.304,0)(0.304,0.006)(0.152,0.006)(0.152,0.031)(0.127,0.031)(0.127,0)使用creat Fillet功能对模型倒角处设置0.005的倒圆角。
倒角后,模型并未改变,需要在模型树中,part下的Features右键,Regenerate,最终模型如下图所示。
2、在材料模块中定义密度7800,弹性模量1.93E11,泊松比0.3。
所不同的是,热分析还需要指定热传导系数以及比热。
在Thermal里输入参数,热铲刀系数25.96,比热451。
3、创建截面属性以及装备部件,和普通的静力分析设置一样。
4、Step有所不同,分析类型仍为通用分析步,下面要更改为Heat Transfer。
在Edit Step窗口中,使用默认的瞬态分析(Transient),时长设置为3s。
切换到Incrementatin进行相应的设置,如下图。
5、Load模块中,设置左边温度为100度,右边及上边温度为20度。
Creat BC,类型选择Other>Temperature。
在纯粹的热传导分析方程中,没有位移项,因此不会发生刚体位移,这里也就不需要设置位移边界条件。
6、接下来划分网格,种子尺寸给0.005,单元类型需要在单元族中选择专门用来热分析的Heat Transfer,查看下面确保使用的单元为DCAX4。
使用结构化的全四边形网格划分方法。
7、到此,热分析的设置已经完成,可以提交计算,完成后,查看变量NT11即为节点温度。
ABAQUS热分析专题PPT课件

•在 ABAQUS/Explicit 中,没有单纯的热传导分析选项, 然而可以进 行全耦合的热-应力分析。
•这个功能通过设定适当的边界条件,可以模拟纯热传导工程; •除空腔辐射和利用用户子程序定义的不均匀热载荷之外,其他在 ABAQUS/Standard 中可以使用的热属性,都可以用在 Explicit 中。
型插值方法决定的。
热传导单元定义 •复合材料壳单元
多层复合材料热壳可以被构建 每一层可以是不同厚度,不同主 方向的不同材料组成
t4 材料1 t3 材料1 t2 材料1 t1 材料1
材料特性在 *SHELL SECTION 中定义:
*SHELL SECTION,COMPOSITE LAYER1的厚度, 温度自由度数量(截面点数), 材料名,材料方向参考的 orientation 名称 LAYER2的厚度, 温度自由度数量(截面点数), 材料名,材料方向参考的 orientation 名称 LAYER3的厚度, 温度自由度数量(截面点数), 材料名,材料方向参考的 orientation 名称
x 2
1
t
2
x 2
k c
热扩散率
介绍 -- 类比
Stress
u
I TdV
V
D
T DdV
V
Heat
q
I T qdV
V
K
T KdV
V
分析过程
•在 ABAQUS/Standard 中,热传导分析的执行是通过将几何体离散 成扩散热传导单元,并且使用 *HEAT TRANSFER 过程选项
确定温度的分布。
Abaqus热分析实验报告

(一)创建部件1:模块:部件2:点击创建部件工具,弹出创建部件对话框名称:CUP模型空间:三维类型:可变形形状:实体类型:旋转大约尺寸:2003:点击继续,进入草绘模式,首先应当绘制一条构造线,然后为旋转实体绘制如下截面草图4:点击完成,选择上一步创建的构造线作为中心线,弹出编辑旋转对话框,将角度修改为360度5:点击确定,旋转的结果如下(二)定义材料和截面属性1:模块:属性2:点击创建材料工具,弹出编辑材料对话框名称:steel通用→密度,将密度修改为7.85e-9力学→弹性→弹性,将杨氏模量修改为2.1e5,泊松比改为0.3热学→传导率,将传导率修改为36热学→比热,将比热修改为9e8点击确定3:点击创建截面工具名称:Section-1类别:实体类型:均质4:点击继续,弹出编辑截面对话框,材料为steel,点击确定5:点击指派截面工具,框选整个模型为要指派截面的区域6:点击完成,弹出编辑截面指派对话框,选取默认设置,点击确定(三)生成装配件1:模块:装配2:点击创建实例工具,弹出创建实例对话框,选取默认设置,点击确定(四)定义分析步1:模块:分析步2:点击创建分析步工具,弹出创建分析步对话框名称:Step-1程序类型:通用(热传递)3:点击继续,弹出编辑分析步对话框,将响应修改为稳态,点击确定(五)定义相互作用1:模块:相互作用2:点击相互作用管理器工具,弹出相互作用管理器对话框,点击创建,弹出创建相互作用对话框名称:Int-1分析步:Step-1类型:表面热交换条件点击继续,选择如下外圆面点击完成,弹出编辑相互作用对话框膜层散热系数:10e-3环境温度:20点击确定,结果如下图示:3:按照上述类似方法,定义其他4个相互作用关闭相互作用管理器,完成相互作用的定义(六)网格划分为了便于进行网格划分,先对部件进行分区1:模块:部件2:点击拆分几何元素:定义切割平面工具,选择一点及法线指定平面选择下图示一点及法线指定分割平面点击创建分区,完成拆分,结果如下图3:模块:网格对象:部件4:点击为边布种工具,框选整个部件为要布置局部种子的区域5:点击完成,弹出局部种子对话框,将近似单元尺寸修改为5,其余地方选用默认设置,点击确定6:点击指派网格控制属性工具,框选整个部件7:点击完成,弹出网格控制属性对话框,按如下设置,点击确定单元形状:六面体技术:扫掠算法:进阶算法8:点击指派单元类型工具,框选整个部件,点击完成,弹出单元类型对话框,将分析类型修改为热传递,点击确定9:点击为部件划分网格工具,点选是确定为部件划分网格结果如下图(七)创建作业1:模块:作业2:点击作业管理器工具,弹出作业管理器对话框3:点击创建,弹出创建作业对话框4:点击继续,弹出编辑作业对话框,选取默认设置,点击确定5:点击提交,提交作业6:运行过程中,可以点击监控,查看运行状态7:点击结果,进入可视化模块,并在变形图上绘制云图,结果如下。
Abaqus实例教程——交叉管的热分析

Surface film condition(曲面薄膜狀態)
接著我們要加上曲面對流的邊界條件.
w16-Surface film condition.avi
1. 在模型樹中的 Interactions 上快點兩下來製作一個新的互動(interaction).
2. 在 Create Interaction 對話框中, 選取 Surface film condition 作為互動類型
要分析模擬這個零件的熱反應, 需要使用一個熱傳遞(heat transfer)的分析步. 1. 在模型樹中的Steps上快點兩下來製作一個新的分析步. 2. 在 Create Step 對話框中, 選取 Heat transfer 做為分析步的類型然後用以下的 參數來製作一個暫態的熱傳遞分析步: • 描述說明(Description): Thermal analysis • 整個分析時間(Total time period) = 200 • 時間增量之最大數量(Max. number of increments allowed) = 100 • 初始增量值(Initial increment size) = 1 • 停止分析步之最小溫度變動率 = 0.5 • 每個增量中所允許之最大溫度變動率= 10 3. 使用其預設之 ODB 輸出資料項. 設定restart frequency 為 5.
plasticProps.inp 檔中讀進這些資料
將此選項打開
在這裡按下 滑鼠右鍵
Figure W16–8 Reading plastic material properties from a file.
Copyright 2004 ABAQUS, Inc.
Introduction to ABAQUS
ABAQUS热应力分析解析实例详解

ABAQUS热应力分析解析实例详解ABAQUS是一种常用的有限元分析软件,可以进行各种不同类型的分析,包括热应力分析。
热应力分析是通过模拟材料受热后发生的变形来评估材料的热稳定性和耐久性。
在这篇文章中,我们将详细介绍ABAQUS热应力分析的步骤和实例。
首先,我们需要创建一个ABAQUS模型。
模型包括几何形状、材料属性和边界条件。
在热应力分析中,我们通常需要定义一个热源,以及材料的热传导、热膨胀和热辐射等属性。
在这个实例中,我们将模拟一个烤箱的加热过程。
模型是一个简单的长方体,材料是钢铁,边界条件是恒定的热流。
下一步是定义材料属性。
我们需要定义钢铁的热传导系数,热膨胀系数和热辐射系数。
这些属性通常可以从材料手册或实验中获得。
我们将使用以下参数:-热传导系数:40W/mK-热膨胀系数:12e-61/°C-热辐射系数:0.8接下来,我们需要定义边界条件。
在这个实例中,我们将模拟一个恒定的热流输入。
我们可以通过选择“控制模拟”菜单中的“载荷”选项来定义边界条件。
在强制边界条件下选择“热流”载荷,然后指定热流的大小和方向。
我们将选择1000W的热流输入。
然后,我们需要定义分析步骤。
在这个实例中,我们将使用一个稳态热分析步骤。
在强制模式下选择“热”分析步骤,然后指定步骤的参数,包括时间步长和总时间。
我们将选择0.1s的时间步长和10s的总时间。
在模拟之前,我们需要定义网格划分。
网格划分是将模型分解为多个小元素的过程,以便于进行数值计算。
ABAQUS中有多种网格划分方法可供选择。
我们可以通过选择“网格”菜单中的“划分”选项来进行网格划分,然后选择适当的网格划分方法和参数。
当所有定义都完成后,我们可以点击“开始模拟”按钮开始进行热应力分析。
ABAQUS将使用已定义的模型、材料属性、边界条件和分析步骤来进行数值计算。
计算结果将显示在ABAQUS的图形界面中。
在热应力分析完成后,我们可以查看结果并进行后处理。
ABAQUS热分析课稿

q k
T x
Ta L
Q
A
Tb
T T b a Q qA kA L
介绍 -- 比热 ,衡量物质储存热的能力 单位: J/M/℃
Q t Vc
时间增量 比热 温度增量
-- 一维热传导公式
2 c k 2 t x
1 2 2 t x
介绍
ABAQUS 中的热传导特性 -- 稳态响应 -- 瞬态响应 , 包括自适应时间步长 -- 全套热传导边界条件 -- 材料属性(和载荷)可以是温度相关 -- 热“接触”允许在“接触表面”有热流动 -- 可以方便的将温度场导入热应力分析中 -- 特性 •潜热项(由相变产生) •强制对流 •应力-热传导耦合分析功能 •热传导壳单元(沿厚度方向温度梯度) •空腔辐射(加热炉升温)功能
热传导单元定义 •复合材料壳单元
多层复合材料热壳可以被构建 每一层可以是不同厚度,不同主 方向的不同材料组成
t4 材料1 t3 材料1 t2 材料1 t1 材料1
材料特性在 *SHELL SECTION 中定义:
*SHELL SECTION,COMPOSITE LAYER1的厚度, 温度自由度数量(截面点数), 材料名,材料方向参考的 orientation 名称 LAYER2的厚度, 温度自由度数量(截面点数), 材料名,材料方向参考的 orientation 名称 LAYER3的厚度, 温度自由度数量(截面点数), 材料名,材料方向参考的 orientation 名称 …
k c
热扩散率
介绍 -- 类比
Stress Heat
u
I TdV
V V
q
I T qdV
abaqus案例

abaqus案例Abaqus是一款由法国达索系统公司开发的有限元分析软件。
它提供了强大的分析工具和高度可定制的建模环境,使工程师能够在各种领域进行准确的仿真分析。
在本文中,我们将介绍一些使用Abaqus的真实案例,以便更好地了解该软件的功能和应用。
1. 案例一:汽车碰撞分析汽车碰撞是交通事故中最常见的一种,也是最危险的一种。
利用Abaqus进行汽车碰撞仿真分析可以帮助工程师更好地理解碰撞过程和车辆的结构变形情况。
在这个案例中,我们将对一辆小型轿车进行碰撞测试。
首先,我们需要建立一个准确的车辆模型。
通过CAD软件,我们可以设计出车辆的外形,并将其导入Abaqus中。
接下来,我们需要添加材料属性和约束条件,以便对车辆进行仿真分析。
在这个案例中,我们使用了钢材作为车辆的材料,并设置了车辆的边界条件和碰撞速度。
通过Abaqus进行汽车碰撞仿真分析后,我们可以得到车辆在碰撞过程中的应力、应变和变形情况。
此外,我们还可以观察到车辆的安全性能和结构强度是否符合标准要求。
这些结果可以帮助汽车制造商更好地设计和改进汽车结构,以提高车辆的安全性能和耐用性。
2. 案例二:桥梁结构分析桥梁是重要的基础设施之一,其结构的稳定性和安全性对人们的出行和生活具有重要影响。
利用Abaqus进行桥梁结构分析可以帮助工程师更好地了解桥梁的结构特性和受力状态,以便更好地设计和改进桥梁结构。
在这个案例中,我们将对一座悬索桥进行分析。
首先,我们需要建立一个准确的桥梁模型,并添加材料属性和约束条件。
接下来,我们需要对桥梁进行荷载分析,以便了解桥梁在不同荷载下的受力状态和变形情况。
通过Abaqus进行桥梁结构分析后,我们可以得到桥梁在不同荷载下的应力、应变和变形情况。
此外,我们还可以观察到桥梁的结构稳定性和安全性能是否符合标准要求。
这些结果可以帮助桥梁工程师更好地设计和改进桥梁结构,以提高其安全性能和耐用性。
3. 案例三:电子设备热分析电子设备的热管理是一个重要的问题,因为过热会导致设备故障或损坏。