热重分析实验报告
热重分析实验报告

热重分析实验报告热重分析(Thermogravimetric analysis,简称TGA)是一种常用的热分析技术,通过测量样品在恒定升温速率下的质量变化,可以研究样品的热稳定性、减量过程、物质含量以及化学反应等信息。
本报告将介绍一次使用TGA技术进行的实验,并对实验结果进行分析和讨论。
1. 实验目的该实验的目的是研究聚合物样品在升温过程中的失重情况,从而了解聚合物的热分解温度、热稳定性以及降解产品的性质。
通过TGA实验可以为聚合物材料的设计合成、性能改进以及应用提供重要的参考依据。
2. 实验仪器和试剂本次实验采用的TGA仪器为型号X,试样为聚合物样品A。
试样经过粉碎和筛分,得到粉末状样品。
3. 实验步骤(1) 将粉末状样品A称取约100mg放入TGA样品分析容器中。
(2) 将样品容器放入TGA仪器中,设置升温速率为X℃/min。
(3) 开始实验,记录样品的质量变化情况,并实时监测样品的温度。
(4) 实验结束后,整理实验数据,进行结果分析。
4. 实验结果实验过程中,我们观察到样品A在升温过程中出现了质量减少。
根据实验数据绘制的质量-温度曲线图,我们可以发现样品A在温度区间X到Y之间发生了明显的失重现象。
进一步分析可以得出结论,样品A在这一温度区间发生了热分解反应。
5. 结果分析聚合物样品的热分解是一个复杂的过程,涉及到分子间的键断裂、自由基的形成以及产物的生成等反应。
通过TGA实验可以了解样品在不同温度下的重量变化情况,从而推测聚合物的热分解温度以及产物的性质。
根据实验结果,我们可以推测样品A在温度区间X到Y之间发生了主要的热分解反应。
随着温度的上升,样品A开始失重,并在温度达到Y时发生质量减少的最大速率。
这表明在这个温度区间内,样品A的热分解反应达到了最大速率。
在此基础上,我们可以进一步探究产物的性质和反应机理。
此外,在实验过程中还可以通过TGA仪器的联用技术,如TGA-FTIR(Fourier transform infrared spectroscopy)和TGA-MS (mass spectrometry)等,对产物的组成进行分析。
热重试验报告

热分析实验报告一、实验目的了解热分析测试的原理,掌握一些相关的热分析信息。
能看懂热分析的基本信息图,会解一些基本的热分析图。
二、实验原理1、热重分析仪的工作原理热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。
最常用的测量的原理有两种,即变位法和零位法。
所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。
零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。
由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。
2、影响热重分析的因素(1)试样量和试样皿热重法测定,试样量要少,一般2~5mg。
一方面是因为仪器天平灵敏度很高(可达0.1μg),另一方面如果试样量多,传质阻力越大,试样内部温度梯度大,甚至试样产生热效应会使试样温度偏离线性程序升温,使TG曲线发生变化,粒度也是越细越好,尽可能将试样铺平,如粒度大,会使分解反应移向高温。
试样皿的材质,要求耐高温,对试样、中间产物、最终产物和气氛都是惰性的,即不能有反应活性和催化活性。
通常用的试样皿有铂金的、陶瓷、石英、玻璃、铝等。
特别要注意,不同的样品要采用不同材质的试样皿,否则会损坏试样皿,如:碳酸钠会在高温时与石英、陶瓷中的SiO2反应生成硅酸钠,所以象碳酸钠一类碱性样品,测试时不要用铝、石英、玻璃、陶瓷试样皿。
铂金试样皿,对有加氢或脱氢的有机物有活性,也不适合作含磷、硫和卤素的聚合物样品,因此要加以选择。
(2)升温速率升温速度越快,温度滞后越严重,如聚苯乙烯在N2中分解,当分解程度都取失重10%时,用1℃/min测定为357℃,用5℃/min测定为394℃相差37℃。
升温速度快,使曲线的分辨力下降,会丢失某些中间产物的信息,如对含水化合物慢升温可以检出分步失水的一些中间物。
热重分析实验报告

热重分析实验报告姓名:XXX 专业:有机化学学号:312070303004 时间:2012.10.31一、实验目的:1、了解热重分析实验原理、仪器结构及基本特点;2、了解同步热分析仪的应用;3、选用合适的样品,运用同步热分析仪对样品进行热重和差热分析。
二、实验原理:1、热重分析法(TG)的基本原理热重分析法(Thermogravimetry Analysis,简称TG或TGA)为使样品处于一定的温度程序(升/降/恒温)控制下,观察样品的质量随温度或时间的变化过程。
广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控。
利用热重分析法,可以测定材料在不同气氛下的热稳定性与氧化稳定性,可对分解、吸附、解吸附、氧化、还原等物化过程进行分析(包括利用TG 测试结果进一步作表观反应动力学研究),可对物质进行成分的定量计算,测定水分、挥发成分及各种添加剂与填充剂的含量。
热重分析仪的基本原理示意如下:炉体(Furnace)为加热体,在由微机控制的一定的温度程序下运作,炉内可通以不同的动态气氛(如N2、Ar、He等保护性气氛,O2、air等氧化性气氛及其他特殊气氛等),或在真空或静态气氛下进行测试。
在测试进程中样品支架下部连接的高精度天平随时感知到样品当前的重量,并将数据传送到计算机,由计算机画出样品重量对温度/时间的曲线(TG 曲线)。
当样品发生重量变化(其原因包括分解、氧化、还原、吸附与解吸附等)时,会在TG曲线上体现为失重(或增重)台阶,由此可以得知该失/增重过程所发生的温度区域,并定量计算失/增重比例。
若对TG曲线进行一次微分计算,得到热重微分曲线(DTG曲线),可以进一步得到重量变化速率等更多信息。
2、热流型差示扫描量热仪(DSC)实验原理热流型差示扫描量热仪(DSC)使样品处于一定的温度程序(升/降/恒温)控制下,观察样品和参比物之间的热流差随温度或时间的变化过程。
实验报告4:热重分析实验

湖南工业大学包装工程专业共页第页实验报告年月实验者:李艳年级:08 同实验者:李梦豪吴虑实验名称:热重分析实验实验目的:了解热重分析的基本原理及热重曲线的分析法,测绘NaHC O⒊、BaCl2·2H2O的脱水热谱图并予以定量解释。
实验原理:热重法(TG)是在程序控制温度的条件下测量物质的质量与温度的关系的一种技术。
当样品在程序升温过程中发生脱水、氧化或分解时,其质量就会发生相应的变化。
通过热电偶和热天平,记录样品在程序升温过程中的温度t和与之相应关系绘制成图,即得到该物质的热重普线图。
在理想实验实验中,图中t应该是样品的质量变化达到天平开始感应的最初温度,同样t是样品质量变化达到最大值时的温度。
图形的形状、t和t的值主要由物质的性质所决定,但也与设备及操作条件﹙如升温速率等﹚有关。
在实验中由于样品的预处理状况、热分析炉的结构、炉内外气氛对流等因素的影响。
本实验分别测试NaHC O⒊、BaCl2·2H2O在加热过程中发生分解反应时的质量变化,测求其分解反应温度和两个脱水温度并验证如下反应步骤:NaHCO3→Na2CO3+CO2+H2OBaCl2·2H2O→BaCl2·H2O+H2OBaCl2·H2O→BaCl2+H2O实验试剂与仪器:试剂:BaCl2·2H2O(AR), NaHCO3(AR).仪器:电子天平(精度0.1㎎),热分析炉,CKW–1000系列温度控制仪。
实验步骤:⑴装好设备,在天平右臂挂好坩堝,调节天平到平衡位置,并记下读数。
⑵取下空坩堝,称取0.15g左右的NaHCO3放在其中,轻轻振动,使之自然堆积。
然后将仍挂回天平右臂上,使其垂直地置于电炉的恒温区域之中。
⑶把测温热点偶插入电炉,热电偶的热端应尽量接近坩堝,并接好温度控制仪。
⑷设置好控制程序,控制温度升高速度为每分钟3度。
⑸每隔1度记录天平的读数与相应温度,直到200度为止。
热重分解实验报告

一、实验目的1. 了解热重分析的基本原理和方法;2. 掌握热重分析仪器的基本操作;3. 通过实验,研究物质的分解过程,分析其热稳定性。
二、实验原理热重分析(TGA)是一种用于测定物质在温度变化过程中质量变化的实验技术。
在实验过程中,样品被加热,温度逐渐升高,当温度达到一定值时,样品发生分解,质量随之减少。
通过测量质量变化与温度的关系,可以分析物质的分解过程、热稳定性和热分解动力学。
三、实验仪器与药品1. 仪器:热重分析仪、电子天平、试管、试管夹、酒精灯、加热炉、温度计、药匙等;2. 药品:样品(如苯甲酸、对硝基苯甲酸等)、溶剂(如乙醇、水等)。
四、实验步骤1. 准备样品:称取一定量的样品,置于干燥的试管中;2. 样品预处理:将样品与溶剂混合,搅拌均匀后,用滤纸过滤,去除杂质;3. 样品干燥:将过滤后的样品置于烘箱中,干燥至恒重;4. 热重分析:将干燥后的样品放入热重分析仪的样品皿中,设置实验参数,进行热重分析;5. 数据处理:记录实验过程中样品的质量变化与温度变化关系,绘制TGA曲线。
五、实验现象在实验过程中,样品在加热过程中出现质量损失,TGA曲线呈现下降趋势。
当温度达到一定值时,质量损失速度加快,表明样品发生分解反应。
六、实验结果与分析1. 样品热稳定性:根据TGA曲线,分析样品的热稳定性。
样品的热稳定性可通过以下指标进行评价:(1)热分解温度:样品开始分解的温度;(2)热分解速率:样品分解过程中质量损失的速度;(3)热分解动力学:根据TGA曲线,分析样品分解反应的动力学参数,如活化能、反应级数等。
2. 样品分解产物:根据TGA曲线,分析样品分解产物的种类和含量。
可通过以下方法进行验证:(1)气相色谱-质谱联用(GC-MS)分析分解产物的组成;(2)红外光谱(IR)分析分解产物的结构。
七、实验结论1. 通过热重分析实验,研究了样品的热稳定性和分解过程;2. 实验结果表明,样品在加热过程中发生分解反应,产生了一定量的分解产物;3. 根据实验结果,可以进一步研究样品的分解动力学和产物性质。
热重实验报告

热重实验报告热重实验报告引言:热重实验是一种常见的物理实验方法,用于研究材料的热性质和热解过程。
通过在控制条件下对材料进行加热,观察材料的质量随温度的变化,可以得到材料的热分解特性、热稳定性以及热解动力学参数等信息。
本文将介绍热重实验的原理、实验步骤以及实验结果的分析。
实验原理:热重实验的基本原理是利用称量仪器和加热设备,对样品进行加热并测量其质量的变化。
在实验过程中,样品被放置在称量仪器中,并通过加热设备升温。
同时,称量仪器会实时测量样品的质量,并将数据记录下来。
通过分析质量随温度的变化曲线,可以得到材料的热性质和热解特性。
实验步骤:1. 准备样品:选择待测材料,并按照实验要求制备样品。
样品的形状、尺寸和质量应符合实验要求。
2. 样品称量:使用精确的电子天平称量样品的质量,并记录下来。
确保称量的准确性。
3. 样品装载:将称量好的样品放置在热重仪器的样品盘中,并固定好。
4. 实验条件设置:根据实验要求,设置实验的温度范围和升温速率。
确保实验条件的稳定性和准确性。
5. 实验开始:启动热重仪器,并开始加热样品。
同时,称量仪器会实时记录样品的质量变化。
6. 数据记录:在实验过程中,实时记录样品的质量随温度变化的数据。
数据可以通过计算机软件进行保存和分析。
7. 实验结束:当样品的质量变化趋于稳定时,实验结束。
关闭热重仪器,并记录实验结果。
实验结果分析:通过实验得到的数据,可以进行以下分析:1. 质量变化曲线:根据实验记录的数据,绘制质量随温度变化的曲线。
观察曲线的形状和趋势,可以初步判断样品的热分解特性。
2. 质量损失:通过计算质量变化的百分比,可以得到样品在不同温度下的质量损失情况。
根据质量损失的程度,可以评估样品的热稳定性。
3. 热解特性:根据质量变化曲线的特点,可以分析样品的热解特性。
例如,观察是否存在质量急剧下降的阶段,可以判断样品是否发生了热解反应。
4. 热解动力学参数:通过对质量变化曲线的进一步分析,可以得到样品的热解动力学参数,如热解速率常数、活化能等。
热分析认识实验报告

一、实验目的1. 了解热分析的基本原理和方法;2. 掌握热重分析(TG)和差热分析(DTA)的操作方法;3. 通过实验,分析样品的热性质变化,并探讨其与物质结构、组成的关系。
二、实验原理热分析是一种基于物质在加热或冷却过程中物理性质和化学性质变化的测试方法。
主要方法包括热重分析(TG)、差热分析(DTA)、差示扫描量热法(DSC)等。
本实验主要涉及TG和DTA两种方法。
1. 热重分析(TG):在程序控制温度下,测量物质的质量与温度或时间的关系。
通过TG曲线,可以分析样品的热稳定性、分解温度、相变温度等热性质。
2. 差热分析(DTA):在程序控制温度下,比较样品与参比物的温度差。
当样品发生相变、分解等热效应时,其温度差会发生变化,从而得到DTA曲线。
三、实验器材1. 热重分析仪2. 差热分析仪3. 样品支架4. 样品5. 计算机及数据采集软件四、实验操作步骤1. 样品准备:将样品研磨成粉末,过筛,取适量放入样品支架。
2. 热重分析(TG)实验:a. 打开热重分析仪,预热至设定温度;b. 将样品支架放入炉内,设置加热程序;c. 记录样品质量随温度的变化曲线。
3. 差热分析(DTA)实验:a. 打开差热分析仪,预热至设定温度;b. 将样品支架放入炉内,设置加热程序;c. 同时记录样品与参比物的温度差随时间的变化曲线。
4. 数据处理与分析:将实验数据导入计算机,使用数据采集软件进行曲线拟合、峰面积计算等分析。
五、实验结果与分析1. 热重分析(TG)结果:通过TG曲线,可以看出样品在加热过程中质量的变化。
分析样品的分解温度、相变温度等热性质。
2. 差热分析(DTA)结果:通过DTA曲线,可以看出样品在加热过程中温度差的变化。
分析样品的相变温度、分解温度等热性质。
3. 结果比较:对比TG和DTA结果,分析样品的热性质变化,探讨其与物质结构、组成的关系。
六、实验结论通过本次实验,我们掌握了热重分析(TG)和差热分析(DTA)的操作方法,分析了样品的热性质变化,并探讨了其与物质结构、组成的关系。
热重分析实验报告

热重分析实验报告
热重分析是一种通过对样品在加热过程中质量的变化进行监测和分析的方法。
在本次实验中,我们使用了热重分析仪器对不同样品进行了研究和分析,以探究其热稳定性和热分解特性。
首先,我们准备了三种不同的样品,分别是聚合物材料、无机盐和有机化合物。
这些样品代表了不同类型的化合物,在热重分析中具有一定的代表性。
我们将这些样品放入热重分析仪器中,并在一定的温度范围内进行加热,同时监测样品的质量变化。
在实验过程中,我们发现不同样品在加热过程中表现出了不同的热分解特性。
聚合物材料在一定温度范围内出现了明显的质量损失,这表明其在这一温度范围内发生了热分解反应。
而无机盐和有机化合物在加热过程中表现出了不同的质量变化规律,这提示了它们的热稳定性和热分解特性与聚合物材料存在差异。
通过对实验数据的分析,我们得出了一些初步的结论。
首先,不同类型的样品
在热重分析中表现出了不同的热分解特性,这与它们的化学结构和性质密切相关。
其次,热重分析可以为我们提供样品的热稳定性和热分解特性等重要信息,这对于材料的研究和应用具有重要意义。
总的来说,本次实验通过热重分析方法对不同样品的热稳定性和热分解特性进
行了研究和分析,为我们深入了解样品的性质和特性提供了重要的参考。
通过这些实验数据,我们可以更好地指导材料的合成和应用,为相关领域的研究工作提供有力支持。
希望通过这次实验,能够对热重分析方法有一个更深入的了解,为今后的科研工作提供更多的帮助和支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南昌大学实验报告
学生姓名:_______ 学号:_______专业班级:__________
实验类型:□演示□验证□综合□设计□创新实验日期:2013-04-09实验成绩:
热重分析
一、实验目的
1.了解热重分析法的基本原理和差热分析仪的基本构造;
2.掌握热重分析仪的使用方法;
3.测定硫酸铜晶体试样的差热谱图,并根据所得到的差热谱图,分析样品在加热过程中发生的化学变化。
二、实验原理
热重法(TG)是在程序控制温度的条件下测量物质的质量与温度关系的一种技术。
热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。
最常用的测量的原理有两种,即变位法和零位法。
所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。
零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。
由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。
热重实验仪器主要由记录天平、炉子、程序控温装置、记录仪器和支撑器等几个部分组成,其中最主要的组成部分是记录天平,它基本上与一台优质的分析天平相同,如准确度、重现性、抗震性能、反应性、结构坚固程度以及适应环境温度变化的能力等都有较高的要求。
记录天平根据动作方式可以分为两大类:偏转型和指零型,无论哪种方式都是将测量到的重量变化用适当的转换器变成与重量变化成比例的电信号,并可以将得到的连续记录转换成其他方式,如原始数据的微分、积分、对数或者其他函数等,用来对实验的多方面热分析。
在上述方法中又以指零型天平中的电化学法适应性更强。
发生重量变化时,天平梁发生偏转,梁中心的纽带同时被拉紧,光电检测元件的偏转输出变大,导致吸引线圈中电流的改变。
在天平一端悬挂着一根位于吸引线圈中的磁棒,能通过自动调节线圈电流时天平梁保持平衡态,吸引线圈中的电流变化与样品的重量变化成正比,由计算机自动采集数据得到 TG 曲线。
燃烧失重速率曲线 DTG 可以通过对曲线的数学分析得到。
热重分析原理如下图所示:
三、实验仪器及试剂
HCT-2 型 TG-DTA 综合热分析仪、镊子、五水硫酸铜晶体等
四、实验步骤
1、打开炉子,将左右两个陶瓷杆放入瓷坩埚容器,关好炉子在操作界面上调零。
2、将坩埚放在天平上称量,记下数值P1,然后将测试样放入已称坩埚中称量,记下试样的初始质量。
3、将称好的样品坩埚放入加热炉中吊盘内。
4、调整炉温,选择好升温速率。
5、开启冷却水,通入惰性气体。
6、启动电炉电源,使电源按给定的速率升温。
7、观察测温表,每隔一定时间开启天平一次,读取并记录质量数值。
8、测试完毕,切断电源,待温度降低至100摄氏度时切断冷却水。
五、实验结果及数据处理
实验所得曲线如下图所示:
2、实验图出现三次明显的吸收峰,说明硫酸铜的失水过程需要吸收热量,而前两次失水的吸收热量现象比较明显,最后一次的吸收峰接近没有,可能原因是余
温加热使最后一分子的水失去。
六、思考与讨论
热重分析的特点是使样品处于程序控温下,观察样品的质量随温度变化的函数,从而得出物质在一定温度区间内的反应特性以及热稳定等信息。
升温速率越大,测试测得的温度滞后现象越严重,起始失重温度和终止温度测定值变得越高,分解温度范围也会变得更宽。
对于对分解失重不太敏感的样品的TG测试,如果升温速率太快,样品来不及作出充分响应,失重台阶就会测不准或测不出。
实验受浮力、实验盘、挥发物的冷凝、升温速率、气氛、试样质量等因素的影响。