红外光谱技术

合集下载

红外光谱技术

红外光谱技术

红外光谱技术红外光谱技术是一种利用电磁波加以测量、识别和分析物体离子态及分子态结构、含量、构型等信息的光谱分析技术,广泛应用于工业分析、化学研究、航天科学研究、地理测绘、生物医药等领域。

此外,红外光谱技术还可广泛应用于药物研发、食品检测、环境监测等领域,在现代高科技中发挥着重要的作用。

红外光谱技术是一种以起码仪和探测器结合的非常规分析仪器,其原理是利用电磁波在不同物质中反射或透射后产生不同的频谱,来研究物质的结构、含量及构型等信息。

红外光谱技术采用的是原子和分子的热动力学原理,计算出的结果可以被用来识别物体的化学成分和性能。

红外光谱技术包括了热量力学光谱、拉曼光谱、第四代显微镜(Fourier变换红外光谱)、准晶体光谱及总体积光谱等多种分析仪器。

热量力学光谱和拉曼光谱是最常用的分析仪器,它们可以检测和分析出物质中固体、液体、气体或者复合物的热量力学及拉曼光谱信息;第四代显微镜可以研究物质中的拉曼光谱,而准晶体光谱和总体积光谱可以研究物质的分子状态、空间结构及组成信息。

红外光谱技术在实际应用中被广泛应用于药物研发,例如在天然药物研发中可以测定并分析植物中的有效成份和含量,从而更好地发掘天然药物的价值;在食品检测中,可以检测和分析出食品中的营养素含量,确保食品安全;在环境监测方面,可以检测和分析出大气、水体及土壤中的有害物质,从而帮助监测环境质量;在地理测绘中,可以检测和分析出地形、地貌及地质结构等信息,从而帮助更好地开发和管理地理资源。

此外,红外光谱技术还可以帮助研究石油、煤炭等能源物质的组成和性质,以及太空检测,监测太空环境中的物质及结构;另外,红外光谱技术还可以用于监测化学分析及检测微纳米器件研发等。

从以上内容可以看出,红外光谱技术是一种重要的分析技术,其应用非常广泛,原理也非常深入,发挥着重要的作用。

在日益发展的科学技术领域,红外光谱技术是一个重要的组成部分,其发展前景十分光明。

未来,红外光谱技术将会得到更多的发展,为科技发展作出更大的贡献。

红外光谱技术的应用和意义

红外光谱技术的应用和意义

红外光谱技术的应用和意义红外光谱技术是一种非常重要的分析技术。

它可以对物质的结构、组成以及性质进行分析,具有极高的灵敏度和精确性,已经被广泛应用于化学、材料、生物等领域。

本文将从红外光谱技术的原理、应用和意义三个方面来探讨它的重要性。

一、红外光谱技术的原理红外光谱技术是一种基于分子振动的谱学方法。

分子由一系列原子组成,这些原子之间通过键相连,形成不同的结构和化学键。

每种结构和化学键都有其特定的振动模式,产生不同的红外光谱响应。

通过测量分子在不同波长下吸收和散射的红外光谱,可以对分子进行定性分析和定量分析。

红外光谱技术通常使用红外光谱仪来进行测量。

光谱仪通过红外光源和红外检测器,将样品置于光路上,并根据样品所吸收的不同波长的光强度,绘制出其光谱图。

利用这些光谱图,可以得出物质的分子结构、化学键的类型、烷基取代位置等信息。

二、红外光谱技术的应用红外光谱技术的应用涉及多个领域。

下面将介绍一些典型的应用。

1. 化学领域化学中经常需要分析化合物的结构和性质,以确定其用途。

红外光谱技术可以用于确定分子结构、化学键的类型和烷基取代位置等信息。

例如,通过红外光谱分析,可以确定某种化合物是否含有酮基、酯基等化学键。

这对于药物研发、新材料的开发等有着极大的意义。

2. 材料领域红外光谱技术也广泛应用于材料领域。

例如,通过红外光谱分析,可以确定材料的组成、结构和变化趋势等信息。

这对于高分子材料的研究、新材料的开发等都具有很大的帮助。

此外,红外光谱技术也可以用于石油、化工等行业的分析。

3. 生物领域在生物领域,红外光谱技术可以用于研究蛋白质、DNA等化合物。

例如,通过红外光谱分析,可以确定蛋白质的二级结构(如α螺旋、β折叠等),也可以进行生物分子的相互作用研究。

这对于疾病治疗、药物研发等都有着极大的帮助。

三、红外光谱技术的意义红外光谱技术的意义在于其具有广泛的应用价值,并且可以在多个领域中为人们提供便利。

红外光谱技术可以用于分析不同的物质,并确定它们的化学结构和化学键类型,这对于科学研究具有很大的帮助。

化学中的红外光谱技术

化学中的红外光谱技术

化学中的红外光谱技术从科学角度来看,我们所处的这个世界被一种强大的射线所围绕,那就是红外线。

这种光线对于我们人类来说,是不可见无形的。

但是,对于化学领域的专业人士来说,它却是一种极为重要的物质特征分析技术,即红外光谱技术。

本文将从红外光谱技术的概念、原理、应用以及未来发展等方面探讨这一技术的相关知识。

一、红外光谱技术的概念红外光谱技术是指通过光谱仪对被测样品的红外光谱进行测量和分析,从而获取样品物质的分子结构和指纹图谱的一种技术。

它通过利用物质与红外辐射相互作用时发生吸收现象的原理,得到样品的红外光谱图,进而推导出物质结构和成分。

不同的化学结构吸收红外光的位置和强度不同,因此通过对红外辐射在样品中被吸收的情况进行系统的分析,就能确定样品中所含有的物质种类、它们的分子结构以及它们之间的相互作用。

二、红外光谱技术的原理光谱仪是红外光谱技术的核心,通过采用光学、机械、电子等综合技术,把红外线的能量转变成信号,最终得到样品的红外光谱图,进而进行物质特征的分析。

它由三大部分构成:光源、样品室和检测器。

红外光谱技术的原理是基于分子内部运动的概念,分子内部存在有很多方式可以运动,如拉伸振动、弯曲振动、扭曲振动等。

这些振动可使分子的键或基团发生相对位置变动,进而产生红外吸收谱线。

三、红外光谱技术的应用红外光谱技术可以广泛应用于化学、生物医药等领域中,它可以用于检测和分析样品中存在的化学物质,或者是确定物质的成分、结构以及功能等。

比如在分析食品的质量方面,红外光谱技术可以用作快速筛查过期、受污染和劣质食品的成分和质量。

在生物科学领域,红外光谱技术可以用来研究蛋白质、核酸、多糖等生物分子的结构和功能。

四、红外光谱技术的未来发展随着科学技术的不断进步,红外光谱技术的应用范围也在不断扩大,同时其本身也在不断改进和完善。

激光红外光谱技术、近红外光谱技术、显微红外光谱技术等新技术的出现,将使得红外光谱技术更加精确、快速和便捷。

红外光谱(最全-最详细明了)

红外光谱(最全-最详细明了)

1. 收集谱图数据
通过红外光谱仪获取样品的光 谱数据。
3. 峰识别与标记
识别谱图中的特征峰,并对其 进行标记。
5. 结果输出
得出样品成分的红外光谱解析 结果。
谱图解析技巧
1. 峰归属参考
查阅相关资料,了解常见官能团或分子结构 的红外光谱峰归属。
3. 多谱图比对
将待测样品谱图与标准样品谱图进行比对, 提高解析准确性。
红外光谱与其他谱学的联用技术
红外光谱与拉曼光谱联用
拉曼光谱可以提供分子振动信息,与红外光 谱结合,可更全面地解析分子结构和化学组 成。
红外光谱与核磁共振谱联用
核磁共振谱可以提供分子内部结构的详细信息,与 红外光谱结合,有助于深入理解分子结构和化学键 。
红外光谱与质谱联用
质谱可以提供分子质量和结构信息,与红外 光谱结合,有助于对复杂化合物进行鉴定和 分析。
红外光谱在大数据与人工智能领域的应用
红外光谱数据的处理与分析
利用大数据技术对大量红外光谱数据进行处理、分析和挖掘,提取有用的化学和物理信息 。
人工智能在红外光谱中的应用
利用人工智能技术对红外光谱数据进行模式识别和预测,提高红外光谱的解析能力和应用 范围。
红外光谱数据库的建立与完善
建立和完善红外光谱数据库,为科研和工业界提供方便、快捷的红外光谱查询和服务。
分子振动与转动能级
1 2
分子振动
分子中的原子或分子的振动,产生振动能级间的 跃迁。
转动能级
分子整体的转动,产生转动能级间的跃迁。
3
振动与转动能级间的耦合
某些特定的振动模式会导致分子的转动能级发生 跃迁。
红外光谱的吸收峰与跃迁类型
吸收峰
由于分子振动或转动能级间的跃迁,导致光谱上出现暗线或 暗带。

红外光谱技术的应用与发展

红外光谱技术的应用与发展

红外光谱技术的应用与发展红外光谱技术是一种非常重要的光谱分析方法,它可以用于研究分子的振动和转动,还可以用于判断物质的组成、结构以及化学性质等方面。

对于各种化学、生物、医学和环境等研究领域都有着非常重要的作用。

本文就着重探讨红外光谱技术的应用以及未来发展方向。

一、红外光谱技术的应用1. 化学领域红外光谱技术在化学领域中的应用很广泛,主要用于物质的分析和检测。

例如,可以利用红外光谱技术来研究化合物的结构和功能,判断物质的组成和形态,以及检测杂质等。

此外,在新材料研究中也可以应用红外光谱技术来确认化学键的种类和数量。

2. 生物医学领域红外光谱技术在生物医学领域中也有着广泛的应用,例如,可以应用于酶和蛋白质的研究,还可以用于检测生物分子的含量和结构等。

同时,红外光谱技术还可以对病毒和细菌等微生物的检测和鉴定方面发挥重要作用。

3. 环境监测领域红外光谱技术在环境监测领域也有重要应用。

例如,可以用于检测空气中的有害物质、水中的污染物等。

此外,还可以用于检测土壤中的重金属和化学物质,以及监测工业废水和废气等。

二、红外光谱技术未来的发展方向1. 红外成像技术的应用未来,红外光谱技术有望应用到红外成像技术中,这将会更方便和快捷地分析、检测和描述物质。

红外光谱成像技术主要是将红外光谱技术与红外摄像技术相结合,可以对物质进行成像、分类和定性分析。

2. 红外光谱技术应用于医学领域在医学领域,红外光谱技术也有着重要的应用前景。

例如,可以利用该技术来研究肿瘤、神经退行性疾病和代谢性疾病等。

红外光谱技术可以帮助医学家研究蛋白质的结构、功能和相互作用,从而更好地了解疾病的本质和发展过程。

3. 红外光谱技术应用于材料科学领域红外光谱技术在材料科学领域的应用也逐渐扩大和深入。

未来,红外光谱技术有望应用到各种新材料的分析和研究领域中,从而帮助科学家更加深入地理解材料的组成和性能等问题,为人类创造更好的生活条件。

总之,红外光谱技术是一种非常重要的技术手段,为各种研究领域提供了丰富的思路和方法。

红外光谱(ir、傅立叶)

红外光谱(ir、傅立叶)

红外光谱(ir、傅立叶)红外光谱(Infrared Spectroscopy)是一种常见的分析技术,可以用来研究物质的分子结构和化学键。

它主要通过测量物质对红外光的吸收来揭示分子内原子间晶格振动的信息。

傅立叶变换红外光谱是一种建立在红外光谱基础上的数据处理方法,通过傅立叶变换将时间域信号转换为频率域信号,可以简化和提高数据处理的效率。

红外光谱技术广泛应用于化学、生物、材料科学等领域,成为分析样品结构的常见手段。

其原理基于分子中原子之间的振动,当分子受到特定的红外辐射时,分子将吸收特定的红外光的能量,从而让分子中的原子发生振动。

这种振动能够在红外区域形成特定的振动谱带,称为谱指纹。

每种物质的红外吸收谱带独特,可以用来鉴定化学成分和判断分子结构。

红外光谱仪是用来测量样品的红外光谱的仪器。

红外光谱仪主要包括光源、样品室、光学系统、检测器和数据处理装置等几个部分。

光源通常采用弧光灯或红外激光器,样品室是一个密封的狭缝,样品被放置在狭缝中以使红外光能够通过它。

光学系统通过选取和分离光束,将红外光聚焦到样品上,并且将样品上的红外光传输到检测器上。

检测器是用来测量红外光强度的设备,可以将光信号转换为电信号。

而数据处理装置则用来处理检测器输出的电信号,转换为红外光谱图。

红外光谱图通常是以波数为横坐标,吸收强度(或吸收率)为纵坐标。

波数的单位一般是cm-1,它是光波的频率和振动的周期之间的倒数。

红外光谱图包含了一系列吸收带,每个吸收带对应着分子不同振动。

红外吸收带的位置和强度与分子结构有关,可以用来推测不同官能团的存在和化学键的性质。

例如,C-H键通常在3000-2850 cm-1范围内吸收,而C=O键则在1800-1600 cm-1范围内吸收。

通过比较待测物质的红外光谱与参考谱图或数据库中的标准谱图,可以对待测物质的结构和成分进行初步判断和鉴定。

傅立叶变换红外光谱(Fourier Transform Infrared Spectroscopy,简称FTIR)是红外光谱的一种常用技术。

化学实验中的红外光谱技术

化学实验中的红外光谱技术

化学实验中的红外光谱技术红外光谱技术是一种在化学实验中广泛应用的分析方法。

通过测量物质在红外光波段的吸收特性,可以得到物质的结构和成分信息。

本文将介绍红外光谱技术的原理、应用和实验操作方法等内容。

一、红外光谱技术的原理红外光谱技术基于分子的振动和转动引起的特定频率的光吸收现象。

当物质暴露于红外辐射时,它会吸收特定频率的红外光,并且在光谱图上呈现为吸收峰。

这些吸收峰可以用来确定物质的官能团和化学键的存在情况。

每个官能团和化学键都有其特定的红外光吸收频率,因此可以通过红外光谱来识别和确定物质的化学结构。

二、红外光谱技术的应用红外光谱技术在化学实验中具有广泛的应用。

它可以用于有机物和无机物的分析、定量分析、结构鉴定以及反应机理的研究等方面。

1. 有机物的分析:红外光谱可以用于定性分析、鉴定未知物质的结构以及检测杂质等。

它可以帮助确定分子中的官能团,从而确定化合物的种类和结构。

2. 无机物的分析:红外光谱可以用于分析无机物中的化学键和配位物的形成等。

例如,它可以用来确定金属离子和配体之间的配位键的类型。

3. 定量分析:红外光谱还可以用于定量分析。

通过测量吸收峰的强度,可以获得物质的含量信息。

4. 反应机理的研究:红外光谱可以用于研究化学反应的机理。

通过观察反应物和产物在红外光谱上的吸收峰的变化,可以了解反应中发生的化学变化。

三、红外光谱实验操作方法进行红外光谱实验时,需要使用红外光谱仪和样品。

以下是一般实验操作的步骤:1. 准备样品:将待测试的样品制备成适当的形式,如溶解在适宜的溶剂中或压制成片状。

2. 将样品放入红外光谱仪:将样品放置在红外光谱仪的样品室中,确保它与红外辐射充分接触。

3. 调整仪器参数:根据样品的特性和所要测量的范围,调整红外光谱仪的参数,如光强、波数范围等。

4. 进行扫描:启动仪器,进行红外光谱扫描。

红外光谱仪会记录样品在指定波数范围内吸收的红外光信号。

5. 数据分析:将记录到的光谱图进行分析,确定吸收峰的位置和强度。

化学分析中的红外光谱技术

化学分析中的红外光谱技术

化学分析中的红外光谱技术红外光谱技术是一种重要的分析方法,广泛应用于化学领域。

它主要通过测定物质在红外光区域的吸收特性,从而获取有关物质结构和组成的信息。

以下是关于红外光谱技术的一些关键知识点:1.红外光谱的原理:红外光谱是利用物质对红外光的吸收作用,分析物质分子内部结构的一种技术。

红外光的波长范围在4000-400cm-1之间,不同类型的化学键和官能团在红外光区域有特定的吸收频率。

2.红外光谱仪:红外光谱仪是进行红外光谱分析的主要仪器设备。

它主要由光源、样品室、分光镜、检测器等部分组成。

样品通过红外光源照射,经过样品室后,由分光镜分离出不同波长的光,最后由检测器检测吸收的光强。

3.红外光谱图:红外光谱图是表示物质红外光谱吸收情况的图表。

横轴表示波数(cm-1),纵轴表示吸收强度。

红外光谱图可以用来分析物质的分子结构、化学键类型和官能团等信息。

4.红外光谱的应用:红外光谱技术在化学分析领域具有广泛的应用,可以用于定性分析、定量分析、结构分析、混合物分析等。

例如,通过红外光谱可以确定有机化合物的分子结构,分析高分子材料的组成等。

5.红外光谱的解析:红外光谱的解析主要包括峰的识别、峰的归属和峰的积分等步骤。

通过对红外光谱图中的吸收峰进行识别和归属,可以确定物质中的化学键类型和官能团,从而推断出物质的结构信息。

6.红外光谱的优点:红外光谱技术具有快速、简便、灵敏、准确等优点,是一种非常重要的分析方法。

它不仅适用于固体、液体样品,还可以用于气体和薄膜样品的研究。

7.红外光谱的局限性:虽然红外光谱技术具有很多优点,但也存在一定的局限性。

例如,红外光谱信号易受样品环境、化学计量比等因素的影响,因此在分析过程中需要注意样品的制备和测试条件的控制。

以上是关于化学分析中红外光谱技术的一些关键知识点,希望对您有所帮助。

习题及方法:1.习题:红外光谱图中,吸收峰的位置与哪个因素有关?解题思路:此题考查对红外光谱图的基本理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外光谱技术学号:1211050126姓名:徐健榕班级:12110501摘要红外光谱作为一门先进的技术,已经在各个领域得到了广泛的应用,。

本文主要了解红外光谱分析的历史发展、现状分析、研究应用及其应用成果。

关键词:红外光谱历史应用成果一、红外光谱的历史发展真正意义上对光谱的研究是从英国科学家牛顿(Newton) 开始的.1666 年牛顿证明一束白光可分为一系列不同颜色的可见光, 而这一系列的光投影到一个屏幕上出现了一条从紫色到红色的光带.牛顿导入"光谱" (spectrum)一词来描述这一现象.牛顿的研究是光谱科学开端的标志. 从牛顿之后人类对光的认识逐渐从可见光区扩展到红外和紫外区.红外辐射是18世纪末,19世纪初才被发现的。

1800年英国物理学家赫谢尔(Herschel)用棱镜使太阳光色散,研究各部分光的热效应,发现在红色光的外侧具有最大的热效应,说明红色光的外侧还有辐射存在,当时把它称为“红外线”或“热线”。

这是红外光谱的萌芽阶段。

由于当时没有精密仪器可以检测,所以一直没能得到发展。

过了近一个世纪,才有了进一步研究并引起注意。

1892年朱利叶斯(Julius)用岩盐棱镜及测热辐射计(电阻温度计),测得了20几种有机化合物的红外光谱,这是一个具有开拓意义的研究工作,立即引起了人们的注意。

1905年库柏伦茨(Coblentz)测得了128种有机和无机化合物的红外光谱,引起了光谱界的极大轰动。

这是红外光谱开拓及发展的阶段。

到了20世纪30年代,光的二象性、量子力学及科学技术的发展,为红外光谱的理论及技术的发展提供了重要的基础。

不少学者对大多数化合物的红外光谱进行理论上研究和归纳、总结,用振动理论进行一系列键长、键力、能级的计算,使红外光谱理论日臻完善和成熟。

尽管当时的检测手段还比较简单,仪器仅是单光束的,手动和非商化的,但红外光谱作为光谱学的一个重要分支已为光谱学家和物理、化学家所公认。

这个阶段是红外光谱理论及实践逐步完善和成熟的阶段。

20世纪中期以后,红外光谱在理论上更加完善,而其发展主要表现在仪器及实验技术上的发展:①1947年世界上第一台双光束自动记录红外分光光度计在美国投入使用。

这是第一代红外光谱的商品化仪器;②20世纪60年代,采用光栅作的单色器,比起棱镜单色器有了很大的提高,但它仍是色散型的仪器,分辨率、灵敏度还不够高,扫描速度慢。

这是第二代仪器;③20世纪70年代,干涉型的傅里叶变换红外光谱仪及计算机化色散型的仪器的使用,使仪器性能得到极大的提高。

这是第三代仪器;④20世纪70年代后期到80年代,用可调激光作为红外光源代替单色器,具有更高的分辨本领、更高灵敏度,也扩大应用范围。

这是第四代仪器。

现在红外光谱仪还与其它仪器如GC、HPLC联用,更扩大了其使用范围。

而用计算机存贮及检索光谱,使分析更为方便、快捷。

二、红外光谱技术的现状分析1国外研究现状。

国外具有代表性的是:(1)美国德州仪器公司的Ronald E.Stafford等人[9]提出使用DMA(Digital Micro-mirror Array)作为光谱合成元件的成像光谱仪,降低了仪器成本,提高了检测速度;但是采用三层结构,加工工艺复杂,导致成品率低,同时受到国外专利保护及技术垄断。

(2)美国Polychromix公司,Honeywell 研究实验室、桑迪亚国家实验室和麻省理工学院公司联合科研组的Stephen Senturia教授等人推出了基于衍射光栅光束原理的可编程式数字变换光谱仪。

可测波长范围从0.9um到2.5um,性能可靠,结构紧凑,内部没有可移动部件,消除了部件移动可能带来的误差。

在近红外光谱监测技术领域是真正意义上从实验室检测仪器发展到了现场检测仪。

目前已经成功应用到了乳品生产线上进行实时在线监测。

但是,其使用三层结构的光栅光阀作为光通道开关,工艺要求高,国内很难加工,价格昂贵(中国市场上价格约20万~30万人民币),同时受到国外专利保护及技术垄断。

(3)德国的F.Zimmer等人提出的一种基于MEMS技术的扫描光栅光谱仪,复色光入射到可旋转的光栅上,通过调制光栅,使不同波长的衍射光入射到单个InGaAs探测器。

可测范围0.9um~2um。

但是,该光栅光谱仪中使用了微机械扫描结构,同时所使用的衍射光栅加工复杂。

(4)韩国美卡希斯有限公司研发制造的食品专用检测设备,但是价格昂贵。

此外,德国Hamburg -Harburg大学、瑞士Neuchatel大学、美国斯坦福大学、芬兰学者Martti Blomberg等都进行了光谱检测仪方面研究。

2国内研究现状国内具有代表性的是:重庆大学温志渝等人开发的基于微镜的红外光谱仪器和集成微型近红外光谱仪,该微型近红外光谱仪采用MEMS扫描微镜,使用集成化技术,仪器体积大大减小,是国内科研机构最早研制出来的微型近红外光谱仪。

但是由于国内工艺很难有效解决扫描镜面积(入光能量)和驱动电压这两个关键参数的匹配,目前正在进行多电极驱动扫描微镜近红外光谱仪的研究。

另外温志渝等人也研制了基于线阵探测器件的微型近红外光谱仪。

但是,由于使用昂贵的InGaAs探测线阵,仪器成本比较昂贵。

中科院长春光机所开发出基于固定滤光片的粮食专用型NIR 分析仪。

郑建荣等人研制了滤光片反射式NIR 测试装置,对流化床喷雾制粒生产过程中颗粒含水量进行了实时监测试验。

谢晓明提出了一种用于中途油气层探测的基于滤光片的NIR实时测量系统。

上海棱光技术有限公司研制出了光栅扫描式NIR 农产品品质分析仪。

国土资源部现代地球物理开放实验室研制出了光栅扫描式便携NIR 矿物分析系统。

江绍基研制了光栅扫描式光学膜厚NIR 监控仪。

天津大学基于AO TF 技术开发出了NIR 乳品成分快速分析仪。

毕卫红提出了一种新型的基于AOTF 的便携式NIR 光谱测量仪。

中国农业大学研制出以LED 为光源的便携式NIR 整粒小麦成分测量仪和NIR 玉米品质分析仪。

北京第二光学仪器厂研制出WQF -400N 型傅立叶变换型NIR 光谱仪和辛烷值测定仪。

此外,浙江大学、华中农业大学、石油化工科学研究院等进行了基于光谱分析的食品安全监测研究,并取得了一定的成绩。

三、红外光谱技术的研究应用及其应用成果1.数字变换方法在光谱分析中的应用针对以上国内外现状分析,结合课题组多年来在光谱技术和基于MEMS光调制器技术方面的研究成果,根据“国家国家自然科学基金2009年度课题申请指南(信息学部)”,密切跟踪目前国内外在近红外光谱研究领域的趋势和进展,特别是结合我国国情和我们微系统研究中心的前期探索研究成果和经验,旨在研究基于MEMS光栅光调制器的近红外光谱监测仪,以商用光盘为色散元件,以基于MEMS的光栅光调制器线阵为扫描器件,利用数字变换方法和单个近红外探测器实现全光谱的探测。

该方法构成一种面向食品安全监测的新型光谱监测仪器,能够覆盖可见与近红外光谱范围。

本思想和方法,以及研究的光栅光调制器不同于目前国内外报道的原理,而是吸取他们的某些先进思想,结合我们多年来在光调制器方面的研究成果,是在前期探索研究工作基础上的继续。

具体内容包括:仪器系统总体结构设计建模与仿真;商用光盘色散和分辨本领;光栅光调制器线阵及其数字变换原理;信号处理等关键技术;构建实验系统等。

而数字变换方法则是把探测器得到的强度谱图通过Hadamard变换转换成I-λ的关系图以此来和没加入样品池的I-λ关系图作比较近直接得出样品池的成分。

2在制浆造纸工业中的应用2.1 木素的定性和结构分析将木素试样和溴化钾混合均匀后压片, 研制成透明的试片, 用红外分光光度计得到相应红外光谱图, 再通过所得试样谱图与前人证实的特征吸收峰的位置加以对照比较, 来确定木素中所含的各种功能基, 从而分析木素的结构[3]。

2.2 木素的定量分析用红外光谱对木素作定量分析时, 常以木素的芳环特征吸收峰(即波数为1500cm-1和1600cm-1处的吸收峰)的强弱为定量的依据。

在测之前要先作木素含量与相对吸光度D 的准曲线。

然后, 取待测纸浆样品l0mg, 加入亚铁氰化钾lmg 和KBr(过200 目粉)300mg,在玛瑙研体中研磨(约120 次)后, 将其置于真空干燥箱中, 在真空度约76mm Hg柱, 70℃下烘干8h 以上。

经烘干的试样在压片模中用15t 压力下压制成透明薄片, 在红外分光光度计上进行扫描, 得到红外光谱图。

根据红外光谱图得出相对吸光度D(D1505/D2100),再由该值查标准曲线, 求得纸浆中木素的含量[3]。

2.3 研究纤维素的结晶结构(结晶度)对纤维素大分子的聚集状态(即所谓纤维素的超分子结构)的研究认为, 纤维素是由结晶区和无定形区交错联结而成的。

在结晶区内, 纤维素链分子的排列比较整齐, 有规则; 而在无定形区,纤维素链分子的排列不整齐, 规则性较差, 结合较松弛。

而且从结晶区到无定形区是逐步过渡的, 且无明的界限。

纤维素的结晶是表征纤维素聚集态形成结晶程度的指标, 它是指纤维素构成的结晶区占纤维素整体的百分数。

纤维素的结晶度在一定程度上, 反映了纤维的物理性质和化学性质。

因此, 测定纤维素的结晶度, 对于从结构上了解纤维素纤维的性质具有指导意义[3]。

2.4 测定纸浆Kappa 值由于近红外光谱的声噪比甚高, 可选用多元统计技术来进行多元回归得出工作曲线, 而使定量测量精度较高。

另外, 物质在此波段(0.8——2.5μm)的特征吸收峰的吸收率小, 因而在进行测定时, 近红外光谱法及其适用于固体、液体、气体及悬浮液的快速, 非破坏性的定量分析。

因此可来测定纸浆木素含量, 进而测定纸浆的Kappa值[3]。

2.5 测定细纤维的取向角采用MicO—RoMan 分光仪测定1094cm-1和1121cm-1处峰值强度的比率作为角度的函数,从而测定漂白浆细纤维取向角[4]。

2.6 测混合纤维的构成利用红外光谱仪的差减光谱软件, 对复杂混合纤维光谱成功地进行光谱差减, 从而更准确地推测混合纤维的构成[5]。

2.7 探测热磨机械浆的光返黄O-醌和P-醌模型物及Fremy 的热磨机械浆盐类氧化物的光谱研究结果证实, 1675cm-1谱带是由于P- 醌官能基的作用, 研究发现, 甲基氢醌的变色行为与热磨机械浆的回色非常相似。

且发现, P- 醌和氢醌模型物对激光诱导荧光的分子氧敏感性非常接近返黄和未返黄的机械热磨浆的返色行为。

因此, 可采用傅立叶变换拉曼光谱和傅立叶变换红外光谱, 在新的谱带1675cm-1处, 探测热磨机械浆的光返黄作用[6]2.8 测纸张的匀度通过光吸收方法测量纸页局部定量, 得到定量在纸页平面的一维分布函数, 通过傅立叶变换得到纸页局部定量变化的几何分布特征和幅度分布特征, 并以此为基础构成表征纸页匀度的特征参数一不均匀指数来测量纸页匀度[7]。

相关文档
最新文档