奥数列方程解应用题

合集下载

五年级奥数-应用题入门之列方程解应用题

五年级奥数-应用题入门之列方程解应用题

应用题入门之列方程解应用题一、知识站点:1.解方程;2.列方程解应用题的相关步骤;3.综合运用实例。

二、知识讲解与相关例题:1.解方程:⑴解一元一次方程:⑵解多元一次方程组:2.列方程解应用题的相关步骤:【引例】鸡兔同笼,共有10个头,共28只脚,那么兔子有多少只?列方程解应用题的步骤:⑴设;⑵表;⑶列;⑷解;⑸代;⑹验3.综合运用实例:例题索引:例一——和差倍问题;例二——鸡兔同笼问题;例三——盈亏问题;例四——行程问题;例五——分数应用题。

(★★)两个自然数相除,商为10,余数为21。

如果被除数,除数,商,以及余数的和是943,那么被除数是多少?(★)幸运草有两种类型,一种每株有3个叶片,一种比较罕见,每株有4个叶片。

小明采了10株幸运草,数了一下发现共有31片叶片,那么4叶幸运草有多少株?(★★★)美猴王采了一堆桃子准备分给小猴子们,如果每只小猴分6个的话,那么还剩下8个桃子;如果又来了7只小猴,并且所有小猴都分5个桃子,那么还少2个桃子。

请问:小猴子有多少只?这堆桃子有多少个?(★★★)有甲、乙两人,一直匀速行进,如果两人从相距100米的两地同时出发相向而行,则10秒后两人相遇;如果两人同时同地同向而走,则出发1分钟后两人相距120米,求他们中较快的人的速度。

(★★★)11382600妈妈发了一笔年终奖金,她打算把其中的拿来做孩子的教育基金,用来置办年货,这时还会剩余元,那么妈妈的年终奖共有多少元?【本讲小结】1.解方程;2.列方程解应用题的相关步骤;3.综合运用实例。

小学奥数列方程解应用题

小学奥数列方程解应用题

小学奥数列方程解应用题小学奥数列方程解应用题 11.总共有1428个网球,每五个一桶。

装完后,还剩3个。

总共装了多少桶?2、故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。

天安门广场的面积多少万平方米?3、宁夏的同心县是一个“干渴”的地区,年平均蒸发量是2325mm,比年平均降水量的8倍还多109mm,同心县的年平均降水量多少毫米?4、猎豹是世界上跑得最快的动物,能达到每小时110km,比大象的2倍还多30km。

大象最快能达到每小时多少千米?5.世界上的大陆是亚洲,面积4400万平方公里,是大洋洲面积的4倍多812万平方公里。

大洋洲的面积有多少平方公里?6.该建筑高29.2米。

一楼准备开店,层高4米。

上面9层是房子。

每栋居民楼的高度是多少米?7.在太阳系九大行星中,水星离太阳最近。

地球绕太阳一周需要365天,是水星绕太阳一周时间的4倍多13天。

水星绕太阳一周是多少天?8、地球的表面积为5。

1亿平方千米,其中,海洋面积约为陆地面积的2.4倍。

地球上的海洋面积和陆地面积分别是多少亿平方千米?9、6个易拉缺罐,9个饮料瓶,每个的价钱都一样,一共是1.5元。

每个多少钱?10、两个相邻自然数的和是97,这两个自然分别是多少?小学奥数列方程解应用题 21、数学练习共举行了20次,共出试题374道,每次出的题数是16,21,24问出16,21,24题的分别有多少次?2、一个整数除以2余1,用所得的商除以5余4,再用所得的商除以6余1。

用这个整数除以60,余数是多少?3.少先队员在校园里种的苹果苗是梨苗的两倍。

如果每人种3棵梨苗,就剩下2棵树;如果每人种7棵苹果树苗,就会少6棵。

有多少少先队员?有多少苹果和梨子苗?4、某人开汽车从A城到B城要行200千米,开始时他以56千米/小时的速度行驶,但途中因汽车故障停车修理用去半小时,为了按时到达,他必须把速度增加14千米/小时,跑完以后的路程,他修车的地方距离A城多少千米?5、甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B两地的距离。

小学四年级奥数讲义-列方程解应用题

小学四年级奥数讲义-列方程解应用题

小学四年级奥数讲义-列方程解应用题小学四年级奥数例1:10箱苹果比6箱梨重54千克,每箱梨重16千克,每箱苹果重多少千克?(列方程解)练1:果园里有梨树和桃树,桃树的棵树是梨树的5倍,比梨树多480棵,梨树和桃树各多少棵?(列方程解)练2:汽车上共有千克梨,卸下600千克之后,还有45箱,每箱梨重多少?(列方程解)解析:这些问题都可以通过列方程解来解决。

例如,对于第一个问题,我们可以设每箱苹果重x千克,则每箱梨重16千克,因此10x + 6 × 16 = 54,解得x = 2.因此,每箱苹果重2千克。

练1可以设梨树的数量为x,桃树的数量为5x,因此有x + 5x = x × 6 + 480,解得x = 120,因此梨树有120棵,桃树有600棵。

练2可以设每箱梨重y千克,因此有45y + 600 = ,解得y = 320,因此每箱梨重320/10 = 32千克。

例2:父亲今年32岁,儿子今年5岁,几年之后,父亲的年龄正好是儿子的年龄的4倍?(列方程解)练1:XXX今年9岁,妈妈今年39岁,再过几年妈妈年龄正好是小明年龄的3倍?(列方程解)练2:爸爸今年44岁,XXX今年12岁,多少年前爸爸年龄是XXX年龄的9倍?(列方程解)解析:这些问题也可以通过列方程解来解决。

例如,对于第一个问题,我们可以设几年后父亲的年龄为32 + x,儿子的年龄为5 + x,则有32 + x = 4 × (5 + x),解得x = 28.因此,28年后父亲的年龄正好是儿子的年龄的4倍。

练1可以设几年后妈妈的年龄为39 + x,XXX的年龄为9 + x,则有39 + x = 3 × (9 + x),解得x = 10.因此,10年后妈妈的年龄正好是小明年龄的3倍。

练2可以设多少年前爸爸的年龄为44 - x,XXX的年龄为12 - x,则有44 - x = 9 × (12 - x),解得x = 4.因此,4年前爸爸的年龄正好是XXX年龄的9倍。

四年级奥数列方程解应用题

四年级奥数列方程解应用题

第11讲第一天1.体育馆的羽毛球和乒乓球共有98个,其中乒乓球比羽毛球的3倍少14个,那么羽毛球有()个。

A.21B.24C.26D.28【答案】D【解析】设羽毛球有x个,则乒乓球有(3x-14)个,列方程:x+3x-14=98,解得:x=28。

2.月亮服装厂有两个车间,共有236名工人,第一车间的工人人数比第二车间的4倍少9人,那么第一车间有()名工人。

A.196B.187C.172D.160【答案】B【解析】设第二车间有x人,则第一车间有(4x-9)人,列方程:x+4x-9=236,解得:x=49,则第一车间的工人人数为4×49-9=196-9=187(人)。

第二天1.有两根绳子,第一根长26米,第二根长14米,用去同样长的一段后,第一根剩下的长度是第二根剩下长度的4倍,那么两根绳子各用去()米。

A.10B.9C.8D.7【答案】A【解析】设两根绳子各用去x米,列方程:26-x=4(14-x),解得:x=10。

2.服装店购进的T恤件数是衬衫件数的3倍。

如果每天卖出9件T恤、5件衬衫,若干天后衬衫全部卖完时,T恤还剩60件。

服装店最初购进了()件T 恤。

A.130B.141C.150D.168【答案】C【解析】设共卖了x天,则最初T恤有(9x+60)件,衬衫有5x件,列方程:9x+60=3×5x,解得:x=10,则最初T恤有9×10+60=150(件)。

第三天1.把一批铅笔分给四(2)班学生,如果每人分4支,则剩余12支,如果每人分5支,则还缺20支。

四(2)班有()名学生。

A.28B.32C.36D.40【答案】B【解析】设四(2)班有x名学生,列方程:4x+12=5x-20,解得:x=32。

2.幼儿园将一筐草莓分给小朋友,若全部分给大班的小朋友,每人分6个,则余下18个;若全部分给小班的小朋友,每人分8个,则缺6个。

已知大班比小班多5人,那么大班有()个小朋友。

小学五年级奥数方程应用题100道及答案完整版

小学五年级奥数方程应用题100道及答案完整版

小学五年级奥数方程应用题100道及答案完整版题目1商店有一批苹果,卖出180 千克后,剩下的是卖出的4 倍,商店原来有苹果多少千克?设商店原来有苹果x 千克,则:x - 180 = 4×180,解得x = 900 千克。

题目2小明和小红共有邮票100 张,如果小明给小红10 张,两人的邮票就一样多,小明和小红原来各有多少张邮票?设小明原来有x 张邮票,小红原来有y 张邮票,则:x + y = 100,x - 10 = y + 10,解得x = 60,y = 40。

题目3果园里有苹果树和梨树共360 棵,苹果树的棵数是梨树的 3 倍,苹果树和梨树各有多少棵?设梨树有x 棵,苹果树有3x 棵,则:x + 3x = 360,解得x = 90,3x = 270。

题目4学校买了一批篮球和足球,篮球的个数是足球的2 倍,篮球比足球多18 个,篮球和足球各有多少个?设足球有x 个,篮球有2x 个,则:2x - x = 18,解得x = 18,2x = 36。

题目5甲乙两车同时从相距480 千米的两地相对而行,甲车每小时行45 千米,5 小时后两车相遇,乙车每小时行多少千米?设乙车每小时行x 千米,则:(45 + x)×5 = 480,解得x = 51。

题目6书架上有两层书,上层书的本数是下层的3 倍,如果从上层拿60 本到下层,两层书的本数就一样多,上下层原来各有多少本书?设下层原来有x 本书,上层原来有3x 本书,则:3x - 60 = x + 60,解得x = 60,3x = 180。

题目7鸡兔同笼,共有头30 个,脚86 只,鸡和兔各有多少只?设鸡有x 只,兔有y 只,则:x + y = 30,2x + 4y = 86,解得x = 17,y = 13。

题目8妈妈买了5 千克苹果和3 千克香蕉,一共花了40 元,苹果每千克6 元,香蕉每千克多少元?设香蕉每千克x 元,则:5×6 + 3x = 40,解得x = 10/3 元。

小学五年级奥数题列方程解应用题【三篇】

小学五年级奥数题列方程解应用题【三篇】

小学五年级奥数题列方程解应用题【三篇】【第一篇】商店有胶鞋、布鞋共46双,胶鞋每双7.5元,布鞋每双5.9元,全部卖出后,胶鞋比布鞋多收入10元。

问:胶鞋有多少双?分析:此题几个数量之间的关系不容易看出来,用方程法却能清楚地把它们的关系表达出来。

设胶鞋有x双,则布鞋有(46-x)双。

胶鞋销售收入为7.5x元,布鞋销售收入为5.9(46-x)元,根据胶鞋比布鞋多收入10元可列出方程。

解:设有胶鞋x双,则有布鞋(46-x)双。

7.5x-5.9(46-x)=10,7.5x-271.4+5.9x=10,13.4x=281.4,x=21。

答:胶鞋有21双。

【第二篇】教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍。

问:最初有多少个女生?分析与解:设最初有x个女生,则男生最初有(x-10)×2个。

根据走了10个女生、9个男生后,女生是男生人数的5倍,可列方程x-10=[(x-10)×2-9]×5,x-10=(2x-29)×5,x-10=10x-145,9x=135,x=15(个)。

【第三篇】甲、乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克。

如果一个人带150千克的行李,除免费部分外,应另付行李费8元。

求每人可免费携带的行李重量。

分析与解:设每人可免费携带x千克行李。

一方面,三人可免费携带3x千克行李,三人携带150千克行李超重(150-3x)千克,超重行李每千克应付4÷(150-3x)元;另一方面,一人携带150千克行李超重(150-x)千克,超重行李每千克应付8÷(150-x)元。

根据超重行李每千克应付的钱数,可列方程4÷(150-3x)=8÷(150-x),4×(150-x)=8×(150-3x),600-4x=1200-24x,20x=600,x=30(千克)。

六年级奥数《列方程解应用题》练习题

六年级奥数《列方程解应用题》练习题

第五讲:列方程解应用题(必做与选做)1.今年,阿派和欧拉的年龄的比是3:5,两年后,两人的年龄比是2:3,那么阿派和欧拉今年的年龄分别是多少岁?A. 6 15B. 15 6C. 6 10D. 12 8解析:假设阿派今年的年龄是3x岁,那么欧拉今年的年龄是5x岁;两年后阿派的年龄是(3x+2)岁,欧拉的年龄是(5x+2)岁。

根据“两人的年龄比是2:3”列式,3(3x+2)=2(5x+2),算出x=2,所以阿派今年的年龄是:3×2=6(岁),欧拉今年的年龄是:5×2=10(岁)。

所以选C。

2.甲、乙两人的年龄和是33岁,甲比乙大3岁,那么甲、乙两人各多少岁?A. 13 15B. 15 13C. 15 18D. 18 15解析:假设甲x岁,那么乙(x-3)岁,又“两人年龄和为33岁”,所以可以列式:x+x-3=33,求出x=18,所以甲18岁,乙15岁。

所以选D。

3.米德比爸爸小28岁,爸爸今年的年龄是米德年龄的5倍,米德、爸爸今年各多少岁?A. 7 35B. 35 7C. 5 23D. 23 5解析:假设米德今年的年龄是x岁,那么爸爸今年的年龄是(x+28)岁,根据“爸爸今年的年龄是米德年龄的5倍”列式:x+28=5x,得x=7。

所以米德今年7岁,爸爸今年35岁。

所以选A。

4.一件商品随季节变化降价出售,如果按现价降价10%,仍可获利60元;如果降价20%就要亏损80元,这件商品的进价是多少元?A. 1200B. 1400C. 1600D. 1800解析:假设这件商品的现价是x元,那么降价10%后售价为(1-10%)x元,降价20%后售价为(1-20%)x元,两次改价之间的差是(60+80)元,因此可以列式:(1-10%)x-(1-20%)x=60+80。

经计算得x=1400。

要注意,题目问的是进价,因此进价为:1400×90%-60=1200(元)。

所以选A。

5.某商店决定将一批苹果的价格提高20%,这时所得的利润就是原来的两倍。

五年级奥数题:列方程解应用题

五年级奥数题:列方程解应用题

五年级奥数题:列方程解应用题例1:笼中共有鸡兔100只,鸡兔足数共有320条,问鸡兔各有多少只?等量关系式是:①有10分和20分的邮票共18张,总面值为2.80元,问10分和20分邮票各有多少张?②小兔妈妈采蘑菇,晴天每天可采16只,雨天每天只能采11只,它一共采了195只,平均每天采13只,这几天中有几天下雨?几天晴天?例2:已知鸡比兔多13只,鸡的脚比兔脚多16条,问鸡兔各有多少只?等量关系式是:①五年一班有52人做手工,男生每人做3件,女生每人做2件,已知男生比女生多做36件,求五年一班男女生各有多少人?②学校组织暑假旅游,一共用了10辆车,大客车每辆坐100人,小客车每辆坐60人,大客车比小客车一共多坐了520人,问大小客车各几辆?例3:一条船从码头顺流而下,再逆流而上,打算在8小时内回到原出发的码头,已知船的静水速度是每小时10千米,水流速度是每小时2千米,问此船最多走出多少千米就必须返回才能在8小时内回到原码头?等量关系式是:①一架飞机飞行于两城之间顺风需要6小时30分,逆风时需要7小时,已知风速是每小时26千米,求两城之间的距离是多少千米?②甲、乙两人分别从AB两地同时出发,如果两人同向而行,经过13分钟,甲赶上乙。

如两人相向而行,经过3分钟两人相遇。

已知乙每分钟行25千米,问AB两地相距多少米?例4:一群公猴,母猴和小猴共38只,每分钟共摘桃266个。

已知一只公猴每分钟摘桃10个,一只母猴每分钟摘桃8个,一只小猴每分钟摘桃5个,已知公猴比母猴少4只,那么这群猴中公猴、母猴、小猴各有多少只?①有大、中、小卡车共42辆,每次共运货315箱,已知每辆大卡车每次能运10箱,中卡车每辆每次运8箱,小卡车每辆每次可运5箱,又知中卡车的辆数和小卡车同样多,求大卡车有多少辆?②蜘蛛有8只脚,晴蜓有6只脚和2双翅膀,蝉有6只脚和一对翅膀,现在有这三种小虫共16只,共有110条腿,14对翅膀,问每只小虫各有多少只?③学校组织新年联欢会,用于奖品的铅笔、圆珠笔、钢笔共232支,价值100元,其中铅笔的数量是圆珠笔的4倍,已知每支铅笔0.2元,每支圆珠笔0.9元,每支钢笔2.1元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列方程解应用题列方程解应用题的一般步骤是:①审清题意,弄清楚题目意思以及数量之间的关系,;②合理设未知数x,设未知数的方法有两种:问什么设什么(直接设未知数),间接设未知数;③依题意确定等量关系,根据等量关系列出方程;④解方程;⑤将结果代入原题检验。

概括成五个字就是:“审、设、列、解、验”.列方程解应用题的关键是找到正确的等量关系。

寻找等量关系的常用方法是:根据题中“不变量”找等量关系。

一些基本概念:(1)像4x+2=9这样的的等式,只含有一个未知数x,而且未知数x的指数为1的方程叫做一元一次方程;(2)像2x+y=8这样的的等式,含有两个未知数x、y,而且未知数的指数都为1的方程叫做二元一次方程;把两个二元一次方程用“﹛”写在一起,就组成了一个二元一次方程组;(3)如果有两个未知数,一般需要两个方程才能求出唯一解,如果有三个未知数,一般需要三个方程才能求出唯一解.如果有更多的未知数,可借助今天学习的解题思路来类推出解法.类型Ⅰ:列简易方程解应用题【例1】 (难度系数:★★)解下列方程:(1)357x x +=+ (2)452x x -=-(3)12(3)7x x +-=+ (4)132(23)5(2)x x --=--(5)5118()2352x x ⎡⎤⨯⨯-=⎢⎥⎣⎦ (6)1123x x +-= (7)527x y x y +=⎧⎨+=⎩(8)2311329x y x y +=⎧⎨+=⎩分析:(1)375,22,21.1x x x x x -=-===移项得:注意把“同类”放在等号的同侧,移项过程中注意变号;化简得:等式两边同时除以可得:把代入原式满足等式. 以下各题不再写检验步骤,请教师强调学生答案要检验.(2)2541.x x x -=-=,(3)16277730.x x x x +-=+-==,,(4)13465219471974123 4.x x x x x x x x -+=-+-=--==,,-=,,(5)511154104101104()410.35236333333x x x x x x x x x x ⎡⎤⎡⎤⨯⨯-=⨯-=-=-===⎢⎥⎢⎥⎣⎦⎣⎦,,,,, (6)312633263.x x x x x +=+-==()-,,请教师强调学生在解答时要注意:移项变号、同类放在等式一边、(4)中去括号时每一项都要发生相应变化、(6)中每一项都同时扩大6倍、(5)中可以先简化运算的一定要先化简。

(7)法1:加减消元法 (8) 512722121323x y x y x y x y +=⎧⎨+=⎩===⎧⎨=⎩ () ()()式-()式可得:,代入()式可得:,所以 23111329212153,1.13x y x y y y x x y +=⎧⎨+=⎩⨯⨯====⎧⎨=⎩ () ()()3-()2可得:5,将其代入(1)式可得:所以可得: 法2:代入法.建议教师将(7)、(8)贯穿起来,让学生深刻体会:(1)代入法,以及代入法在什么情况下好用;(2)加减消元法,其本质是找(制造)到一个未知数的系数相等,再利用等式加减得到结果.【例2】 (难度系数:★★)汽车以每小时72公里的速度笔直地开向寂静的山谷,驾驶员按一声喇叭,4秒后听到回音,听到回音时汽车离山谷多远?(声音的速度以340米/秒计算)分析:72千米/小时=72000米/3600秒=2米/秒,设听到回音时汽车离山谷x 米,根据题意可得:340×4=2x+2×4,解得x=676(米).【例3】 (小数报数学竞赛初赛)(难度系数:★★★)用绳子测井深,绳子两折时,余60厘米,绳子三折时,差40厘米,求绳长和井深?分析: 法1:设井深是x 厘米,则有:2x+60×2=3x-40×3 ,井深x=240(厘米),绳长600厘米;法2:设绳长是y 厘米,则有:11y-60=y+40,y=60024023 解得绳长(厘米),井深厘米.【例4】 (难度系数:★★)箱子里面有红、白两种玻璃球,红球数比白球数的3倍多两个,每次从箱子里取出7个白球,15个红球.如果经过若干次以后,箱子里只剩下3个白球,53个红球,那么,箱子里原有红球比白球多多少个?分析:设取球的次数为x 次.那么原有的白球数为(3+7x ),红球数为(53+15x ).再根据题中的第一个条件:53+15x=3×(3+7x )+2,解得x=7,所以原有红球158个,原有白球52个,红球比白球多106个.此题用逆向思维较难求解,但是用方程则思路非常清晰简单.【例5】(难度系数:★★★)小新去动物园看猩猩,有的猩猩在洞中,有的在外面玩耍。

他就问管理员叔叔共有多少只猩猩,管理员叔叔开心的答道:“头数加只数,只数减头数,头数乘只数,只数除头数,把四个得数相加恰好是100 .”那么聪明的你知道一共有多少只猩猩吗?分析:设动物园有x只猩猩,依题意有:(x+x)+(x-x)+x×x+x÷x=100,即2x+0+ x ×x+1=100,亦即x(x+2)=99,又x整数,只有唯一解x=9.【例6】(难度系数:★★★)从甲地到乙地的公路,只有上坡路和下坡路,没有平路。

一辆汽车上坡时每小时行驶20千米,下坡时每小时行驶35千米。

车从甲地开往乙地需9小时,从乙地到甲地需7.5小时,问:甲乙两地公路有多少千米?从甲地到乙地须行驶多少千米的上坡路?分析:从甲地到乙地的上坡路,就是从乙地到甲地的下坡路;从甲地到乙地下坡路,就是从乙地到甲地的上坡路。

设从甲地到乙地的上坡路为x千米,下坡路为y千米,依题意得解得x =140,y=70,所以甲、乙两地间的公路有210千米,从甲地到乙地须行驶140千米的上坡路.【例7】 (难度系数:★★★★)幼儿园有三个班,甲班比乙班多4人,乙班比丙班多4人.老师给小孩分枣,甲班每个小孩比乙班每个小孩少分了3个枣,乙班每个小孩比丙班每个小孩少分了5个枣,结果甲班比乙班总共多分了3个枣,乙班比丙班总共多分了5个枣,三个班总共分了多少个枣?分析:法1:设甲班有x 人,则乙班有(x -4)人,丙班有(x -8)人;甲班每人分得y 个枣,则乙班每人分得(y+3)个,丁班每人分得(y+8)个.那么有甲班共分得xy 个枣,乙班共分得(x-4)(y+3)枣,丙班共分得(x-8)(y+8)个枣.⎩⎨⎧++-=++-=8)8)(8(3)3)(4(y x xy y x xy ,整理有⎩⎨⎧=-=-7943y x y x ,解得⎩⎨⎧==1219y x . 因此,甲班小孩19人,每个小孩分枣12个;乙班小孩15人,每个小孩分枣15个;丙班小孩11人,每个小孩分枣20个.19×12+15×15+11×20=673(个) ,所以,三班共分673个枣.法2:先看甲、丙两班,有甲班x 人比丙班x 人少分8x 颗枣,而甲班共分得枣比丙班多8个,所以甲班多出的8人共分得8x+8颗枣,即每人分得x+1颗枣.那有888455x y z x y z x y z +-++-+人数每人枣数共分枣数甲班乙班丙班94418+++++x x x x x x 丙班乙班甲班每人枣数人数再看乙、丙班,乙班x 人比丙班x 人少分5x 颗枣,而乙班共分得的枣比丙班多5个枣,所以乙班多出的4人共分得5x+x 颗枣,即每人分得(5x+5)÷4颗枣.有(5x+5)÷4=x+4,解得x =11.因此,甲班小孩19人,每个小孩分枣12个;乙班小孩15人,每个小孩分枣15个;丙班小孩11人,每个小孩分枣20个.19×12+15×15+11×20=673(个) ,所以三班共分673个枣.类型Ⅲ:引入参数列方程解应用题对于数量关系比较复杂或已知条件较少的应用题,列方程时,除了应设的未知数外,还需要增设一些“设而不求”的参数,便于把用自然语言描述的数量关系翻译成代数语言,以便沟通数量关系,为列方程创造条件。

【例8】 (101中学分班考试试题)(难度系数:★★)五年级二班数学考试的平均分数是85分,其中32的人得80分以上(含80分),他们的平均分数是90分。

求低于80分的人的平均分。

分析:设该班级有a 名同学,低于80分的人的平均分为x ,则得方程:21859033a a a x =⨯+⨯ ,解得x=75.【例9】 (华杯赛决赛)(难度系数:★★★★)有两个班的小学生要到少年宫参加活动,但只有一辆车接送,甲班的学生坐车从学校出发的同时,乙班的学生开始步行,车到中途某处,让甲班的学生下车步行,车立刻返回接乙班的学生上车并直接开往少年宫,两班学生正好同时到达。

已知学生步行速度为每小时4千米,载学生时车速为每小时40千米,空车时速度为每小时50千米。

求甲班学生应步行全程的几分之几?(学生上下车时间不计)分析:因为每班步行和坐车的行程总和一样长,又同时出发,同时到达,所以甲、乙两班的步行距离和坐车距离都相等。

也就是说图上乙步行的距离b 千米和甲步行的距离a 千米相等。

而根据题意我们又可以找到下列等量关系:乙班步行b 千米(也就是a 千米)所用的时间等于汽车送完甲队又原路返回遇到乙队共用的时间。

然后根据等量关系列方程解答即可。

设全程为x 千米,甲、乙两班分别步行a 、b 千米,根据题意得:24050417x a x a a a x --+==解得: 所以甲班步行了全程的17. 由上例可以看出,列方程解应用题并不一定只设一个未知数,根据解题的需要,我们有时可以多设几个字母来代替数,帮助我们理清题目中复杂的数量关系,以便我们能够很快的找到解决问题的途径。

【例10】 (小学奥林匹克决赛)(难度系数:★★★)如图,在一个梯形内有两个三角形的面积分别为10和12,已知梯形的上底是下底长的32。

那么余下的阴影部分的面积是多少?分析:设上底为a 2,那么下底为a 3,则上下两个三角形的高分别为aa h 1022101=⨯=, a a h 832122=⨯=,梯形的高是a a a h h 1881021=+=+,其面积为45218)32(=÷⨯+aa a ,阴影部分面积为23121045=--。

类型Ⅱ:列不定方程解应用题有些应用题,用代数方程求解,有时会出现所设未知数的个数多于所列方程的个数,这种情况下的方程称为不定方程。

这时方程的解有多个,即解不是唯一确定的,对于这部分内容我们是要和数论中的数的整除性问题结合起来。

但注意到题目对解的要求,有时只需要其中一些或个别解。

【例11】 (奥数网习题库)(难度系数:★)有两种不同规格的油桶若干个,大的能装8千克油,小的能装5千克油,44千克油恰好装满这些油桶。

相关文档
最新文档