最新2020届中考数学 二次函数复习学案(无答案)

合集下载

二次函数中考复习专题教案

二次函数中考复习专题教案

二次函数中考复习专题教案第一章:二次函数的基本概念1.1 二次函数的定义解释二次函数的一般形式:y = ax^2 + bx + c强调a、b、c系数的含义和作用1.2 二次函数的图像介绍二次函数图像的特点:开口方向、顶点、对称轴、与y轴的交点等利用图形软件绘制几个典型二次函数的图像,让学生观察和分析1.3 二次函数的性质讨论二次函数的增减性、对称性、周期性等性质引导学生通过图像理解二次函数的性质第二章:二次函数的顶点式2.1 顶点式的定义解释顶点式:y = a(x h)^2 + k强调顶点(h, k)对二次函数图像的影响2.2 利用顶点式求解二次函数的图像和性质引导学生通过顶点式确定二次函数的图像和性质举例说明如何利用顶点式求解最值问题2.3 顶点式的应用讨论顶点式在实际问题中的应用,如抛物线运动、几何问题等给出几个实际问题,让学生运用顶点式解决第三章:二次函数的解析式3.1 解析式的定义解释二次函数的解析式:y = ax^2 + bx + c强调解析式与顶点式的关系3.2 利用解析式求解二次函数的图像和性质引导学生通过解析式确定二次函数的图像和性质举例说明如何利用解析式求解最值问题3.3 解析式的应用讨论解析式在实际问题中的应用,如物理、化学等领域的方程求解给出几个实际问题,让学生运用解析式解决第四章:二次函数的图像与性质4.1 图像与性质的关系讨论二次函数图像与性质之间的关系引导学生通过图像判断二次函数的性质4.2 开口方向与a的关系解释开口方向与a的关系:a > 0时开口向上,a < 0时开口向下举例说明如何通过开口方向判断二次函数的性质4.3 对称轴与顶点的关系解释对称轴与顶点的关系:对称轴为x = h举例说明如何通过对称轴判断二次函数的性质第五章:二次函数的实际应用5.1 实际应用的基本形式讨论二次函数在实际应用中的基本形式举例说明如何将实际问题转化为二次函数问题5.2 利用二次函数解决实际问题引导学生运用二次函数解决实际问题,如最值问题、优化问题等给出几个实际问题,让学生运用二次函数解决5.3 实际应用的拓展讨论二次函数在其他领域的应用,如经济学、生物学等引导学生思考如何将二次函数应用于解决其他实际问题第六章:二次函数的综合应用6.1 二次函数与线性函数的组合解释二次函数与线性函数组合的形式,如y = ax^2 + bx + c 与y = dx + e 的组合强调组合函数的图像和性质6.2 利用综合应用解决实际问题引导学生运用综合应用解决实际问题,如函数交点问题、不等式问题等给出几个实际问题,让学生运用综合应用解决6.3 综合应用的拓展讨论综合应用在其他领域的应用,如物理学、工程学等引导学生思考如何将综合应用应用于解决其他实际问题第七章:二次函数与不等式7.1 二次不等式的定义解释二次不等式的形式,如ax^2 + bx + c > 0强调解二次不等式的方法和步骤7.2 利用图像解决二次不等式问题引导学生通过图像解决二次不等式问题,如找出不等式的解集举例说明如何利用图像解决实际问题7.3 二次不等式的拓展讨论二次不等式在其他领域的应用,如经济学、工程学等引导学生思考如何将二次不等式应用于解决其他实际问题第八章:二次函数的最值问题8.1 二次函数最值的概念解释二次函数最值的概念,如最大值、最小值强调最值与对称轴、顶点的关系8.2 利用顶点式求解最值问题引导学生通过顶点式求解二次函数的最值问题举例说明如何利用顶点式求解实际问题中的最值8.3 最值问题的拓展讨论最值问题在其他领域的应用,如物理学、工程学等引导学生思考如何将最值问题应用于解决其他实际问题第九章:二次函数与几何问题9.1 二次函数与几何图形的关系解释二次函数与几何图形的关系,如圆、椭圆、抛物线等强调二次函数在几何问题中的应用9.2 利用二次函数解决几何问题引导学生运用二次函数解决几何问题,如求解三角形面积、距离问题等举例说明如何利用二次函数解决实际问题中的几何问题9.3 几何问题的拓展讨论几何问题在其他领域的应用,如物理学、工程学等引导学生思考如何将几何问题应用于解决其他实际问题第十章:二次函数的综合训练10.1 综合训练的目的强调综合训练的重要性,提高学生对二次函数知识的综合运用能力引导学生通过综合训练巩固所学知识10.2 综合训练的内容设计几个综合训练题目,包括不同类型的二次函数问题,如图像分析、性质判断、实际应用等让学生在规定时间内完成综合训练题目给予学生综合训练的反馈,指出错误和不足之处重点和难点解析1. 第一章中二次函数的基本概念:理解二次函数的一般形式和系数含义是学习二次函数的基础,对于图像的特点和性质的理解也是解决复杂问题的关键。

中考数学专题复习二次函数试题(无答案)

中考数学专题复习二次函数试题(无答案)

中考数学专题复习二次函数试题(无答案)二次函数专题考点一:二次函数的解析式及其求解一般的,形如),0(2是常数、、c b a a c bx ax y ≠++=的函数叫做二次函数,其中,x 是自变量,c b a 、、分别为二次函数的二次项系数、一次项系数和常数项。

(1)一般式:c bx ax y ++=2。

已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2。

已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=.(4)对称点式:已知图像上有两个关于y 轴对称的点()()k x k x ,,,21,那么函数的方程可以选用对称点式()()k x x x x a y +--=21,代入已知的另外的点就可以求出函数的方程来了。

例题1:根据题意,求解二次函数的解析式。

(1)求过点A(1,0),B(2,3),C(3,1)的抛物线的方程(2)已知抛物线与x 轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式.(3)已知二次函数的顶点坐标为(3,-2),并且图象与x 轴两交点间的距离为4,求二次函数的解析式。

(4)已知二次方程32=++c bx ax 的两个根是-1和2,而且函数c bx ax y ++=2过点(3,4),求函数c bx ax y ++=2的解析式。

(5)已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式.(6)已知二次函数当x =2时有最大值3,且它的图象与x 轴两交点间的距离为6,求这个二次函数的解析式。

变式1:(1)、已知二次函数的图像经过点A(2,1),B(3,4),且与y 轴交点为(0,7),则求函数的解析式(2)已知过点(2,0),(3,5)的抛物线c bx ax y ++=2与直线33+=x y 相交与x 轴上,求二次函数的解析式(3)已知二次函数c bx ax y ++=2,其顶点为(2,2),图象在x 轴截得的线段长为2,求这个二次函数的解析式。

二次函数中考复习专题教案

二次函数中考复习专题教案

二次函数中考复习专题教案一、教学目标1. 理解二次函数的定义、性质及图像;2. 掌握二次函数的求解方法,包括顶点式、标准式和一般式;3. 能够运用二次函数解决实际问题,提高数学应用能力;4. 培养学生的逻辑思维能力和团队合作精神。

二、教学内容1. 二次函数的定义与性质二次函数的定义:函数f(x) = ax^2 + bx + c(a≠0);二次函数的图像:开口方向、顶点、对称轴、单调区间。

2. 二次函数的图像与性质图像特点:开口方向、顶点、对称轴;性质:单调性、最值。

3. 二次函数的求解方法顶点式:f(x) = a(x h)^2 + k;标准式:f(x) = ax^2 + bx + c;一般式:ax^2 + bx + c = 0。

4. 实际问题求解应用二次函数解决几何问题;应用二次函数解决物理问题;应用二次函数解决生活中的问题。

5. 二次函数的综合应用二次函数与其他函数的结合;二次函数与方程组的结合;二次函数与不等式的结合。

三、教学过程1. 复习导入:回顾一次函数和指数函数的相关知识,为二次函数的学习打下基础;2. 知识讲解:分别讲解二次函数的定义、性质、图像与求解方法;3. 案例分析:分析实际问题,引导学生运用二次函数解决实际问题;4. 课堂练习:布置练习题,巩固所学知识;四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况;2. 练习完成情况:检查学生完成练习题的情况,巩固所学知识;3. 课后作业:布置课后作业,检查学生对知识的掌握程度;4. 小组讨论:评估学生在小组讨论中的表现,培养团队合作精神。

五、教学资源1. PPT课件:展示二次函数的相关概念、性质、图像等;2. 练习题:提供不同难度的练习题,巩固所学知识;3. 实际问题案例:提供与生活相关的实际问题,引导学生运用二次函数解决;4. 教学视频:讲解二次函数的求解方法和解题技巧。

六、教学策略1. 案例分析:通过分析具体案例,让学生了解二次函数在实际问题中的应用;2. 数形结合:利用图形展示二次函数的性质,加深学生对二次函数的理解;3. 小组讨论:鼓励学生进行小组讨论,培养团队合作精神和沟通能力;4. 分层教学:针对不同学生的学习水平,给予相应的指导和辅导;5. 激励评价:及时给予学生鼓励和评价,提高学生的学习积极性。

2019-2020学年九年级数学下册《二次函数》复习学案 新人教版.doc

2019-2020学年九年级数学下册《二次函数》复习学案 新人教版.doc

2019-2020学年九年级数学下册《二次函数》复习学案 新人教版【二次函数图象及性质】1.二次函数2()y a x h k =-+的图像和性质a >02. 二次函数c bx ax y ++=2用配方法可化成()k h x a y +-=2的形式为y = .其中顶点坐标( , ),对 称 轴x = 。

当x = 时,y 有最 值或最 值3. 二次函数2()y a x h k =-+的图像和2ax y =图像的关系.4. 二次函数c bx ax y ++=2中c b a ,,的符号的确定. 【基础练习】1.将抛物线23y x =-向上平移一个单位后,得到的抛物线解析式是 . 2.如图1所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是 . 3.二次函数2(1)2y x =-+的最小值是( )A.-2B.2C.-1D.1yxDBA4.二次函数22(1)3y x =-+的图象的顶点坐标是( )A.(1,3)B.(-1,3)C.(1,-3)D.(-1,-3) 5. 二次函数的图象如图所示,则下列结论正确的是( )A.B.C. D.【典例精析】例1 (06遂宁)已知二次函数24y x x =+, (1) 用配方法把该函数化为2()y a x h =+(其中a 、h 、k 都是常数且a ≠0)形式,并画 出这个函数的图像,根据图象指出函数的对称 轴和顶点坐标.(2) 求函数的图象与x 轴的交点坐标.例2 (08大连)如图,直线m x y +=和抛物线c bx x y ++=2都经过点A(1,0),B(3,2).⑴ 求m 的值和抛物线的解析式;⑵ 求不等式m x c bx x +>++2的解集.(直接写出答案)【课后巩固】1. 抛物线()22-=x y 的顶点坐标是 .2. 请写出一个开口向上,对称轴为直线x =2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .3.已知二次函数22y x x m =-++的部分图象如右图所示,则关于x 的一元二次方程220x x m -++=的解为 .4. 函数2y ax =与(0,0)y ax b a b =+>>在同一坐标系中的大致图象是( )5.已知函数y=x 2-2x-2的图象如图所示,根据其中提供的信息,可求得使 y ≥1成立的x 的取值范围是( ) A .-1≤x≤3B .-3≤x≤1C .x ≥-3D .x ≤-1或x ≥36. (06浙江) 二次函数c bx ax y ++=2(0≠a )的图象如图所示,则下列结论: ①a >0; ②c >0; ③ b 2-4a c >0,其中正确的个数是( ) A. 0个 B. 1个 C. 2个 D. 3个(第5题) (第6题)7. 已知二次函数243y ax x =-+的图象经过点(-1,8).(1)求此二次函数的解析式;(2)根据(1(3)根据图象回答:当函数值y<0时,x 的取值范围是什么?8.如图,在平面直角坐标系中,OB ⊥OA ,且OB =2OA ,点A 的坐标是(-1,2).(1)求点B 的坐标;(2)求过点A 、O 、B 的抛物线的表达式;(3)连接AB ,在(2)中的抛物线上求出点P ,使得S △ABP =S △ABO .【二次函数的应用】 【基础知识】1. 二次函数的解析式:(1)一般式: ;(2)顶点式: ; (3)交点式: .2. 顶点式的几种特殊形式.⑴ , ⑵ , ⑶ ,(4) .3.二次函数c bx ax y ++=2通过配方可得224()24b ac b y a x a a-=++,其抛物线关于直线x = 对称,顶点坐标为( , ).⑴ 当0a >时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 ; ⑵ 当0a <时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 .【基础练习】1. 二次函数y =2x 2-4x +5的对称轴方程是x =___;当x = 时,y 有最小值是 . 2. 有一个抛物线形桥拱,其最大高度为16米,跨度为40米,现在它的示意图放在平面直角坐标系中(如右图),则此 抛物线的解析式为 .3. 某公司的生产利润原来是a 元,经过连续两年的增长达到了y 万元,如果每年增长的百分数都是x ,那么y 与x 的函数关系是( )A .y =x 2+aB .y = a (x -1)2C .y =a (1-x )2D .y =a (l +x )24. 把一段长1.6米的铁丝围长方形ABCD ,设宽为x ,面积为y .则当y 最大时,x 所取的值是( ) A .0.5 B .0.4 C .0.3 D .0.6 【典例精析】例1 用铝合金型材做一个形状如图1所示的矩形窗框,设窗框的一边为x m ,窗户的透光面积为y m 2,y与x 的函数图象如图2所示.⑴ 观察图象,当x 为何值时,窗户透光面积最大? ⑵ 当窗户透光面积最大时,窗框的另一边长是多少?例2 橘子洲头要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP ,柱子顶端P 处装上喷头,由P 处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示).若已知OP =3米,喷出的水流的最高点A 距水平面的高度是4米,离柱子OP 的距离为1米.(1)求这条抛物线的解析式;(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?【课后巩固】1.二次函数y =x 2+10x -5的最小值为 .2. 某飞机着陆生滑行的路程s 米与时间t 秒的关系式为:25.160t t s -=,试问飞机着陆后滑行 米才能停止.3. 矩形周长为16cm, 它的一边长为xcm ,面积为ycm 2,则y 与x 之间函数关系为 . 4. 苹果熟了,从树上落下所经过的路程s 与下落的时间t 满足221gt s =(g 是不为0的常数)则s 与t 的函数图象大致是( )5.将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( ) A. 7 B. 6 C. 5 D. 46. 下列函数关系中,是二次函数的是( )A.在弹性限度内,弹簧的长度y 与所挂物体质量x 之间的关系B.当距离一定时,火车行驶的时间t 与速度v 之间的关系C.等边三角形的周长C 与边长a 之间的关系D.圆心角为120°的扇形面积S 与半径R 之间的关系7.如图,用长为18 m 的篱笆(虚线部分),两面靠墙围成矩形的苗圃.⑴ 设矩形的一边为()m x 面积为y (m 2),求y 关于x 的函数关系式,并写出自变量x 的取值范围;⑵ 当x 为何值时,所围苗圃的面积最大,最大面积是多少?8. 体育测试时,初三一名高个学生推铅球,已知铅球所经过的路线为抛物线21212++-=x x y 的一部分,根据关系式回答: ⑴ 该同学的出手最大高度是多少?⑵ 铅球在运行过程中离地面的最大高度是多少? ⑶ 该同学的成绩是多少?【二次函数的综合应用】 【基础知识】1.点A ()o y x ,0在函数c bx ax y ++=2的图像上.则有 .2.函数c bx ax y ++=2与x 轴的交点个数与 个数一致,求函数c bx ax y ++=2与x 轴的交点横坐标,即令 ,解方程 ; 与y 轴的交点纵坐标,即令 ,求y 值 3. 求一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像的交点,解方程组 . 【基础练习】1.抛物线322--=x x y 与x 轴分别交于A 、B 两点,则AB 的长为________.2.已知函数:(1)图象不经过第二象限;(2)图象经过(2,-5),请你写出一个同时满足(1)和(2)的函数_________________3.如图,用一段长为30米的篱笆围成一个一边靠墙(墙的 长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则 菜园的面积y (单位:米2)与x (单位:米)的函数关 系式为 .(不要求写出自变量x 的取值范围) 4.当路程s 一定时,速度v 与时间t 之间的函数关系是( )A .正比例函数B .反比例函数C .一次函数D .二次函数 5.函数2y kx =-与ky x=(k ≠0)在同一坐标系内的图象可能是( )【典例精析】例1.如图(单位:m ),等腰三角形ABC 以2米/秒的速度沿直线L 向正方形移动,直到AB 与CD 重合.设x 秒时,三角形与正方形重叠部分的面积为ym 2. ⑴ 写出y 与x 的关系式;⑵ 当x=2,3.5时,y 分别是多少?⑶ 当重叠部分的面积是正方形面积的一半时,三角形移动了多长时间?求抛物线顶点坐标、对称轴.AB CD(第3题)菜园墙BE例2.如右图,抛物线n x x y ++-=52经过点)0,1(A ,与y 轴交于点B.(1)求抛物线的解析式;(2)P 是y 轴正半轴上一点,且△PAB 是等腰三角形,试求点P 的坐标.【课后巩固】 1.反比例函数x k y =的图像经过A (-23,5)点、B (a ,-3),则k = ,a = . 2.如图是一次函数y 1=kx +b 和反比例函数y 2==mx的图象,•观察图象写出y 1>y 2时,x 的取值范围是_________. 3.根据右图所示的程序计算 变量y 的值,若输入自变 量x 的值为32,则输出 的结果是_______.4.如图,过原点的一条直线与反比例函数y =kx(k<0)的图像分别交 于A 、B 两点,若A 点的坐标为(a ,b ),则B 点的坐标为( ) A .(a ,b ) B .(b ,a ) C .(-b ,-a ) D .(-a ,-b )5. 二次函数y =x 2+2x -7的函数值是8,那么对应的x 的值是( ) A .3 B .5 C .-3和5 D .3和-5 6.下列图中阴影部分的面积与算式12221(|43|-++-的结果相同的是( )7.如图,在直角坐标系中放入一个边长OC 为9的矩形纸片ABCO .将纸片翻折后,点B 恰好落在x 轴上,记为B ′,折痕为CE ,已知tan ∠OB ′C =34. (1)求B ′点的坐标;(2)求折痕CE所在直线的解析式.8.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?9.如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3)。

二次函数的复习教案

二次函数的复习教案

二次函数的复习教案教案标题:二次函数的复习教案教案目标:1. 复习学生对二次函数的基本概念和性质的理解。

2. 强化学生对二次函数图像、顶点、轴对称性和零点的掌握。

3. 提高学生解决与二次函数相关的实际问题的能力。

教学时长:2个课时教学步骤:第一课时:1. 导入(5分钟)- 通过提问引起学生对二次函数的兴趣,例如:你知道什么是二次函数吗?它有哪些特点?2. 复习基本概念(15分钟)- 提醒学生二次函数的一般形式为f(x) = ax^2 + bx + c,并解释a、b、c的含义。

- 回顾二次函数的图像特点,如开口方向、顶点位置等。

- 强调二次函数的轴对称性和零点的概念。

3. 图像练习(20分钟)- 展示几个不同形态的二次函数图像,要求学生根据图像特点判断函数的开口方向、顶点和轴对称性。

- 给学生一些简单的二次函数,要求他们画出对应的图像,并标出顶点和轴对称线。

4. 零点练习(15分钟)- 提供一些二次函数的方程,要求学生解方程求出零点。

- 引导学生思考零点与图像的关系,例如:零点在图像上对应什么位置?第二课时:1. 复习顶点和轴对称线(10分钟)- 提醒学生顶点是二次函数图像的最高点或最低点,轴对称线通过顶点并将图像分为两部分。

2. 实际问题解决(20分钟)- 提供一些与实际问题相关的二次函数,要求学生解决问题。

- 引导学生将问题转化为二次函数的方程,并解方程求出答案。

3. 总结(10分钟)- 回顾本节课所学内容,强调二次函数的重要性和应用。

- 鼓励学生通过做更多的练习来巩固所学知识。

教学方法和教学资源:1. 教学方法:- 提问法:通过提问引导学生思考和回忆所学知识。

- 演示法:展示二次函数图像和实际问题,帮助学生理解和解决问题。

2. 教学资源:- PowerPoint幻灯片或白板,用于展示图像和问题。

- 二次函数练习题,包括图像练习和实际问题练习。

评估方法:1. 课堂表现评估:- 观察学生在课堂上的参与度和回答问题的准确性。

数学九年级上册《二次函数-复习课》教案

数学九年级上册《二次函数-复习课》教案

初中20 -20 学年度第一学期教学设计2、二次函数2y ax bx c =++的图像如图1,则点),(ac b M 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3、已知二次函数y=ax 2+bx+c 的图象与x 轴交于点(-2,O)、(x 1,0),且1<x 1<2,与y 轴的正半轴的交点在点(O ,2)的下方.下列结论:①a<b<0; ②2a+c>O;③4a+c<O;④2a -b+1>O ,其中正确结论的个数为( )A 1个 B. 2个 C. 3个 D .4个4、已知:关于x 的一元二次方程ax 2+bx+c=3的一个根为x=-2,且二次函数y=ax 2+bx+c 的对称轴是直线x=2,则抛物线的顶点坐标为( ) A(2,-3) B.(2,1) C(2,3) D .(3,2) 三、拓展延伸(小组探究,合作学习) 1、已知抛物线y=x 2+(2k+1)x-k 2+k(1) 求证:此抛物线与x 轴总有两个不同的交点;(2)设A (x 1,0)和B (x 2,0)是此抛物线与x 轴的两个交点,且满足x 12+x 22= -2k 2+2k+1,①求抛物线的解析式②此抛物线上是否存在一点P ,使△PAB 的面积等于3,若存在,请求出点P 的坐标;若不存在,请说明理由。

3、已知抛物线y=12x 2+x-52.(1)用配方法求它的顶点坐标和对称轴.(2)若该抛物线与x 轴的两个交点为A 、B ,求线段AB 的长.四、课堂小结通过本节课的练习,你学到了什么知识? 五、布置作业学思练本章复习题板书设计:教学后记(反思成败、总结经。

2019-2020年中考数学 5.3 二次函数与一元二次方程(3)复习教学案(无答案)

2019-2020年中考数学 5.3 二次函数与一元二次方程(3)复习教学案(无答案)

2019-2020年中考数学 5.3 二次函数与一元二次方程(3)复习教学案(无答案)【知识要点】:看图说话——二次函数图像与系数的关系.的符号:的符号由 决定.抛物线开口向上,则 ;抛物线开口向下,则 .的符号:的符号由 决定,若对称轴是轴,则 ; 若抛物线的顶点在轴左侧,顶点的横坐标 0即 0,则、为 号; 若抛物线的顶点在轴右侧,顶点的横坐标 0即 0,则、为 号; 简称 .的符号:的符号由 决定,若抛物线交轴于正半轴, 则 0;若抛物线交轴于负半轴,则 0;若抛物线过原点,则 0.的符号: 的符号由 决定,若抛物线与轴有两个交点,则 0;若抛物线与轴只有一个交点,则 0;若抛物线与轴没有交点, 0. 形如:、、等的符号: 的值是是抛物线(≠0,,,为常数)上横坐标为 点的纵坐标, 那呢?……即根据点的位置可以确定它们的符号.【基础演练】 :1.已知二次函数(≠0,,,为常数) 的图象如图所示,则、、、、这五个式子中,值为正数的有 个.2. 如图,二次函数的图象开口向上,图像经过点(-1,2)和(1,0)且与y 轴交于负半轴. 第(1)问:给出四个结论:①>0;②>0;③>0; ④其中正确的结论的序号是 第(2)问:给出四个结论:①;②;③; ④.其中正确的结论的序号是3.小明从右边的二次函数图像中,观察得出了 下面的五条信息:①②③函数的最小值为-3 ④当时, ⑤当时,.你认为其中正确的有______个 .4.已知二次函数,且,,则一定有 ( )A. B. C. D.5.抛物线的对称轴是,且经过点P(3,0),则的值为( )A.-1B.0C.1D.2 6.二次函数的图象如图所示, 若,,,则 ( ) A . B. C. D.7.如果反比例函数的图象如图,那么二次函数图象大致为( )8.若二次函数的图象与轴没有交点,其中为整数,则抛物线解析式为 (只要求写一个)9. 已知抛物线的图象的一部分如图所示,且经过点A(0,-7)和点B.(1)求a的取值范围;(2)若OA=2OB,求抛物线的解析式.2019-2020年中考数学反比例函数复习教案人教版复习指导:反比例函数表达式的确定、反比例函数的图像和性质、反比例函数图像与一次函数图像的关系、利用反比例函数解决问题等都是中考的重要考点。

九年级数学《二次函数》总复习教案

九年级数学《二次函数》总复习教案

一、教学目标:1.复习二次函数的定义、性质和图像;2.复习二次函数的解析式的推导和应用;3.复习二次函数与一次函数的关系;4.加强学生对二次函数的理解和运用能力。

二、教学内容及教学步骤:1.复习二次函数的定义和性质。

(1)复习二次函数的定义:二次函数定义为:y = ax^2 + bx + c,其中a、b、c为常数,a≠0。

(2)复习二次函数的性质:①函数的对称轴:二次函数的对称轴是x轴的垂直平分线,方程为x=-b/2a。

②函数图像的开口方向:当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

③ 函数的顶点:二次函数的图像的最高点或最低点即为函数的顶点,顶点的横坐标为-x_0 = -b/2a,纵坐标为y_0 = f(x_0) = -(b^2 -4ac)/4a。

④ 函数的零点:二次函数与x轴交点的横坐标即为函数的零点,方程为ax^2 + bx + c = 0,解方程得到的根为x_1 和 x_2(x_1≤ x_2)。

2.复习二次函数的图像与性质。

(1)通过例题让学生绘制各种不同开口方向、对称轴位置的二次函数的图像,并让学生总结不同性质之间的关系。

(2)使用计算机软件或网站上的图像工具辅助显示二次函数的图像,让学生在电脑屏幕上直观地观察二次函数的图像特点。

3.复习二次函数的解析式推导和应用。

(1)复习二次函数的解析式推导的基本步骤:已知二次函数的顶点坐标(x_0,y_0)和过另一点(x_1,y_1)的条件,推导二次函数的解析式。

(2)举例说明二次函数解析式推导的具体过程,并让学生进行练习。

(3)通过应用题,让学生理解二次函数的解析式在实际问题中的应用。

4.复习二次函数与一次函数的关系。

(1)复习二次函数与一次函数的关系:当二次函数的a=0时,二次函数退化成一次函数。

(2)通过例题让学生理解二次函数与一次函数的关系,以及在一次函数的基础上加上二次函数的图像特点后的整个函数图像的变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【复习目标】
1.会画二次函数的图象并借助图象分析函数性质,会用待定系数法确定二次函数表达式。

2.在用函数解决实际问题的过程中,体会数形结合和转化的思想。

3.感悟数学与生活的密切联系。

【重点】二次函数的图象和性质
【难点】函数在生活中的实际应用。

【使用说明与学法指导】
先用5分钟左右的时间复习二次函数,然后35分钟独立完成复习案,有疑惑的做好标记。

自主构建
同学们,通过复习九下对函数的再探索,你肯定有很多收获,请用你喜欢的方式汇总一下吧,
方便我们课堂上与小伙伴的交流,相信你是最棒的!
知能训练
【二次函数的概念】
1. 下列函数中,哪些是二次函数?
(1)2x y = (2) 21x
y -= (3) 122--=x x y (4))1(x x y -= (5))1)(1()1(2-+--=x x x y 2. 若函数m m x m y --=2)1(2为二次函数,则m 的值为 。

【二次函数的图象和性质】
3.二次函数22y x x =--的图象如图所示,则函数值y <0时x 的取值范围是( )
A. x <-1 B .x >2 C .-1<x <2 D .x <-1或x >2
第3题图 第6题图
4.将抛物线1)4(22--=x y 如何平移可得到抛物线22x y =( )
A .向左平移4个单位,再向上平移1个单位;
B .向左平移4个单位,再向下平移1个单位
C .向右平移4个单位,再向上平移1个单位;
D .向右平移4个单位,再向下平移1个单位
5.抛物线的形状、开口方向与243y x x =-+相同,顶点在(-2,1),则关系式为( )
A.2
21y x =-+() B. 2 21y x =+-() C. 221y x =++() D. 221y x =-++() 6.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图,则下列说法:
①c=0; ②该抛物线的对称轴是直线x=﹣1; ③当x=1时,y=2a ; ④am 2+bm+a >0(m ≠﹣1).其中正确的个数是( )
A .1
B .2
C . 3
D . 4
7.函数y=
与y=﹣kx 2
+k (k ≠0)在同一直角坐标系中的图象可能是( )
A .
B .
C .
D .
8.已知抛物线22y x x c =++与x 轴有两个交点,那么c 的取值范围是______________.
9.(2014滨州)已知二次函数y=x 2
﹣4x+3.
(1)用配方法求其图象的顶点C 的坐标,并描述该函数的函数值随自变量的增减而变化的情况;
(2)求函数图象与x 轴的交点A ,B 的坐标,及△ABC 的面积.
【确定二次函数表达式】{(1)必做,(2)有能力的同学选作}
10.如图,二次函数2y x bx c =-++的图象经过坐标原点,与x 轴交于点A (-2,0). (1)求此二次函数的解析式及顶点B 的坐标;
(2)在抛物线上有一点P ,满足3AOP S ∆=,请求出点P 的坐标.
【二次函数的实际应用】
11.某电子厂商投产一种新型电子厂品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?
(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?。

相关文档
最新文档