X-opengl立方体的简单三维交互式几何变换实验报告代码

合集下载

基于OpenGL的三维图形绘制实验

基于OpenGL的三维图形绘制实验

基于OpenGL的三维图形绘制实验基于OpenGL的三维图形绘制实验⽬录实验题⽬:交互图形程序设计基础实验 (3)1.实验⽬的 (3)2.实验内容 (3)2.1 实验内容 (3)2.2 实验任务 (3)3.实验过程 (4)3.1 预处理 (4)3.3 主要函数说明 (5)3.4 过程描述 (6)3.5 运⾏截图 (7)4.实验结果 (7)5.实验体会 (7)实验题⽬:交互图形程序设计基础实验1.实验⽬的1)理解并掌握三维基本图形数据结构表⽰⽅法。

2)掌握编写OpenGL图形程序的基本⽅法.3)掌握OpenGL基本图形表⽰及绘制。

2.实验内容2.1 实验内容基于OpenGL的三维图形绘制实验⽬的是掌握图形信息的表⽰、数据的组织,在此基础上基于OpenGL绘制出三维图形。

实验内容包括OpenGL编程环境搭建、OpenGL程序结构、基本数据类型、核⼼函数等的使⽤;基本图形的绘制(点、线段、折线、闭合折线、多边形、三⾓形、三⾓扇、三⾓条带、四边形、四边形条带等)及图形属性控制(线宽、颜⾊、线型、填充样式等);对指定的若⼲三维模型进⾏建模、绘制,在⼀个程序框架下实现,提交1次程序,1份实验报告。

2.2 实验任务1、使⽤Visual C++建⽴⼀个单⽂档(SDI)程序,完成OpenGL绘制框架程序的设计。

在此基础上参照提供的资料,定义绘制函数,基于⾃定义的若⼲点坐标与颜⾊,分别绘制绘制点、线段、不闭合折线、闭合折线、多边形、三⾓形、四边形、三⾓扇、三⾓条带、四边形条带。

2、使⽤1中建⽴的程序框架,完成如下任务:(1)绘制正棱柱(底⾯多变形的边数及⾼度可以通过对话框输⼊)(2)正棱锥(底⾯多变形的边数及⾼度可以通过对话框输⼊)(3)正棱台(底⾯多变形的边数、台⾼、锥⾼可以通过对话框输⼊)注意模型坐标系的选择和顶点坐标的计算,每个图形的绘制单独写成函数。

加⼊菜单绘制三、四、五、六边的情况,其他边数情况从弹出对话框中输⼊参数,然后绘制。

opengl实验报告

opengl实验报告

opengl实验报告OpenGL实验报告引言:OpenGL(Open Graphics Library)是一种跨平台的图形编程接口,被广泛应用于计算机图形学、游戏开发和科学可视化等领域。

本实验报告将介绍我对OpenGL的实验研究和学习成果。

一、实验目的本次实验的主要目的是掌握OpenGL的基本概念和使用方法,了解图形渲染的原理和过程,以及学习如何在OpenGL中创建和操作图形对象。

二、实验环境本次实验使用的是OpenGL的最新版本,并在Windows操作系统下进行开发。

使用的开发工具是Visual Studio和OpenGL的开发库。

三、实验过程1. 熟悉OpenGL的基本概念在开始实验之前,我先学习了OpenGL的基本概念,包括OpenGL的坐标系统、图形渲染管线、着色器等。

了解这些概念对于后续的实验非常重要。

2. 创建窗口和上下文在OpenGL中,我们需要先创建一个窗口和一个OpenGL上下文,以便进行图形渲染。

通过调用相关的OpenGL函数,我成功创建了一个窗口,并初始化了OpenGL的上下文。

3. 绘制基本图形接下来,我开始尝试绘制一些基本的图形,比如点、线和三角形。

通过设置顶点坐标和颜色,我成功绘制出了这些基本图形,并在窗口中显示出来。

4. 添加纹理为了使图形更加逼真和丰富,我学习了如何在OpenGL中添加纹理。

通过加载图片并设置纹理坐标,我成功将纹理贴在了绘制的图形上,使其具有了更加真实的效果。

5. 光照和阴影效果为了增加图形的立体感和真实感,我学习了如何在OpenGL中添加光照和阴影效果。

通过设置光源的位置和属性,以及材质的属性,我成功实现了光照和阴影的效果,使图形看起来更加逼真。

6. 动画效果为了使图形具有动态效果,我学习了如何在OpenGL中实现简单的动画效果。

通过每帧更新顶点的位置和纹理坐标,我成功实现了图形的旋转和平移动画,使其具有了动态的效果。

四、实验结果和分析通过以上的实验过程,我成功掌握了OpenGL的基本概念和使用方法,并实现了一些基本的图形渲染效果。

实验报告几何变换实验

实验报告几何变换实验

实验报告几何变换实验实验报告:几何变换实验引言:几何变换是计算机图形学中的重要概念,它可以改变图像的形状、位置和大小。

在本次实验中,我们将通过对几何变换的实际操作,深入了解几何变换的原理和应用。

一、实验目的本次实验的主要目的是探究几何变换在图像处理中的应用,具体包括平移、旋转、缩放和翻转等几何变换操作。

通过实际操作和观察,我们将了解几何变换对图像的影响,并学习如何使用计算机编程实现这些变换。

二、实验材料和方法1. 实验材料:- 一台计算机- 图像处理软件(如Photoshop、GIMP等)- 编程软件(如Python、MATLAB等)2. 实验方法:- 步骤一:选择一张图片作为实验对象,并导入到图像处理软件中。

- 步骤二:使用图像处理软件进行平移操作,观察图像的位置变化。

- 步骤三:使用图像处理软件进行旋转操作,观察图像的旋转效果。

- 步骤四:使用图像处理软件进行缩放操作,观察图像的大小变化。

- 步骤五:使用图像处理软件进行翻转操作,观察图像的翻转效果。

- 步骤六:使用编程软件编写程序,实现上述几何变换操作,并观察结果。

三、实验结果与分析1. 平移操作:在实验中,我们发现通过平移操作,可以将图像在水平和垂直方向上进行移动。

通过调整平移的距离和方向,我们可以改变图像在画布上的位置。

这种操作常用于图像的对齐和拼接等应用中。

2. 旋转操作:旋转操作可以改变图像的角度和方向。

通过调整旋转的角度和中心点,我们可以使图像以不同的角度进行旋转。

这种操作常用于图像的矫正、仿射变换等应用中。

3. 缩放操作:缩放操作可以改变图像的大小。

通过调整缩放的比例,我们可以使图像变得更大或更小。

这种操作常用于图像的放大、缩小、裁剪等应用中。

4. 翻转操作:翻转操作可以改变图像的方向。

通过水平或垂直翻转,我们可以使图像在左右或上下方向发生镜像反转。

这种操作常用于图像的镜像处理、对称效果等应用中。

四、实验总结通过本次实验,我们深入了解了几何变换在图像处理中的应用。

计算机图形学 图形的几何变换的实现算法教程文件

计算机图形学  图形的几何变换的实现算法教程文件

计算机图形学图形的几何变换的实现算法实验二 图形的几何变换的实现算法班级 08信计 学号 59 姓名 分数一、实验目的和要求:1、掌握而为图形的基本几何变换,如平移,旋转,缩放,对称,错切变换;。

2、掌握OpenGL 中模型变换函数,实现简单的动画技术。

3、学习使用OpenGL 生成基本图形。

4、巩固所学理论知识,加深对二维变换的理解,加深理解利用变换矩阵可由简单图形得到复杂图形。

加深对变换矩阵算法的理解。

编制利用旋转变换绘制齿轮的程序。

编程实现变换矩阵算法,绘制给出形体的三视图。

调试程序及分析运行结果。

要求每位学生独立完成该实验,并上传实验报告。

二、实验原理和内容:. 原理:图像的几何变换包括:图像的空间平移、比例缩放、旋转、仿射变换和图像插值。

图像几何变换的实质:改变像素的空间位置,估算新空间位置上的像素值。

图像几何变换的一般表达式:[,][(,),(,)]u v X x y Y x y = ,其中,[,]u v 为变换后图像像素的笛卡尔坐标, [,]x y 为原始图像中像素的笛卡尔坐标。

这样就得到了原始图像与变换后图像的像素的对应关系。

平移变换:若图像像素点 (,)x y 平移到 00(,)x x y y ++,则变换函数为0(,)u X x y x x ==+,0(,)v Y x y y y ==+,写成矩阵表达式为:00x u x y v y ⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦其中,x 0和y 0分别为x 和y 的坐标平移量。

比例缩放:若图像坐标 (,)x y 缩放到( ,x y s s )倍,则变换函数为:00x y s u x s v y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 其中, ,x y s s 分别为x 和y 坐标的缩放因子,其大于1表示放大,小于1表示缩小。

旋转变换:将输入图像绕笛卡尔坐标系的原点逆时针旋转θ角度,则变换后图像坐标为:cos sin sin cos u x v y θ-θ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥θθ⎣⎦⎣⎦⎣⎦内容:1、对一个三角形分别实现平移,缩放旋转等变化。

计算机图形学实验报告

计算机图形学实验报告

计算机图形学实验报告
在计算机图形学课程中,实验是不可或缺的一部分。

通过实验,我们可以更好地理解课程中所学的知识,并且在实践中掌握这些
知识。

在本次实验中,我学习了如何使用OpenGL绘制三维图形,并了解了一些基本的图形变换和视图变换。

首先,我们需要通过OpenGL的基本命令来绘制基本图形,例
如线段、矩形、圆等。

这些基本的绘制命令需要首先设置OpenGL 的状态,例如绘制颜色、线段宽度等,才能正确地绘制出所需的
图形。

然后,在实验中我们学习了图形的变换。

变换是指通过一定的
规则将图形的形状、位置、大小等进行改变。

我们可以通过平移、旋转、缩放等变换来改变图形。

变换需要按照一定的顺序进行,
例如先进行旋转再进行平移等。

在OpenGL中,我们可以通过设
置变换矩阵来完成图形的变换。

变换矩阵包含了平移、旋转、缩
放等信息,通过矩阵乘法可以完成图形的复合变换。

最后,视图变换是指将三维场景中的图形投影到二维平面上,
成为我们所见到的图形。

在实验中,我们学习了透视投影和正交
投影两种方式。

透视投影是指将场景中的图形按照视点不同而产
生不同的远近缩放,使得图形呈现出三维感。

而正交投影则是简单地将场景中的图形按照平行投影的方式呈现在屏幕上。

在OpenGL中,我们可以通过设置视图矩阵和投影矩阵来完成视图变换。

通过本次实验,我对于计算机图形学有了更深入的了解,并掌握了一些基本的图形绘制和变换知识。

在今后的学习中,我将继续学习更高级的图形绘制技术,并应用于实际的项目中。

openGL+VS2010的例程--旋转立方体(三维)

openGL+VS2010的例程--旋转立方体(三维)

openGL+VS2010的例程--旋转⽴⽅体(三维)效果图如上:步骤:⾸先,设置模型视⾓往后退,再旋转视⾓;然后,⽤默认绘制⽴⽅体函数绘制;最后,利⽤空闲对模型做⾓度微调。

实现代码如下:1 #include <GL\glut.h>23 GLfloat xRotated, yRotated, zRotated;45void Display(void)6 {7 glClear(GL_COLOR_BUFFER_BIT);8 glLoadIdentity();9 glTranslatef(0.0,0.0,-4.0);10 glRotatef(xRotated,1.0,0.0,0.0);11 glRotatef(yRotated,0.0,1.0,0.0);12 glRotatef(zRotated,0.0,0.0,1.0);13//glScalef(2.0,1.0,1.0);14 glutWireCube(1.5);15 glFlush(); //Finish rendering16 glutSwapBuffers();17 }1819void Reshape(int x, int y)20 {21if (y == 0 || x == 0) return; //Nothing is visible then, so return22//Set a new projection matrix23 glMatrixMode(GL_PROJECTION);24 glLoadIdentity();25//Angle of view:40 degrees26//Near clipping plane distance: 0.527//Far clipping plane distance: 20.028 gluPerspective(40.0,(GLdouble)x/(GLdouble)y,0.5,20.0);29 glMatrixMode(GL_MODELVIEW);30 glViewport(0,0,x,y); //Use the whole window for rendering31 }32static int times = 0;33void Idle(void)34 {35 times++;36if(times >30000)37 times = 0;3839if(times %30000 == 0)40 {41 xRotated += 0.3;42 yRotated += 0.1;43 zRotated += -0.4;44 Display();45 }46 }474849int main (int argc, char **argv)50 {51//Initialize GLUT52 glutInit(&argc, argv);53 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB); //For animations you should use double buffering54 glutInitWindowSize(300,300);55//Create a window with rendering context and everything else we need56 glutCreateWindow("Cube example");57 glPolygonMode(GL_FRONT_AND_BACK,GL_LINE);58 xRotated = yRotated = zRotated = 0.0;59 glClearColor(0.0,0.0,0.0,0.0);60//Assign the two used Msg-routines61 glutDisplayFunc(Display);62 glutReshapeFunc(Reshape);63 glutIdleFunc(Idle);64//Let GLUT get the msgs65 glutMainLoop();66return0;67 }。

详解OpenGL的坐标系、投影和几何变换

详解OpenGL的坐标系、投影和几何变换

详解OpenGL的坐标系、投影和几何变换作者:charlee 按:我也是在迷茫中走过来的,初学OpenGL时,略微了解了一些有关变换的基本知识,但是却不知道具体的使用方法,因此经常需要在布置场景时反复调整各种参数。

当我终于有一天明白了它们的用法时,就觉得应该把这些心得体会写下来,让那些和我一样曾经迷茫过的人能够迅速地找到出路。

本文的读者对象为那些初学OpenGL,了解了一些坐标系、几何变换等基本知识,但是又不知道具体应该如何运用这些操作的人。

如果你对OpenGL一无所知,建议你先去学学OpenGL的基本知识。

1 坐标系OpenGL中使用的坐标系有两种,分别为世界坐标系和屏幕坐标系。

世界坐标系即OpenGL内部处理时使用的三维坐标系,而屏幕坐标系即为在计算机屏幕上绘图时使用的坐标系。

通常,OpenGL所使用的世界坐标系为右手型,如下图所示。

从计算机屏幕的角度来看,x轴正方向为屏幕从左向右,y轴正方向为屏幕从下向上,z轴正方向为屏幕从里向外。

而进行旋转操作时需要指定的角度θ的方向则由右手法则来决定,即右手握拳,大拇指直向某个坐标轴的正方向,那么其余四指指向的方向即为该坐标轴上的θ角的正方向(即θ角增加的方向),在上图中用圆弧形箭头标出。

2 投影将世界坐标系中的物体映射到屏幕坐标系上的方法称为投影。

投影的方式包括平行投影和透视投影两种。

平行投影的投影线相互平行,投影的结果与原物体的大小相等,因此广泛地应用于工程制图等方面。

透视投影的投影线相交于一点,因此投影的结果与原物体的实际大小并不一致,而是会近大远小。

因此透视投影更接近于真实世界的投影方式。

B 平行投影B透视投影xzy 02.1 平行投影OpenGL 中使用下面的函数来设置投影方式为平行投影。

glOrtho(xleft, xright, ybottom, ytop, znear, zfar); 各参数的含义如下图所示。

注意,只有位于立方体之内的物体才可见。

计算机图形学实验代码及截图

计算机图形学实验代码及截图

目录实验一:OpenGL基础知识 0实验二 OpenGL中的建模与变换 (1)实验三 OpenGL中的光照 (4)实验四 OpenGL中的拾取 (7)实验五 OpenGL中的纹理映射 (10)实验一:OpenGL基础知识一、实验目的1、建立Windows系统下的OpenGL实验框架。

2、学习理解OpenGL工作流程。

二、实验环境⒈硬件:每个学生需配备计算机一台。

⒉软件:Visual C++;三、实验内容1、建立非控制台的Windows程序框架。

2、建立OpenGL框架。

3、建立OpenGL框架的类文件。

4、完善Windows框架。

5、理解程序间的相互关系。

四、实验要求1、学习教材第2章的内容。

2、理解教材中相关实例的代码,按要求添加到适当的地方,调试并通过运行。

3、运行结果应该与教材中的相关实例相符。

4、编译第2章的框架代码,修改背景色、窗口标题。

五、程序设计提示(略)六、报告要求1.认真书写实验报告,字迹清晰,格式规范。

报告中应写清姓名、学号、实验日期、实验题目、实验目的、实验原理。

2.报告中应书写主要源程序,且源程序中要有注释。

3.报告中应包含运行结果及结果分析。

如调试通过并得到预期的效果,请注明‘通过’并粘贴运行效果图;如未调试通过或结果不正确,试分析原因。

4.报告最后包含实验总结和体会。

实验二 OpenGL中的建模与变换一、实验目的1.学习配置OpenGL环境。

2.掌握在OpenGL中指定几何模型的方法。

3. 掌握OpenGL中的透视投影和正投影的设置方法,学会诊断投影问题导致的显示异常。

二、实验环境⒈ 硬件:每个学生需配备计算机一台。

⒉ 软件:Visual C++;三、实验内容1.建立OpenGL编程环境(注:Windows自带gl和glu,还需要安装glut库文件。

)(a)查看Windows自带的OpenGL文件。

在文件夹c:\windows\system32下查看是否存在文件opengl32.dll和glu32.dll;在Visual Studio的安装目录Vc7\PlatformSDK\Include\gl下查看是否存在gl.h和glu.h;在Vc7\PlatformSDK\Lib 下是否存在opengl32.lib和glu32.lib。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立方体的简单三维交互式几何变换立方体的简单三维交互式几何变换。

功能:键盘的方向键实现立方体的上下左右平移;A键,S键分别实现向前,向后旋转;J键,K键分别实现放大,缩小;C键退出。

程序模块:1.重绘回调函数,在窗口首次创建或用户改变窗口尺寸时被调用。

void reshape(int w, int h){glViewport(0, 0, w, h);// 指定视口的位置和大小glMatrixMode(GL_PROJECTION);glLoadIdentity();//glFrustum(-1.0, 1.0, -1.0, 1.0, 3.1, 10.0);//gluPerspective(45,1,0.1,10.0);glOrtho(-2.0, 2.0, -2.0, 2.0, 2.0, 10.0);}2.绘制一个立方体。

void DrawBox(){glBegin(GL_QUADS);//前面glColor3f(1,0,0);glVertex3f(-1.0f, -1.0f, 1.0f); // 四边形的左下glVertex3f( 1.0f, -1.0f, 1.0f); // 四边形的右下glVertex3f( 1.0f, 1.0f, 1.0f); // 四边形的右上glVertex3f(-1.0f, 1.0f, 1.0f); // 四边形的左上// 后面glColor3f(0,1,0);glVertex3f(-1.0f, -1.0f, -1.0f); // 四边形的右下glVertex3f(-1.0f, 1.0f, -1.0f); // 四边形的右上glVertex3f( 1.0f, 1.0f, -1.0f); // 四边形的左上glVertex3f( 1.0f, -1.0f, -1.0f); // 四边形的左下// 顶面glColor3f(0,0,1);glVertex3f(-1.0f, 1.0f, -1.0f); // 四边形的左上glVertex3f(-1.0f, 1.0f, 1.0f); // 四边形的左下glVertex3f( 1.0f, 1.0f, 1.0f); // 四边形的右下glVertex3f( 1.0f, 1.0f, -1.0f); // 四边形的右上// 底面glColor3f(1,1,0);glVertex3f(-1.0f, -1.0f, -1.0f); // 四边形的右上glVertex3f( 1.0f, -1.0f, -1.0f); // 四边形的左上glVertex3f( 1.0f, -1.0f, 1.0f); // 四边形的左下glVertex3f(-1.0f, -1.0f, 1.0f); // 四边形的右下// 右面glColor3f(0,1,1);glVertex3f( 1.0f, -1.0f, -1.0f); // 四边形的右下glVertex3f( 1.0f, 1.0f, -1.0f); // 四边形的右上glVertex3f( 1.0f, 1.0f, 1.0f); // 四边形的左上glVertex3f( 1.0f, -1.0f, 1.0f); // 四边形的左下// 左面glColor3f(1,0,1);glVertex3f(-1.0f, -1.0f, -1.0f); // 四边形的左下glVertex3f(-1.0f, -1.0f, 1.0f); // 四边形的右下glVertex3f(-1.0f, 1.0f, 1.0f); // 四边形的右上glVertex3f(-1.0f, 1.0f, -1.0f); // 四边形的左上glEnd();}3.该模块设置屏幕颜色和深度缓存,设置立方体的平移,缩放,旋转变换。

void display(){glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT); //清空颜色和深度缓存glMatrixMode(GL_MODELVIEW);glLoadIdentity();//gluLookAt(2.0, 2.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);glTranslatef(0.0f+tx,0.0f+ty,-4.0f);//平移变换glScalef(1+sf,1+sf,1+sf); //缩放变换glRotatef(ratX, 1.0f, 0.0f, 0.0f);//绕X轴的旋转变换glRotatef(ratY, 0.0f, 1.0f, 0.0f);//绕Y轴的旋转变换glRotatef(ratZ, 0.0f, 0.0f, 1.0f);//绕Z轴的旋转变换DrawBox();glFlush();glutSwapBuffers();}4.该模块为设置深度缓存和启动深度测试模式。

void init(){glClearColor (1.0, 1.0, 1.0, 1.0);glEnable(GL_DEPTH_TEST); //启动深度测试模式}5.该模块为设置键盘的交互式操作。

void myKeyboard(unsigned char key, int x, int y){if(key == 'a' || key == 'A')ratX += 2;ratY += 2;ratZ += 2;if(key == 's' || key == 'S')ratX -= 2;ratY -= 2;ratZ -= 2;if(key == 'j' || key == 'J')sf+=0.1;if(key == 'k' || key == 'K')sf-=0.1;if(key == 'c' || key == 'C')exit(0);glutPostRedisplay(); //重新调用绘制函数}6.该模块为设置键盘方向键的交互式操作。

void myspecialKeyboard(int key,int x,int y){ if(key == GLUT_KEY_UP )ty+=0.1;if(key == GLUT_KEY_DOWN)ty-=0.1;if(key ==GLUT_KEY_LEFT)if(key==GLUT_KEY_RIGHT)tx+=0.1;glutPostRedisplay();}7.主函数模块,实现设置显示模式(窗口大小,位置),调用函数操作。

int main(int argc, char** argv){glutInit(&argc,argv); // 初始GLUT.glutInitDisplayMode (GLUT_DEPTH |GLUT_DOUBLE | GLUT_RGB); //设定显示模式glutInitWindowSize(400,400); // 设定窗口大小glutInitWindowPosition(50,100); // 设定窗口位置glutCreateWindow("立方体的简单三维交互式几何变换"); // 用前面指定参数创建glutReshapeFunc(reshape); //指定重绘回调函数glutDisplayFunc(display); // 进行一些初始化工作glutKeyboardFunc( myKeyboard); //指定键盘回调函数glutSpecialFunc(myspecialKeyboard); //指定键盘回调函数init();glutMainLoop();// 进入无穷循环,等待事件处理}立方体的平移:上平移下平移:左平移:右平移:放大:旋转:#include <stdlib.h>#include <GL/glut.h>#include <windows.h>float ratX = 60;float ratY = 60;float ratZ = 60;float tx=0;float ty=0;float sf=0;void DrawBox(){glBegin(GL_QUADS);//前面glColor3f(1,0,0);glVertex3f(-1.0f, -1.0f, 1.0f); // 四边形的左下glVertex3f( 1.0f, -1.0f, 1.0f); // 四边形的右下glVertex3f( 1.0f, 1.0f, 1.0f); // 四边形的右上glVertex3f(-1.0f, 1.0f, 1.0f); // 四边形的左上// 后面glColor3f(0,1,0);glVertex3f(-1.0f, -1.0f, -1.0f); // 四边形的右下glVertex3f(-1.0f, 1.0f, -1.0f); // 四边形的右上glVertex3f( 1.0f, 1.0f, -1.0f); // 四边形的左上glVertex3f( 1.0f, -1.0f, -1.0f); // 四边形的左下// 顶面glColor3f(0,0,1);glVertex3f(-1.0f, 1.0f, -1.0f); // 四边形的左上glVertex3f(-1.0f, 1.0f, 1.0f); // 四边形的左下glVertex3f( 1.0f, 1.0f, 1.0f); // 四边形的右下glVertex3f( 1.0f, 1.0f, -1.0f); // 四边形的右上// 底面glColor3f(1,1,0);glVertex3f(-1.0f, -1.0f, -1.0f); // 四边形的右上glVertex3f( 1.0f, -1.0f, -1.0f); // 四边形的左上glVertex3f( 1.0f, -1.0f, 1.0f); // 四边形的左下glVertex3f(-1.0f, -1.0f, 1.0f); // 四边形的右下// 右面glColor3f(0,1,1);glVertex3f( 1.0f, -1.0f, -1.0f); // 四边形的右下glVertex3f( 1.0f, 1.0f, -1.0f); // 四边形的右上glVertex3f( 1.0f, 1.0f, 1.0f); // 四边形的左上glVertex3f( 1.0f, -1.0f, 1.0f); // 四边形的左下// 左面glColor3f(1,0,1);glVertex3f(-1.0f, -1.0f, -1.0f); // 四边形的左下glVertex3f(-1.0f, -1.0f, 1.0f); // 四边形的右下glVertex3f(-1.0f, 1.0f, 1.0f); // 四边形的右上glVertex3f(-1.0f, 1.0f, -1.0f); // 四边形的左上glEnd();}void display(){glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT); //清空颜色和深度缓存glMatrixMode(GL_MODELVIEW);glLoadIdentity();//gluLookAt(2.0, 2.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);glTranslatef(0.0f+tx,0.0f+ty,-4.0f);//平移变换glScalef(1+sf,1+sf,1+sf); //缩放变换glRotatef(ratX, 1.0f, 0.0f, 0.0f);//绕X轴的旋转变换glRotatef(ratY, 0.0f, 1.0f, 0.0f);//绕Y轴的旋转变换glRotatef(ratZ, 0.0f, 0.0f, 1.0f);//绕Z轴的旋转变换DrawBox();glFlush();glutSwapBuffers();}void reshape(int w, int h) //重绘回调函数,在窗口首次创建或用户改变窗口尺寸时被调用{glViewport(0, 0, w, h);// 指定视口的位置和大小glMatrixMode(GL_PROJECTION);glLoadIdentity();//glFrustum(-1.0, 1.0, -1.0, 1.0, 3.1, 10.0);//gluPerspective(45,1,0.1,10.0);glOrtho(-2.0, 2.0, -2.0, 2.0, 2.0, 10.0);}void init(){glClearColor (1.0, 1.0, 1.0, 1.0);glEnable(GL_DEPTH_TEST); //启动深度测试模式}void myKeyboard(unsigned char key, int x, int y) {if(key == 'a' || key == 'A')ratX += 2;ratY += 2;ratZ += 2;if(key == 's' || key == 'S')ratX -= 2;ratY -= 2;ratZ -= 2;if(key == 'j' || key == 'J')sf+=0.1;if(key == 'k' || key == 'K')sf-=0.1;if(key == 'c' || key == 'C')exit(0);glutPostRedisplay(); //重新调用绘制函数}void myspecialKeyboard(int key,int x,int y){if(key == GLUT_KEY_UP )ty+=0.1;if(key == GLUT_KEY_DOWN)ty-=0.1;if(key ==GLUT_KEY_LEFT)tx-=0.1;if(key==GLUT_KEY_RIGHT)tx+=0.1;glutPostRedisplay();}int main(int argc, char** argv){glutInit(&argc,argv); // 初始GLUT.glutInitDisplayMode (GLUT_DEPTH |GLUT_DOUBLE | GLUT_RGB); //设定显示模式glutInitWindowSize(400,400); // 设定窗口大小glutInitWindowPosition(50,100); // 设定窗口位置glutCreateWindow("立方体的简单三维交互式几何变换"); // 用前面指定参数创建glutReshapeFunc(reshape); //指定重绘回调函数glutDisplayFunc(display); // 进行一些初始化工作glutKeyboardFunc( myKeyboard); //指定键盘回调函数glutSpecialFunc(myspecialKeyboard); //指定键盘回调函数init();glutMainLoop();// 进入无穷循环,等待事件处理}。

相关文档
最新文档