数据挖掘与机器学习(非参数统计)精品PPT课件

合集下载

数据挖掘与机器学习(非参数统计)

数据挖掘与机器学习(非参数统计)
多个算法:能够 挖掘一次不能放 进内存的数据
单个机 器 同质/局 部区域 的计算 机群集
intranet/e xtranet 网 络计算 移动和各 种计算设 备
向量数据
第二代
有些系统支 持对象、文 本、和连续 的媒体数据 支持半结构 化 数 据 和 web数据
第三代
和预言模型 系统集成 和移动数据/ 各种计算数 据联合

构成数据挖掘算法的三要素

模式记述语言:反映了算法可以发现什么 样的知识 模式评价:反映了什么样的模式可以称为 知识 模式探索:包括针对某一特定模式对参数 空间的探索和对模式空间的探索


工业控制技术研究所
数据挖掘的主要方法


分类(Classification)
聚类(Clustering)

相关规则(Association Rule)
神经网络 Neural Networks
• • • •
4
Q Q
5 6
倾向性分析 客户保留 目标市场 欺诈检测
Q
3
Q
I
2
factor n factor 1 factor 2
工业控制技术研究所
I
1
10.1分类一般问题
定义: 给定 ( X , Y ), , ( X , Y ) , Y 为离散值,表示每 个样例的分类,目标是找到一个函数 fˆ , 对于新观测点 X ,能够用 fˆ ( X ) 预测分类 Y 。
数据挖掘的步骤*

一种步骤划分方式



理解资料与进行的工作 获取相关知识与技术(Acquisition) 整合与查核资料(Integration and checking) 去除错误、不一致的资料(Data cleaning) 模式与假设的演化(Model and hypothesis development) 实际数据挖掘工作 测试与核查所分析的资料(Testing and verification) 解释与运用(Interpretation and use)

数据挖掘第一与第二章PPT课件

数据挖掘第一与第二章PPT课件
散的目标变量;回归,用于预测连续的目标变 量。
预测建模可以用来确定顾客对产品促销活 动的反应,预测地球生态系统的扰动,或根据 检查结果判断病人是否患有某种疾病。
14
数据挖掘任务
• 关联分析 用来描述数据中强关联特征的模式。 关联分析的应用包括找出具有相关功
能的基因组、识别用户一起访问的Web页面、 理解地球气候系统不同元素之间的联系等。
12
数据挖掘任务
• 预测vs.描述 • 预测(Prediction)
– 根据其他属性的值,预测特定属性的值 • 描述(Description)
– 导出概括数据中潜在联系的模式
2020年9月29日星期二
13
数据挖掘任务
• 预测建模 涉及以说明自变量函数的方式为目标变量
建立模型。 有两类预测建模任务:分类,用于预测离
– 使用抽样技术或开发并行和分布算法也可以提高可 伸缩程度
2020年9月29日星期二
7
挑战2
• 高维性
– 具有数以百计或数以千计属性的数据集
• 生物信息学:涉及数千特征的基因表达数据 • 不同地区温度测量:如果在一个相当长的时间周期内进
行测量,维度(特征数)的增长正比于测量的次数
– 为低维数据开发的数据分析技术不能很好地处理高 维数据
异常检测的应用包括检测欺诈、网络攻 击、疾病的不寻常模式、生态系统扰动等。
– Jiawei Han的定义
• 从大型数据集中提取有趣的 (非平凡的, 蕴涵的, 先前未知的并且是潜在有用的) 信息或模式
4
数据挖掘技术的定义
• 定义:数据挖掘就是从大量的、不完全的、有 噪声的、模糊的、随机的实际应用数据中,提 取隐含在其中的,人们事先不知道的、但又是 潜在有用的信息和知识的过程.

非参数统计讲义通用课件

非参数统计讲义通用课件

假设检验方法
总结词
假设检验方法用于检验一个关于总体 参数的假设是否成立。
详细描述
假设检验方法包括提出假设、构造检 验统计量、确定临界值和做出决策等 步骤。常见的假设检验方法有t检验、 卡方检验、F检验等,用于判断样本数 据是否支持假设。
关联性分析方法
总结词
关联性分析方法用于研究变量之间的相关性。
02
非参数统计方法
描述性统计方法
总结词
描述性统计方法用于收集、整理、描述数据,并从数据中提取有意义的信息。
详细描述
描述性统计方法包括数据的收集、整理、描述和可视化,例如均值、中位数、 众数、标准差等统计量,以及直方图、箱线图等图形化表示。这些方法可以帮 助我们了解数据的分布、中心趋势和离散程度。
非数统计与机器学习算法的结 合将有助于解决复杂的数据分析 问题。
02
与大数据技术的融 合
非参数统计将借助大数据技术处 理海量数据,挖掘数据背后的规 律和模式。
03
与社会科学研究的 互动
非参数统计方法将为社会科学研 究提供更有效的研究工具和方法 。
决策树分析方法
总结词
决策树分析方法是一种基于树形结构的非参 数统计学习方法。
详细描述
决策树分析方法通过递归地将数据集划分为 更小的子集,构建出一棵决策树。决策树的 每个节点表示一个特征属性上的判断条件, 每个分支代表一个可能的属性值,每个叶子 节点表示一个分类结果。决策树分析可以帮 助我们进行分类、预测和特征选择等任务。
非参数统计的发展趋势
多元化发展
非参数统计将不断拓展其应用领域,从传统的医学、生物 、经济领域向金融、环境、社会学等领域延伸。
01
算法优化
随着计算能力的提升,非参数统计的算 法将进一步优化,提高计算效率和准确 性。

数据挖掘精品PPT课件

数据挖掘精品PPT课件
ห้องสมุดไป่ตู้
(2)聚类分析 物以类聚,人以群分,聚类分析技术试图找出数据 集中的数据的共性和差异,并将具有共性对象聚合 在相应的簇中。聚类分析已广泛应用与客户细分、 定向营销、信息检索等领域。 聚类与分类是容易混淆的两个概念。聚类是一种无 指导的观察式学习,没有预先定义的类。 (3)关联分析 关联分析是发现特征之间的相互依赖关系,通常是 在给定的数据集中发现频繁出现的模式知识(又称 关联规则)。关联规则广泛用于市场营销、事务分 析等领域。
数据挖掘概念首次出现在1989年举行的第十一届 国际联合人工智能学术会议上,其思想主要来自 于机器学习、模式识别、统计和数据库系统。国 内对数据挖掘的研究起步较晚,1993年国家自然 科学基金首次支持该领域的研究。此后,国家、 各省自然科学基金委,国家社科基金,“863”、 “973”项目,国家、各省的科技计划,每年都 有相关项目支持。众多研究机构和大学都成立专 门的项目组。从事数据挖掘研究与应用的人员越 来越多。现今,数据挖掘的基本理论问题逐步得 到了解决,现在更多的是数据挖掘的应用。
7.2.2 基于规则的分类器 基于规则的分类器是使用一组“if...then...” 规则来对记录进行分类的技术。为了建立基于规则 的分类器,需要提取一组规则来识别数据集的属性 和类标号之间的关键联系。提取分类规则的方法有 两大类,直接方法和间接方法。直接方法是直接从 数据中提取分类规则,间接方法是从其他分类模型 中提取分类规则。
7.2 分类 分类任务就是确定对象属于哪个预定义的目标类。 分类问题是一个普遍存在的问题,有许多不同的 应用。例如,根据电子邮件的标题和内容检查出 垃圾邮件,对一大堆照片区分出哪些是猫哪些是 狗。分类任务就是通过学习得到一个目标函数, 把每个属性集x映射到一个预先定义的类标号y。 目标函数也称分类模型。

数据挖掘与机器学习算法培训ppt

数据挖掘与机器学习算法培训ppt

CHAPTER 05
关联规则挖掘与推荐系统
关联规则挖掘原理与应用
关联规则挖掘定义
关联规则挖掘是从大量数据中挖掘出项集之间的有趣关系,如购 物篮分析中经常一起购买的商品组合。
关联规则挖掘算法
常见的关联规则挖掘算法有Apriori、FP-growth等,用于发现频 繁项集和关联规则。
关联规则挖掘应用
特征提取技术
通过选择和提取与目标变量相关的特征,降低数 据维度,提高挖掘效率。
模型构建技术
包括各种机器学习算法和统计方法,用于构建预测 和分类模型。
模型评估技术
通过交叉验证、ROC曲线分析等方法评估模型性 能,选择最佳模型。
结果解释技术
对挖掘结果进行解释和可视化,帮助用户理解和应用挖 掘结果。
CHAPTER 02
MSE、RMSE、MAE 等回归模型评估指标
超参数调整技巧与实践案例
01
网格搜索、随机搜索、贝叶斯优 化等超参数调整方法
02
调整学习率、批量大小、迭代次 数等超参数的实践案例
集成学习策略在数据挖掘中的应用
Bagging、Boosting、 Stacking等集成学习策略
Adaboost、GBRT、XGBoost 等常用集成学习方法
实践案例
以电商为例,可以通过关联规则挖掘发现不同商品之间的关联关系,然 后利用推荐系统为用户推荐相关商品或套餐,提高用户购买率和销售额 。
CHAPTER 06
数据挖掘与机器学习算法优化策略
模型评估指标选择与优化方法
准确率、召回率、F1 分数等分类模型评估 指标
交叉验证、留出验证 、自助采样等方法
用于连续型目标变量。
逻辑回归
通过将输入变量映射到概率值 来训练模型,适用于二元分类

《数据挖掘》PPT课件

《数据挖掘》PPT课件
➢ 数据挖掘应用系统开发 ➢ 数据挖掘技术的新应用 ➢ 数据挖掘软件发展
2020/12/9
数据库研究所
9
高级数据挖掘
课程的教学目的
➢ 让学生掌握数据挖掘的基本概念、算法和高级技术; ➢ 将这些概念、算法和技术应用于实际问题。
复旦大学计算机科学技术学 院基本情况
➢ 主要研究方向
▪ 媒体计算 ▪ 数据库与数据科学 ▪ 网络与信息安全 ▪ 智能信息处理 ▪ 人机接口和服务计算 ▪ 理论计算机科学 ▪ 软件工程与系统软件
2020/12/9
数据库研究所
6
复旦大学数据挖掘课程的设置
总体目标
➢ 掌握大规模数据挖掘与分析的基本流程 ➢ 掌握数据挖掘的基本算法 ➢ 掌握对实际数据集进行挖掘的系统能力
数据仓库与数据挖掘
数据库系统
2020/12/9
数据库研究所
8
数据仓库与数据挖掘
课程的教学目的
➢ 掌握数据仓库数据挖掘原理、技术和方法,掌握建立数据挖掘应用 系统的方法,了解相关前沿的研究。
教学内容
➢ 数据挖掘、数据仓库的基本概念
▪ 数据仓库设计和应用 ▪ 数据挖掘的基本技术
• 关联分析、分类分析、聚类分析、异常分析和演化分析等;联机分析处理OLAP技术;
➢ involving methods at the intersection of artificial intelligence, machine learning, statistics, and database systems.
➢ The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use.

数据挖掘算法介绍ppt课件

数据挖掘算法介绍ppt课件
❖ 粗糙集对不精确概念的描述方法是:通过上近似概念和 下近似概念这两个精确概念来表示;一个概念(或集合 )的下近似指的是其中的元素肯定属于该概念;一个概 念(或集合)的上近似指的是其中的元素可能属于该概 念。
❖ 粗糙集方法则有几个优点:不需要预先知道的额外信息 ,如统计中要求的先验概率和模糊集中要求的隶属度; 算法简单,易于操作。
❖ 国外现状:
成熟、 产品:SAS、CLEMENTINE、UNICA、各大数据库
❖ 国内现状:
起步 产品:大部分是实验室产品
数据挖掘分类
❖ 挖掘对象
▪ 基于数据库的挖掘 ▪ 基于web的挖掘 ▪ 基于文本的挖掘 ▪ 其他:音频、视频等多媒体数据库
数据挖掘分类
❖ 应用
▪ 响应模型 ▪ 交叉销售 ▪ 价值评估 ▪ 客户分群
遗传算法
❖ 遗传算法(Genetic Algoritms,简称GA )是以自然选择和遗传理论为基础,将生 物进化过程中“适者生存”规则与群体内 部染色体的随机信息交换机制相结合的搜 索算法 ;
❖ 遗传算法主要组成部分包括编码方案、适 应度计算、父代选择、交换算子和变异算 子。
序列模式
❖ 是指在多个数据序列中发现共同的行为模 式。
谢谢
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
Hale Waihona Puke 策树❖ 决策树学习是以实例为基础的归纳学习算 法,着眼于从一组无次序/无规则的事例中 推理出决策树表示形式的分类规则;
❖ 决策树基本算法是:贪心算法,它以自顶向 下递归、各个击破方式构造决策树.
关联规则
❖ 关联规则是形式如下的一种规则,“在购 买面包和黄油的顾客中,有90%的人同时 也买了牛奶”(面包+黄油 → 牛奶);

非参数统计讲义通用课件

非参数统计讲义通用课件
案例分析
通过实际案例展示如何使用Python进行非 参数统计,包括分布拟合、假设检验和模 型选择等步骤。
SPSS实现
SPSS简介
SPSS(Statistical Package for the Social Sciences) 是一款流行的社会科学统计 软件。
操作界面
SPSS的非参数统计功能通常 在“分析”菜单下的“非参 数检验”选项中,用户可以 通过直观的界面进行操作。
聚类分析方法在数据挖掘、 市场细分等领域有广泛应用, 可以帮助我们发现数据的内 在结构和模式。
异常值检测方法
• 异常值检测方法用于识别和剔除数据中的异常值,提高数据分析的准确性和可靠性。
• 常见的异常值检测方法包括基于统计的方法、基于距离的方法、基于密度的方等。 • 基于统计的方法利用统计学原理,如z分数、IQR等,判断数据是否为异常值;基于距离的方法通过计算对象与其它对象的距离来判断是否为异常值;基于密度的方法则根据对象周围的密度变化来判断是否
解释性较差
相对于参数统计,非参数统计结果通 常较为抽象,难以直接解释其具体含 义。
假设检验能力较弱
非参数统计在假设检验方面的能力相 对较弱,对于确定性的结论和预测不 如参数统计准确。
如何克服非参数统计的局限性
01
02
03
04
利用高效计算方法
采用并行计算、分布式计算等 高效计算方法,提高非参数统
计的计算效率和准确性。
描述性统计方法在数据分析中起到基 础作用,为后续的统计推断提供数据 基础和初步分析结果。
假设检验方法
假设检验方法是一种统计推断 方法,通过提出假设并对其进
行检验,判断假设是否成立。
假设检验方法包括参数检验和 非参数检验,其中非参数检验 不依赖于总体分布的具体形式,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
✓ 模式记述语言:反映了算法可以发现什么 样的知识
✓ 模式评价:反映了什么样的模式可以称为 知识
✓ 模式探索:包括针对某一特定模式对参数 空间的探索和对模式空间的探索
数据挖掘的主要方法
✓ 分类(Classification)
✓ 聚类(Clustering)
✓ 相关规则(Association Rule) ✓ 回归(Regression) ✓ 其他
数据挖掘软件的发展
第一代数据挖掘软件 CBA
新加坡国 立大学。基于 关联规则的分 类算法,能从 关系数据或者 交易数据中挖 掘关联规则, 使用关联规则 进行分类和预 测
数据挖掘软件的发展
特点
第二代数据挖掘软件
➢ 与数据库管理系统(DBMS)集成
➢ 支持数据库和数据仓库,和它们具有高性能的接口,具有高的 可扩展性
• 保险欺诈侦察 • 客户信用风险评级 • 电话盗打 • NBA球员强弱分析 • 信用卡可能呆帐预警 • 星际星体分类
数据挖掘的步骤*
一种步骤划分方式
理解资料与进行的工作 获取相关知识与技术(Acquisition) 整合与查核资料(Integration and checking) 去除错误、不一致的资料(Data cleaning) 模式与假设的演化(Model and hypothesis development) 实际数据挖掘工作 测试与核查所分析的资料(Testing and verification) 解释与运用(Interpretation and use)
数据挖掘的社会需求
国民经济和社会的信息化
• 社会信息化后,社会的运转是软件的运转 • 社会信息化后,社会的历史是数据的历史
数据挖掘的社会需求
数据库越来越大
数据挖掘
可怕的数据
有价值的知识
数据挖掘的社会需求
苦恼: 淹没在数据中 ; 不能制定合适的决策!
数据
知识
决策
n 金融 n 经济 n 政府
n POS. n 人口统计 n 生命周期
第10章 数据挖掘与机器学习
1
概念:数据挖掘是从大量的数据中,抽取 出潜在的、有价值的知识(模型或规则) 的过程
2
数据挖掘概念
数据挖掘--从大量数据中寻找其规律的技术 ,是统计学、数据库技术和人工智能技术 的综合。
数据挖掘是从数据中自动地抽取模式、关 联、变化、异常和有意义的结构;
数据挖掘大部分的价值在于利用数据挖掘 技术改善预测模型。
➢ 能够挖掘大数据集、以及更复杂的数据集
➢ 通过支持数据挖掘模式(data mining schema)和数据挖掘查 询语言增加系统的灵活性
➢ 典型的系统如DBMiner,能通过DMQL挖掘语言进行挖掘操作
缺陷
ห้องสมุดไป่ตู้
➢ 只注重模型的生成,如何和预言模型系统集成导致了第三代数 据挖掘系统的开发
数据管理和 预言模型系 统
同质/局 部区域 的计算 机群集
intranet/e xtranet 网 络计算
有些系统支 持对象、文 本、和连续 的媒体数据
支持半结构 化数据和 web数据
第四代
和移动数据/ 各种计算数
据联合
多个算法
数据管理、 预言模型、 移动系统
移动和各 种计算设 备
普遍存在 的计算模 型
第四代数据挖掘系统
第四代数据挖掘系统能够挖掘嵌入式系统、移动 系统、和普遍存在(ubiquitous)计算设备产生 的各种类型的数据 。
数据挖掘的功能/算法/应用的比较
数据挖掘常用方法的综合比较*
数据挖掘的具体应用
市场--购物蓝分析 客户关系管理 寻找潜在客户 提高客户终生价值 保持客户忠诚度 行销活动规划 预测金融市场方向
数据挖掘系统
第一代数据挖掘系统
支持一个或少数几个数据挖掘算法,这些算法设 计用来挖掘向量数据(vector-valued data), 这些数据模型在挖掘时候,一般一次性调进内存 进行处理。许多这样的系统已经商业化。
第二代数据挖掘系统
目前的研究,是改善第一代数据挖掘系统,开发 第二代数据挖掘系统。第二代数据挖掘系统支持 数据库和数据仓库,和它们具有高性能的接口, 具有高的可扩展性。例如,第二代系统能够挖掘 大数据集、更复杂的数据集、以及高维数据。这 一代系统通过支持数据挖掘模式(data mining schema)和数据挖掘查询语言(DMQL)增加系
金子(知识)
数据的特征
✓ 大容量
• POS数据(某个超市每天要处理高达2000万 笔交易)
• 卫星图象(NASA的地球观测卫星以每小时 50GB的速度发回数据)
• 互联网数据
✓ 含噪音(不完全、不正确)
✓ 异质数据(多种数据类型混合的数据源 ,来自互联网的数据是典型的例子)
数据挖掘算法的特征
✓ 构成数据挖掘算法的三要素
n 模式 n 趋势 n 事实 n 关系 n 模型 n 关联规则 n 序列
n 目标市场 n 资金分配 n 贸易选择 n 在哪儿做广告 n 销售的地理位置
数据爆炸,知识贫乏
数据挖掘功能
数据挖掘任务有两类:
第一类是描述性挖掘任务:刻划数据库中数 据的一般特性;
第二类是预测性挖掘任务:在当前数据上进 行推断,以进行预测。
数据挖掘系统

特征
数据挖掘算法
集成
分布计算 数据模型
模型
第一代
数 据 挖 掘 作 为 支持一个或者 一 个 独 立 的 应 多个算法

独立的系 统
单个机 器
向量数据
第二代 第三代
和数据库以及 数据仓库集成
和预言模型 系统集成
多个算法:能够 挖掘一次不能放 进内存的数据
多个算法
数据管理系 统,包括数 据库和数据 仓库
数据挖掘系统
第三代数据挖掘系统
第三代的特征是能够挖掘Internet/Extranet的分布 式和高度异质的数据,并且能够有效地和操作型 系统集成。这一代数据挖掘系统关键的技术之一 是提供对建立在异质系统上的多个预言模型以及 管理这些预言模型的元数据提供第一级别(first class)的支持。
数据挖掘技术
技术分类
➢ 预言(Predication):用历史预测未来 ➢ 描述(Description):了解数据中潜在的规律
数据挖掘技术
➢ 关联分析 ➢ 序列模式 ➢ 分类(预言) ➢ 聚集 ➢ 异常检测
数据挖掘系统的特征
矿山(数据)
挖掘工具(算法)
✓ 数据的特征
✓ 知识的特征
✓ 算法的特征
相关文档
最新文档