数理统计的基础知识

合集下载

数理统计的基础知识

数理统计的基础知识
样本值:( x1 , x2 , , xn ) =(100,85,70,65,90,95,63,50,77,86)
样本容量:=10
1 10 1 (2)x xi (100+85+&&+86)=78.1 10 i 1 10
n 1 1 * 2 2 2 s ( x x ) [21.9 6.9 i n 1 i 1 9
1. 定义 设 1 ,
称为自由度为n的 分布.
2. 临界值表的结构和使用 设 ~ 2(n),若对于: 0<<1,
存在
则称
2
0 满足 2 2 P{ } , 为 2 (n) 分布的上分位点。
2
( ; n)
2 2
例16.3 给定=0.05,自由度n=25,求 满足下面等式的临界值:
2 *2
1 x,1 x 0, 解:分布密度为 p( x) 1 x,0 x 1, 0, 其它
则 E x(1 x)dx x(1 x)dx 0
1 0
0
1
1 D x (1 x )dx x (1 x )dx 1 0 6
(4) F 统计量及其分布
总体 ~ N (1, 12),(1, 2, ... n1 )为样本, ,S
*2 1
1 2 ( ) i n1 1 i 1
2 2
n1
总体 ~ N (2, ),(1, 2, ... n2 )为样本, , S 2*2 1 n2 2 ( ) i n2 1 i 1
(1) P{F 2 } (2) P{F 1}
解 (1)2 F ( ; n1, n2 ) F (0.1;10,5) 3.3

根据数理统计知识点归纳总结(精华版)

根据数理统计知识点归纳总结(精华版)

根据数理统计知识点归纳总结(精华版)
1. 引言
本文旨在对数理统计的基本知识点进行归纳总结,帮助读者快速了解数理统计的核心概念和方法。

2. 概率论基础
- 概率的基本定义和性质
- 随机事件的运算规则
- 条件概率和独立性
- 贝叶斯定理
3. 随机变量和分布
- 随机变量的定义和分类
- 离散型随机变量和连续型随机变量
- 常见离散型分布(如伯努利分布、二项分布、泊松分布)
- 常见连续型分布(如均匀分布、正态分布、指数分布)
4. 数理统计的基本概念
- 总体和样本的概念
- 估计与抽样分布
- 统计量和抽样分布
5. 参数估计
- 点估计的定义和性质
- 常见的点估计方法(如最大似然估计、矩估计)
- 区间估计的基本原理和方法
6. 假设检验
- 假设检验的基本思想和步骤
- 单侧检验和双侧检验
- 假设检验中的错误类型和显著性水平
- 常见的假设检验方法(如正态总体均值的检验、两样本均值的检验)
7. 相关分析
- 相关系数的定义和计算方法
- 相关分析的假设检验
- 线性回归分析的基本原理和方法
8. 统计软件的应用
- 常见的统计软件介绍(如SPSS、R、Python)
- 统计软件的基本操作(如数据导入、数据处理、统计分析)
9. 结语
本文对数理统计的核心知识点进行了简要的概括,供读者参考和研究。

通过研究数理统计,读者可以更好地理解和应用统计学在实际问题中的作用,提高数据分析和决策能力。

以上是根据数理统计知识点的归纳总结,希望有助于您对数理统计的理解和学习。

如需深入了解各个知识点的具体内容,请参考相关教材或课程。

数学概率论与数理统计的基础知识

数学概率论与数理统计的基础知识

数学概率论与数理统计的基础知识概率论和数理统计是数学中的重要分支,它们研究了随机事件的发生规律以及通过对数据进行统计分析来了解事物的规律性。

本文将介绍数学概率论与数理统计的基础知识,帮助读者了解这两个领域的重要概念和方法。

一、概率论的基础知识1. 随机试验和样本空间随机试验是在相同条件下具有不确定性的实验,其结果不能事先预知。

样本空间是随机试验所有可能结果的集合。

2. 事件和概率事件是样本空间的子集,表示一些感兴趣的结果。

概率是事件发生的可能性大小的度量,介于0和1之间。

3. 古典概型古典概型是指具有有限样本空间且样本点等可能出现的随机试验。

在古典概型中,事件的概率可以通过样本点的数目来计算。

4. 条件概率条件概率是指事件B在另一个事件A已经发生的条件下发生的概率,表示为P(B|A)。

条件概率的计算可以使用“乘法规则”。

5. 独立事件事件A和B称为独立事件,如果事件A的发生不会对事件B的发生产生影响。

独立事件的概率计算可以使用“乘法规则”。

二、数理统计的基础知识1. 总体和样本总体是指研究对象的全体,而样本是从总体中选取的一部分个体。

统计学中,我们通常通过对样本的统计分析来推断总体的特征。

2. 随机变量和概率分布随机变量是取值具有随机性的变量,可以是离散的或连续的。

概率分布描述了随机变量各个取值的概率。

3. 参数和统计量参数是总体的特征指标,统计量是样本的特征指标。

通过样本统计量的计算,我们可以对总体参数进行估计。

4. 抽样分布和中心极限定理抽样分布是指统计量的分布,它反映了统计量的随机性。

中心极限定理表明,当样本容量足够大时,样本均值的抽样分布近似服从正态分布。

5. 置信区间和假设检验置信区间用于对总体参数进行估计,假设检验用于对总体参数的假设进行推断。

通过置信区间和假设检验,我们可以对统计结论进行推断和验证。

三、应用案例概率论和数理统计在各个领域都有广泛的应用。

例如,金融领域中的风险评估和投资决策,医学领域中的临床试验和流行病学研究,工程领域中的质量控制和可靠性分析等等。

数理统计基础知识

数理统计基础知识

多元线性回归分析
01
02
03
多元线性回归分析是研究多个自 变量与一个因变量之间线性关系 的回归分析方法。
多元线性回归模型可以表示为: y=β0+β1x1+β2x2+...+βkxk+ε ,其中β0,β1,...,βk为模型参数, ε为随机误差项。
多元线性回归分析的步骤与一元 线性回归分析类似,但需要考虑 多个自变量的影响以及自变量之 间的相关性问题。
02 概率论基础知识
概率的定义与性质
概率的直观定义
01
描述某一事件发生的可能性大小的数值。
概率的性质
02
非负性、规范性(所有可能事件的概率之和为1)、可加性(互
斥事件的概率之和等于它们并事件的概率)。
古典概型与几何概型
03
古典概型中每个样本点等可能出现,几何概型中样本点连续且
等可能分布。
条件概率与独立性
通过对样本进行重复抽样,生成大量自助样本,然后基于自助样本 得到参数的置信区间。
估计量的评价标准
无偏性
估计量的数学期望等于被估计的总体参数,即估计量在多次抽样下的平均 值等于总体参数真值。
有效性
对于同一总体参数的两个无偏估计量,方差更小的估计量更有效。
一致性
随着样本量的增加,估计量的值逐渐接近总体参数真值。
F检验
用于检验两个正态总体方差是否存在显著差异。
非参数假设检验
符号检验
用于检验两个相关样本的中位数是否存在显 著差异。
秩和检验
用于检验两个独立样本的中位数是否存在显 著差异。
游程检验
用于检验两个相关样本的分布是否存在显著 差异。
06 方差分析与回归分析

数理统计基本知识

数理统计基本知识

2 (5), Y
E( 2 ) n, D( 2 ) 2n.
P{ (n)}
2 2
2 2 ( n ) 的点 为分布 (n) 的上分位点.


( n)
2
f ( y)dy
19
•当n充分大(>45)时,有
2
1 ( z 2n 1 ) 2 2

i 1
n
X i 2 等均
1 ( X 1 X 2 ) 等都不是统计 2 Xi i 1 2 量,因为它们含有未知参数 ,
为统计量,而
1
n
2
从统计量的定义可知,统计量是不含任何未知参数的
随机变量.
10
几个常用的统计量 设X1, X2 ,…, Xn是来自总体X
的一个样本, (x1,x2,…,xn)是其观察值.
§6.2
抽样分布
一、统计量 样本是进行统计推断的依据.但在应
用时,往往不是直接使用是样本本身,而是针对不同 的问题构造样本的适当函数,利用这些样本的函数进 行统计推断. 定义1 设X1, X2 ,…, Xn是来自总体 X 的一个样本, g(X1, X2 ,…, Xn)是X1, X2 ,…, Xn函数,若g 中不含任 何未知参数,则称g(X1, X2 ,…, Xn)是一个统计量. [注] (1) 统计量是一个随机变量;
n 11
0
18
y


2 分布的可加性 设 12 ~ 2 (n1 ), 2 ~ 2 (n2 ) 2 2 2 2 2 且 1 与 2相互独立,则有 1 2 ~ ( n1 n2 )
分布的数学期望和方差
例: X

U ( 0, 4), 则 E ( X Y ) _____ D( X Y ) _____ . 分布的分位点 对于给定正数 (0<<1), 称满足

数理统计主要知识点

数理统计主要知识点

数理统计主要知识点数理统计是统计学的重要分支,旨在通过对概率论和数学方法的研究和应用,解决实际问题上的不确定性和随机性。

本文将介绍数理统计中的主要知识点,包括概率分布、参数估计、假设检验和回归分析。

一、概率分布概率分布是数理统计的基础。

它描述了一个随机变量所有可能的取值及其对应的概率。

常见的概率分布包括:1. 均匀分布:假设一个随机变量在某一区间内取值的概率是相等的,则该随机变量服从均匀分布。

2. 正态分布:正态分布是最常见的连续型概率分布,其概率密度函数呈钟形曲线,具有均值和标准差两个参数。

3. 泊松分布:泊松分布描述了在一定时间内发生某个事件的次数的概率分布,例如在一天内发生交通事故的次数。

4. 二项分布:二项分布描述了进行一系列独立实验,每次实验成功的概率为p时,实验成功的次数在n次内取特定值的概率。

二、参数估计参数估计是根据样本数据来推断随机变量的参数值。

常见的参数估计方法包括:1. 最大似然估计:假设数据服从某种分布,最大似然估计方法寻找最能“解释”数据的那个分布,计算出分布的参数值。

2. 矩估计:矩估计方法利用样本矩来估计分布的参数值,例如用样本均值估计正态分布的均值,样本方差估计正态分布的方差。

三、假设检验假设检验是为了判断一个统计假设是否成立而进行的一种统计方法。

它包括假设、检验统计量和显著性水平三个重要概念。

1. 假设:假设指的是要进行验证的观察结果,分为零假设和备择假设两种。

2. 检验统计量:检验统计量是为了检验零假设而构造的统计量,其值代表目标样本符合零假设的程度。

3. 显著性水平:显著性水平是用来决定是否拒绝零假设的标准,通常为0.01或0.05。

四、回归分析回归分析是用来研究和描述两个或多个变量之间关系的统计方法。

它可以帮助人们了解因果关系,做出预测和控制因素的效果。

1. 简单线性回归:简单线性回归是一种简单的回归分析方法,它描述一个因变量和一个自变量之间的线性关系。

2. 多元线性回归:多元线性回归描述多个自变量和一个因变量之间的关系,通过多元回归模型可以找到最佳的回归系数,从而用来预测未来的结果。

4-1数理统计的基础知识

4-1数理统计的基础知识

T6
1 2
(
X
2 1
X
2 2
X
2 3
).
不是
2. 常用统计量
设( X1, X2 , , Xn它)反是映来了自总总体体均值X的一个样本, ( x1, x2 , , xn )是这一样 的信本息的样本值.
(1)样本平均值
1 n
X n i1 Xi ;
其观察它的值反信映息了x 总 体n1 方in1差xi .
数理统计是研究统计工作一般原理和方法的科学,它主要阐
述搜集、整理、分析统计数据,并据以对研究对象进行统计
推断的理论和方法,是统计学的核心和基础。
数理统计的任务就是在概率论的基础上研究怎样以 有效的方式收集、整理和分析可获得的有限的, 带有 随机性的数据资料,对所考察问题的统计规律性尽可 能作出精确而可靠的推断或预测,为采取一定的决 策和行动提供依据和建议.
n维r.v.(抽样具有随机性)
样本容量:样本中所含的个体的数目n.
样本值:样本的一次观察值或实现值 ( x1, x2 , xn ).
(2) 简单随机样本 1. 代表性: X1,X2,…, Xn中每一个与所考察的总体X 有相同的分布.
2. 独立性: X1,X2,…, Xn是相互独立的随机变量.
满足上述两条性质的样本称为简单随机样本. 注:以后所考虑的样本均为简单随机样本, 并简称为样本.
样本矩具有下列性质:
性质 设总体X的期望E( X ) ,方差D( X ) 2 ,
( X1, X2 , , Xn )为来自总体X的样本,则有 :
(1) E( X ) ;
(2)
D( X )
1 n
2;
(3)
E( S02 )
n1 n

数理统计的基本知识

数理统计的基本知识

• 这些观测值仍分别称为样本均值,样本方差,样本标准差,样本k阶原 点矩,样本k阶中心矩。 记作 k 存在,则当n→∞时 • 我们指出,若总体X的k阶原点距 E ( X k ) , p A k , k 1,2,... k • • 即:样本的k阶原点距依概率收敛于总体的k阶原点距。 • 事实上,由于X1,X2,...,Xn相互独立,且与X同分布,故 X1k,X2k,...,Xnk相互独立,且与Xk同分布,故有 • E(X1k)=E(X2k)=E(Xnk)=μk,k=1,2,... • 由第五章的辛钦大数定律知
二· 常用的统计量
• 样本均值
• 样本方差 • 样本标准差
1 n X Xi n i 1 2 n n 2 2 1 1 2 S ( Xi nX ) (Xi X ) n 1 i 1 n 1 i 1 S S2 1 n 2 (Xi X ) n 1 i 1
F (n , n ) f ( x)dx 1 2
• 的点Fɑ(n1,n2)为F(n1,n2)分布的上ɑ分位点 。 • 如图
f(x)
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0
ɑ
x
0.5 1 1.5
1 • F分布的上分位点具有如下性质:F1 (n1, n2 ) F (n2 , n1 )

如果总体X的分布函数为F(x),则样本X1,X2,...Xn的联合分布函数为 F*(x1,x2,...xn)=F(x1)F(x2)· · · F(xn)= n 如果总体X是离散型随机变量,且概率密度为 F ( xi ) P{X=xi},i=1,2,... i 1 则样本X1,X2,...Xn的联合概率密度为 P*{X1=x1,X2=x2,...Xn=xn}=P{X1=x1}P{X2=x2}· · · P{Xn=xn}=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章数理统计的基础知识数理统计与概率论是两个有密切联系的学科, 它们都以随机现象的统计规律为研究对象.但在研究问题的方法上有很大区别:概率论——已知随机变量服从某分布,寻求分布的性质、数字特征、及其应用;数理统计——通过对实验数据的统计分析, 寻找所服从的分布和数字特征, 从而推断整体的规律性. 数理统计的核心问题——由样本推断总体从本章开始,我们将讨论另一主题:数理统计。

数理统计是研究统计工作的一般原理和方法的科学,它主要阐述搜集、整理、分析统计数据,并据以对研究对象进行统计推断的理论和方法,是统计学的核心和基础。

本章将介绍数理统计的基本概念:总体、样本、统计量与抽样分布。

由于大量随机现象必然呈现出它的规律性,因而从理论上讲,只要对随机现象进行足够多次观察,被研究的随机现象的规律性一定能清楚地呈现出来。

但客观上只允许我们对随机现象进行次数不多的观察试验,也就是说, 我们获得的只是局部观察资料。

数理统计就是在概率论的基础上研究怎样以有效的方式收集、整理和分析可获的有限的, 带有随机性的数据资料,对所考察问题的统计性规律尽可能地作出精确而可靠的推断或预测,为采取一定的决策和行动提供依据和建议.§4.1 总体与样本一、 总体与总体分布1.总体:具有一定的共同属性的研究对象全体。

总体中每个对象或成员称为个体。

研究某批灯泡的质量,该批灯泡寿命的全体就是总体;考察国产 轿车的质量,所有国产轿车每公里耗油量的全体就是总体;某高校学习“高等数学”的全体一年级学生。

个体与总体的关系,即集合中元素与集合之间的关系。

统计学中关心的不是每个个体的所有具体特性,而是它的某一项或某几项数量指标。

某高校一年级学生“高等数学”的期末考试成绩。

对于选定的数量指标 X (可以是向量)而言,每个个体所取的值是不同的,这一数量指标X 就是一个随机变量(或向量);X 的概率分布就完全描述了总体中我们所关心的这一数量指标的分布情况。

数量指标X 的分布就称为总体的分布。

说明例如 服装厂生产的各式服装,玩具厂生产的儿童玩具,检验部门通常将产品分成若干等级。

3X 总体分布就是设定的表示总体的随机变量.的分布.4.1 X X 定义统计学中称随机变量(或向量)为,并把随机变量(或向量)的分布称为总体总体分布.1X 表示总体的既可以是随机变量,也可以.是随机向量.2 有时个体的特性本身不是直接由数量指.标来描述的.总体的分布一般来说是未知的,统计学的主要任务正是要对总体的未知分布进行推断。

二 样本与样本分布以下假定所考虑的样本均为简单随机样本,并简称为样本。

样本的双重理解全体样本值组成的集合称为样本空间12122.4.n n X X X X X X X X n 称(,,,)为总体的,若,,, 是独立同分布的随机变量,且与总体同分布,样本中所含分量简单随机的个数称为该样本定义本的样容量1212n n X X X x x x 在未观察具体的抽样结果时,样本(,,,)视为随机向量.观察具体的抽样结果后,样本便可理解为所得的一组具体的观察值(,,,),称为样本值.1212i 1(),(,,)(n nn i X F x X X X F x x x F x ==∏ 设总体的分布函数为则样本(,,,)的分布函数为,).称之为样本分布.121122i 1(){},(,,){,,,}(nn n n i X p x P X x x X p x x x P X x X x X x p x ========∏ 若总体为随机变量,概率分布为取遍所有可能值,则样本的概率分布为离散型 ,).2(41,X X N μσ 称总体为正态总体,如它服从正态分布.正态总体是统计应用中最 例常见的总体.现设总体服从正态分布),则气样本密度.由下式给出:212i 12211(,,)()}(21exp{()}2ni n i n ni i x f x x x f x x μσμσ==-=-=--∑ ,).(01){1}.4,{0}1X p p P X p P X p <<====- 称总体为伯努利总体,如它服从以为参数的伯努利分布.即例.2比如我们从某班大学生中抽取10 人测量身高, 得到10 个数.我们只能观察到随机变量取的值而见不到随机变量.它们是样本取到的值而不是样本. 总体、样本、样本值的关系总体(理论分布)?样本样本值统计是从手中已有的资料—样本值, 去推断总体的情况—总体分布F (x )的性质.总体分布决定了样本取值的概率规律,也就是样本取到样本值的规律,事实上, 我们抽样后得到的资料都是具体的、确定的值. 因而可以由样本值去推断总体. 是总体的代表, 含有总体的信息分散、复杂样本是联系二者的桥梁121122,,,{,,,}n nn s n s n n X X X P X i X i X i p -==== 其样本()的概率分布为: (1-p)12101k n n i k n s i i i ≤≤= 其中(1)取或,而+++,它恰等于样本中取值为的分量之总数.1211221112(,,,){,,,}{}.!!!!43knn nn n k k isnn k k n X X X X P X i X i X i P X i ee i i i i λλλλλ=--========∏∏设总体服从参数为的泊松分布,为其样本,则样本的概率分布为: 例 .12k n n i k n s i i i ≤≤= 其中(1)取非负整数,而+++.三 统计推断问题简述12(,,,).n X X X X X 借助于总体的一个样本,对总体的未知分布进行推断,我们把这统计推类问题统称断问题为 为利用样本对未知的总体分布进行推断,我们需要借助样本构造样本的适当的函数,正是利用这些函数所反映的总体分布的信息来对总体分布所属的类型,或总体分布中所含的未知参数作出统计推断.§4.2 统计量一、统计量的定义二、常用的统计量以后简称修正样本方差为样本方差.12(,,)4,3n X X X X 不含设为总体的一个样本,称此样本的任一总体分布未知参数的函数为该样 本的 定义.统计量.221212125,,.(,,,)(,,4,)4n n n n n n X EX DX X X X X SS X X X X nS X X X X σσ===+++= 设总体服从正态分布,未知为总体的一个样本,令 ,. 例则与均为样本.的统计量.(5),.n X U U U σσ-= 但若令 则不是该样本的统计量,因的表示式中含有总体分布中的位置参数12(,,,)n X X X X 设为总体的一个样本.1211()n X X X X X n =+++称样本的算术平均值为样本均值,记为. 样本均值,即 .220120 ()21.n i i S X X n S ==-∑样本方差是用来描述样本中诸分量与样本均值的均方差异的,它有两种定义方式。

直观的: .并称为样本的. 样本方差未修正样本方差2220121()11.n i i n S S X X n n S ===---∑统计学中更常用另一种定义,即 .并称修正样样本的本方差为一阶原点矩即为样本均值.二阶中心矩即为未修正样本方差上述五种统计量可统称为样本的矩统计量,简称为样本矩.他们皆可表为样本的显式函数。

三、枢轴量仅含一个未知参数,但其分布却已知的样本函数成为枢轴量。

S S =样本标准差定义为样本方差的算术平3.样本标准即差方根,11,.41nk k i i k A k A k X n ==≥∑. 样本记 并称为样原点距阶的原点距本11()1.5,nk i i k B X X k n B k ==-≥∑记 并称为样本. 样本中心距阶中心距的12(1)(2)()(1)(2)()()(,,,),,,, 6)n n n i X X X X X X X X X X X i ≤≤≤ 设为总体的一个样本.将样本中的诸分量按由小到大的.顺序统计量顺序统计次序排列成 则称(为样本的一组,称为样本的第个顺序量统计量.(1)12(1)12()(1)min(,,,)max(,,,).n n n X X X X X X X X X X ==-样本极 特别地,称小值样本极与分别为与,并称为值样本的大极差1212(,,,)(,,,;),.n nX X X X U X X X θθ 设为总体的一个样本,需推断总体分布中某一未知参数,构造一个样本函数服从一个已知分布2200120(,),(,5,,)(),4n X N X X X X X U μσσμμσ-=设总体其中已知,未知,为总体的一个样本,令例.§4.3 常用的统计分布统计的目的就是借助从总体X 中随机抽取的样本1(,,)n X X ,构造相应的统计量(枢轴量),通过研究它们的分布来对未知的总体分布进行推断. 因此,本节将要补充统计学中经常用到的分布: 分布、F分布与 t 分布。

一、分位数在统计推断中,经常用到统计分布的一类数字特征-分位数,在讲常用的统计分布之前,我们先给出分位数的一般概念和性质,这对于以后查阅常用统计分布表和解决第五章的有关参数的区间估计和假设检验的问题都是非常有用的.1、上侧分位数定义2、上侧分位数的性质2χ{}(),(4.6)-()()(4.)().X F x F P X F F F F F F X F x αααααααααααα=== 设随机变量的分布函数为,对给定的实数(0<<1),如果实数满足 >  即 1上侧 或 1- 7则称为随机变量的分布的水平的.或 定义4直接称为分布函数的水平的分位数上侧4分位数.1001122(1) (), (1);(4.8)(2)()();(3)(0,1),1(),()1;(4.9)(4){},(4.10){}1.(4.11)F F x F F X f x f x dx X N u u u P X F P FX F ααααααααααααααα-+∞--=-~=~-Φ=Φ=-≤=<≤=-⎰若是严格单调递增的则 若, 则若,记水平的上侧分位数为则即对于像标准正态分布那样的对称分布(密度函数为偶函数),统计学中还用到双侧分位数。

3、双侧分位数定义4、双侧分位数的性质5、上侧分位数和双侧分位数的例题二、 分布 1、 分布的定义()(01),{},(4.12)()()1.(4.13)(5)4..X F x T P X T F T F T T X F x ααααααααααα<<>=--=- 设是对称分布的连续型随机变量,分布函数为,对于给定的实数如果正实数满足 即则称为随机变量的分布的水平的,也简称位,双侧分位数分位数或直接称为分布函数的分平义水的位数定21()1-,2{}1()(4.14)(2)(4.15)(3)(4.16)X F T P X T F T T F F F ααααααααα-=>=-===-由分布的对称性容易知道以下关系式成立:(1)或20.0500.050.050.0250.0250.0254.6(0,1),0.05{}0.05()10.050.95,1.645.0.05()10.0250.975,1.96.XN P X u u u u u u α=>=Φ=-==Φ=-== 例设求水平的上侧分位数和双侧分位数.解:由于 , 所以 查表可得 而水平的双侧分位数为,它满足查表得 2χ2χ对定义4.6的几点说明22χ、分布的典型模式112221201()(4.18)2()2()(0).6()4.n x n a xX f x x e n a x e dx X n X n a χχ--+∞--=ΓΓ=>Γ~⎰2如果随机变量的密度函数为其中是函数,称服从个自由度的分布 定义,记作1(1)()()(1)!()22121231()()(1,2,)22221(2).2(3)()(3)22.(4)(1)=a a a n n n n n n x n x x n x χλχχΓ=Γ=-+--Γ=Γ==≥=-=-222当是正整数时当时(2)是的指数分布的密度函数为单峰曲线,从原点开始递增,在处取得最大值,然后递减, 渐进于轴,关于不对称的密度函数在0处取无穷大,以y 轴为 垂直渐进线12222212,,,,(0,1), 1,2,,4.1,() .n i n X X X n X N i n X X X X n χ~==++设是个相互独立的随机变量且则题 服从 分布命2χ分布关于自由度3、的可加性22221(),4.2(),().(2)(),,2.X m Y n X Y X Y m n X n EX n DX n χχχχ~~+~+~==()若且与相互独立,则若则 命题1222221222222212122,,,()()m n m m m m n m nX X X X m X X X X Y X X X X Y X Y X X X X Y m n χχ+++++~++++++++~+设 独立、服从标准正态分布. (1)由于,根据定义4.6与命题4.1,与同分布,与同分步,再由与独立知,与同分 布 以证,明所.2χ4、分布的计算2221(),(4.6)(4.10){()}{()}X n P X n P X n ααχχχα-~>=<=时由与两式可以得到当122222122211142422122211(2)(),.,[]3(),[][]([])31 2.2.n n nnniii i i i i i i i n n nii i i X X X X n X X X X EX E X EX DX n E X D X E X E X X X X DX D X DX n χ=====~++======-=-====∑∑∑∑∑设,,,相互独立且均服从标准正态分布,由知与同分布于是此外由于见习题四(B)的第四题便知再因,,,相互独立,即得上述命题2.χ中第一个结论实际上说明分布同正态分布一样具有可加性2222(,)45()x n n n αχχχαχ≤由于分布是常用的统计分布,但又难于利用其密度函数进行直接计算,通常也为其制定了统计用表.附表3中对自由度的分布给出了水平的上侧分位数之值.222212222122(;),,({()}{()}){()}()}1-x n P X n X n P n X n ααααχχχχαχχα--<⋃>=<<= 因为不是对称函数,故对分布而言不存在双侧分位数但在以后统计推断中,将用到等式 ,或.222(10),0.05,{ 3.940}{18.307}0.05,{3.24720.483}0.95.45,P X P X P n n X X χαχχ=<=>=≤≤=>取水平查表可知 当自由度充分大(如)时,分布可近似地看作正态分布,于是由正态分布的分位数可近似地求得分布例如设的分位数.三、F 分布对定义4.7的说明1F 、分布的定义11()2211101(;,)()()(1)(4.20)(,)22( 4.,)(1)(0,0).(,)7m m n p q X m m m f x m n x x m n n nn B B p q x x dx p q X m X n F F m n --+--=+=~->>⎰ 如果随机变量的密度函数为其中是B(贝塔)函数,称服从第一自由度为,第二自由度为的分布, 记作定义***32.121F m m n x x m n m n x F ≥-=<+分布的密度函数曲线也为单峰曲线,当第一自由度时,曲线在处达最大值显见,即图形的峰值恒在小于1处取到.此外,不难看出,当两个自由度与都变得越来越大时,接近,从而函数曲线就在非常接近1的地方达到最高点.图4.5给出了若干分布的密度函数曲线.2F 、分布的典型模式221(),(),4.20),(,).4.3(,)4.(,).3Xm Yn X Y XnX m Z Y mYnZ Z F m n X F m n X F n m χχ-==~~~设且与相互独立,记则的密度函数为(因此由命题不难看出,若,则命题四、t 分布 1、t 分布的定义对定义4.8的说明F 3、分布的计算1-221-22({(,)}{(,)}){(,)(,)}1-P X F m n X F m n P F m n X F m n αααααα<⋃>=<<= 或1(1)4(5,10)4{ 3.33}0.05,{ 4.24}0.025.(10,5)4{ 4.74}0.05,{ 6.62}0.025.11(,)(,F X F P X P X Y F P Y P Y F m n F n m αααα-~>=>=~>=>== 例子:对于较小的,可以直接由附表查出分布的上侧分位数.设,查表知又设,查表知 (2)当接近于时,可以利用下式求出所需的上侧分位数.(4.21))0.950.9750.050.02511(,),(,).(,)(,)(5,10)11{}0.05,{ 4.24}0.95.4.74 6.62F m n F m n F n m F n m X F P X P X ==~<=≤≤=这样,当时,查表可知12211(;)(1),(4.23)4..8()n X x t x n x n X n t X t n +-=+-∞<<∞~如果 随机变量的密度函数为称服从自由度为的分布, 记义作 定2、t 分布的典型模式3、t 分布的计算211222(1)0. 1,5,10,lim(1).n x x t y x x n t n t x e nn t +--→∞==∞+==∞分布的密度函数曲线也为单峰曲线,但关于轴对称,在处取到最大值轴为其水平渐近线.图4.6给出了自由度时分布的密度函数曲线. (2) 当自由度很大时,分布也接近于标准正态分布,这是因为 时的分布的密度函数曲线,即为标准正态分布的密度函数曲线,但比标准正态分布的尾部有更大的概率.201,(),4.23),().4.4(1,)().4.4X N Y n X Y XT T T t n X F n t n χ=~~~设(,)且与相互独立,记则的密度函数为(因此由命题不难看出,若命题5()t t n t αααα附表对于一些充分小的值给出了分布的水平的上侧分位数之值.由于分布具有对称的密度函数,当接近1时,可按下式求出相应的上侧分位数:122()().(4.24)(),{()}{-()}.{()}.(8)0.05,(8) 1.860,(8) 2.306,{t n t n X t n P X t n P X t n t P X t n X t t t P αααααααααα-=->=<=>==== 因此,如由(4.6),(4.10)与上式得: 再由于分布具有对称的密度函数,具有双侧分位数,由(4.12)与(4.15)知 例如,设,取水平查表可知故有1.860}{ 1.860}{2.306}0.05.(),X P X P X n t t n u u ααα>=<=>=≈ 此外,由于自由度充分大时,分布近似于标准正态分布,故有其中为标准正态分布的上侧分位数.§4.4 抽样分布总体的分布是未知的,或是部分未知的.对总体的分布进行的统计推断称为非参数统计推断;对总体未知的重要数字特征(如总体数学期望、总体方差)或总体分布中所含的未知参数进行统计推断.这类问题称为参数统计推断.在参数统计推断问题中,经常需要利用总体的样本构造出合适的统计量(或枢轴量),并使其服从或渐近服从已知的确定分布。

相关文档
最新文档