点群和空间群

合集下载

点群和空间群

点群和空间群

如图所示,为4度螺旋轴。晶体绕 A
2
轴转900后,再沿该轴平移a/4,能自身
1
重合。
26
2.滑移反映面
经过该面的镜象操作
A2
以后,再沿平行于该面的某
个方向平移T/n的距离(T是
A1
该方向上的周期矢量,n为
2或4),晶体中的原子和相
A
同的原子重合。
M A2
A1
A
M
27
例题1:立方系的对称性简析。
(1) 三 个 相 互 垂 直 的 四 度 轴
❖ 宏观对称要素和微观对称要素在三维空间的组合,称为空 间群。
❖ 经过严格证明可以得出,晶体中可能存在230种空间群,任 何一种晶体的微观结构属于且只属于230种空间群之一。
点群与空间群的关系
晶体外形的对称性仅有32个点群,而晶体结构的对称性却有320
种空间群。晶体外形的对称性是晶体结构对称性的反映。 属于同一点群的晶体不一定属于同一空间群。换言之,空间群
对称要素。
有的
52
53
54
7大晶系
按照晶胞6个点阵常数(a, b, c, , , )之间的关系特点 ,将晶体划分为7种晶系。
立方晶系 abc,900
四方晶系 abc,900
四方晶系 菱方晶系
单斜晶系
菱方晶系 abc,900
六方晶系 a1a2 a3c,900 1200
正交晶系 abc,900
立方晶系 六方晶系 正交晶系 三斜晶系
单斜晶系 abc,900
三斜晶系 abc,900
注意: 准确的说划分晶系的依据是特征对称性而不是晶胞参数。
56
14种布拉菲点阵
按照结点在7大种晶系上的不同分布方式,可形成14种布拉菲点阵。

名词解释

名词解释

点群:一个结晶多面体所有的全部宏观对称要素的集合,称为该结晶多面体的点群。

对称型:晶体结构中所有点对称要素(对称面、对称中心、对称轴和旋转反伸轴)的集合称为对称型,也称点群。

空间群:空间群:指在一个晶体结构中所存在的一切对称要素的集合。

它由两部分组成,一是平移轴的集合(也就是平移群),另外是除平移轴之外的所有其他对称要素的集合(与对称型相对应)。

无规则网络假说:凡是成为玻璃态的物质和相应的晶体结构一样,也是由一个三度空间网络所构成。

这种网络是由离子多面体(三角体或四面体)构筑起来的。

晶体结构网是由多面体无数次有规律重复构成,而玻璃中结构多面体的重复没有规律性。

网络形成体:单键强度大于335KJ/mol的氧化物,可单独形成玻璃。

网络变性(改变)体:单键强度小于250KJ/mol的氧化物,这类氧化物不能形成玻璃,但是能改变网络结构。

从而使玻璃性质改变。

正尖晶石;二价阳离子分布在1/8四面体空隙中,三价阳离子分布在l/2八面体空隙的尖晶石。

反型尖晶石:二价阳离子分布在八面体空隙中,三价阳离子一半在四面体空隙中,另一半在八面体空隙中的尖晶石。

萤石结构(CaF2):F-填充在八个小立方体中心,8个四面体全被占据,八面体全空(有1+12*1/4=4个八面体空隙,其中有12个位于棱的中点,为4个晶胞所共用,1个位于体心) 。

可塑性:粘土与适当比例的水混合均匀制成泥团,该泥团受到高于某一个数值剪应力作用后,可以塑造成任何形状,当去除应力泥团能保持其形状,这种性质称为可塑性。

弗伦克尔缺陷:如果在晶格热振动时,一些能量足够大的原子离开平衡位置后,挤到晶格的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗伦克尔缺陷。

Frenkel缺陷的特点是:①间隙原子和空位成对出现;②缺陷产生前后,晶体体积不变。

网络形成剂:这类氧化物单键强度大于335KJ/mol,其正离子为网络形成离子,可单独形成玻璃。

液相独立析晶:是在转熔过程中发生的,由于冷却速度较快,被回收的晶相有可能会被新析出的固相包裹起来,使转熔过程不能继续进行,从而使液相进行另一个单独的析晶过程,就是液相独立析晶。

点群格子及空间群

点群格子及空间群

单面 平行双面 轴双面 反映双面 斜方柱 斜方四面体 斜方单锥 斜方双
对称型符号
对称特点 对 称 型 种 类
圣弗利斯 符号
国际符号
晶类名称
9.L4
C4
4
10.L44L2
D4
42
有一个 L4或L4i
11.L4PC 12.L44P 13.L44L25PC
C4h
4/m
C4v
4mm
D4h
4/mmm
14.L4i
Oh5
226
228
Oh8
229
Oh9
230
Oh10
P31 m P3 c 1 P31 c R3 m R3 c
P23 F23 I23 P213 I213 Pm3 Pn3 Fm3 Fd3 Im3 Pa3 Ia3 P432 P4232 F 432 F4132 I 432 P4332 P4132 I 4132 P-43m F-43m I-43m P-43n F-43c I-43d Pm3m Pn3n Pm3n Pn3m Fm3m Fm3c Fd3m Fd3c Im3m Ia3d
对称型符号
对称特点 对 称 型 种 类
圣弗利斯 符号
国际符号
晶类名称
28.3L24L3
T
29.3L24L33PC
Th
有四个L3 30.3L4i 4L36P
Td
31.3L44L36L2
O
32.3L44L36L29PC
Oh
23 m3 -43m 43 m3m
五角三四面体 偏方复十二面体 六四面体 五角三八面体 六八面体
C6
6
D6
62
C6h
6/m
26.L66P

群论第8章

群论第8章
H (五维表示),", 一维复共轭表示实际上是二维表示(Mulliken 记号),物理上是不可约的。
能级简并(时间反演的结果). 实表示:Cn 的特征标为+1( A 表示),-1( B 表示)。 反演对称操作i 的特征标为 1(偶宇称,下标用 g ),-1(奇宇称,下标用u ).
除Ci ,有 10 个点群具有反演操作i 对称,它们均可以表示为Ci 群与另一正 则转动群的直积:
对 n = 2,4,6 ,它包含一个反演操作 I (≡ C2σ h )。
Sn 群:有一个 n 度转动反演轴( n = 4,6 ); 对 n = 2,3的 S2 和 S3 ,一般用 Ci 和 C3h 符号;
Dn 群:有一个 n 度转动轴及 n 个与之垂直的二度轴( n = 2,3,4,6 ); Dnd 群: Dn 群加 4 n 个垂直对交镜面( n = 2,3)镜面将二度轴角度平分。 Dnh 群: Dn 群加一个水平镜面( n = 2,3,4,6 ). n = 2,4,6 时, Dnh 包含反演操作。 除以上 27 个群外,还有Oh , O ,Td ,Th 和T 群。
群 论 讲 稿----吴 长 勤
第八章 点群和空间群 (Point Groups and Space Groups)
§1 点群 (Point Groups)
点群:使系统(如分子)不变的对称操作的集合构成的群。(某点固定,空 间任何两点距离不变的有限群)
一般,几何对称操作有:
E : 恒等操作;
Cn :转角 2π / n 的操作,转动轴称 n 度轴;
{ } C3v : {E}, C3,C32 , {σ1,σ 2 ,σ 3}; 三个共轭类。 { } { } C'3v : {E},{E}, C3,C32 , EC3, EC32 ,{σ1,σ 2 ,σ 3},{Eσ1, Eσ 2 , Eσ 3};

点群空间群和晶体结构介绍

点群空间群和晶体结构介绍

空 间 群 可 分 为 230种
点式空间群(symmorphic space Group)
对称操作全部作用于同一个公共点上的,不包含任何一个比初基平移还要小的
平移τ。
73种
非点式空间群(Nonsymmorphic space Group)
157种
对称操作全部作用于同一个公共点上的,至少包含一个比初基平移还要小的平 移τ。
滑移面 由镜面和平移组合产生的对称元素称为滑移反映面,简称滑移面。滑移面的基本操作可表示为{m·t}, 其对称群为{m·t}p,P=0,±1,±2……。
晶体中有3种不同的滑移面,即轴向滑移、对角线滑移(又称n滑移)和金刚石滑移。 所有滑移中,都是经镜面操作后再平移单胞周期的某一分数的距离。和螺旋轴的操作相同,镜面和 平移两步操作的先后次序是不重要的。
以合适的取向放到阵点上的含义 如果希望每个阵点都具有正交对称性,那么放置物体时就必须使它的镜面和2次轴沿单胞某一轴方
向放置。这样导出的晶体结构,才会既有平移对称性又能使任何一个阵点都有C2v-mm2 的对称性。
这两种类型的对称操作正是描述整个晶体结构对称性的基本操作。
图 (a)是正交点阵的阵点上放上对称性 为C2v-mm2的物体的空间群的俯视图。
附图1
除了上述两种点群,我们不可能再增加任何对称操作而使 物体仍属于三斜晶系,所以,属于三斜晶系的晶类只有两种。 Ci-1点群的对称操作最多(不严格地说它具有最高的对称性),称 这种点群为该晶系的全对称点群。
附图1
从上述两种点群的极射投影再一次说明在投影图上一般位置的正规点系的数目和点群具有对称操作 的数目相同,即与点群的阶数相同。
讨论点对称操作有哪些可能的组合方式,并对晶体做进一步划分。 3.1 群的概念和基本性质

点群与空间群的概念区别

点群与空间群的概念区别

晶体宏观外形只对应点对称操作,所有可能的点对称性组合可分成32个独立的晶体点群,可以说是宏观对称的表现;空间群是相对微观对称性而言的,除了点对称操作以外还有滑移反映、螺旋轴等的对称操作。

其实空间群是在点群上的细分,但二者又都是对晶体结构的分类。

宏观对称要素有平面,直线,点,即反映面、旋转轴、对称中心。

全部宏观对称要素的组合叫点群。

通过晶体具有不同宏观对称要素或其组合,将晶体分成7大晶系,共32种点群。

微观对称要素仅在晶格内部出现。

微观对称要素有平移轴、螺旋轴、滑移面。

点群:保留一点不变的对称操作群。

也就是各对称元素都过一个点。

只具有宏观的方向性,不涉及位置变动。

空间群:为扩展到三维物体例如晶体的对称操作群,由点群对称操作和平移对称操作组合而成。

在点群操作的基础上增加了平移、滑移操作,不仅具有宏观的对称性,还涉及到了微观的位置的变动。

点群不存在平移操作,所有的对称要素都集中在一个共同的点上。

对称要素包括旋转、反映、反伸(对称中心)与旋转反伸。

有这4个对称要素组合出32个点群。

晶体点群、空间群简要归纳

晶体点群、空间群简要归纳

晶体点群、空间群简要归纳本⽂只是很简要的归纳,具体内容还请见李新征⽼师群论书和其在蔻享的群论课。

另外推荐肖瑞春⽼师科学⽹博客的这篇博⽂,介绍了群论及后续的学习:若研究中涉及群论和物理性质相关,其中陈纲的《晶体物理学基础》书特别好,易懂,将主动变换和被动变换等分析得特别清晰,不过此书太厚,注意⽤到什么学什么,⽤minimized的知识来科研,否则被导师批评...1.对称操作、对称元素对称操作:保持系统不变的操作。

对称元素:它是⼀个⼏何实体,对称操作可以依据对称元素施⾏对称操作。

对称元素可以是点、直线、⾯等。

2.点群:1)定义:三维实正交群O(3)群的有限⼦群物理理解:实际上点群是实际的物理系统在三维空间的⼀些对称操作的集合。

这些对称操作会保持⼀个点不动。

2)点群分类第⼀类点群:只包含纯转动元素的点群。

第⼆类点群:点群中,除了纯转动元素,还包含转动反演元素的点群。

因为点群是O(3)群的⼦群,⽽O(3)群中有固有转动和⾮固有转动。

3)点群的性质{()}性质1:点群这个集合可以写成C k(2π/n)、IC k′2π/n′的形式,其中n,→k′,n′取有限个⽅向和值;C k(2π/n)是绕→k轴转2π/n⾓的操作。

性质2:设G是点群,K是G的纯转动部分,由于纯转动部分的乘积以及逆元必属于这个纯转动部分,所以K也是G的纯转动⼦群,即K=G∩SO(3)∘.点群G与其有限⼦群K的关系有以下三种可能的情况:1.G=K, 即点群只包含纯转动操作;称为第⼀类点群。

2.若点群G中除了纯转动操作,还包含纯空间反演操作I, 则可以通过G=K∪IK得到这种情况对应的第⼆类点群。

3.若点群G中除了纯转动操作,且G中不包含纯反演操作I时 , 此第⼆类点群G⼀定与⼀个第⼀类G+同构,其中,G+=K∪K+, ⽽K+定义为:K+={Ig∣g∈G,但g∉K}根据这⾥的第3点,可以知道构造这种情况对应的第⼆类点群的⽅法:根据⼀个已知的第⼀类点群K∪K+,即可以构造⼀个第⼆类点群K∪I K+.还可以证明K必须是K∪K+的不变⼦群,其阶数是K∪K+的⼀半。

晶体结构空间群点群

晶体结构空间群点群

(二)点群、单形及空间群点群:晶体可能存在的对称类型。

通过宏观对称要素在一点上组合运用而得到。

只能有32种对称类型,称32种点群表1- 3 32种点群及所属晶系*2/m表示其对称面与二次轴相垂直,/表示垂直的意思。

其余类推同一晶系晶体可为不同点群的原因:阵点上原子组合情况不同。

如错误!未找到引用源。

,对称性降低,平行于六面体面的对称面不存在,4次对称轴也不存在。

理想晶体的形态―单形和聚形:单形:由对称要素联系起来的一组同形等大晶面的组合。

32种对称型总共可以导出47种单形,如错误!书签自引用无效。

,错误!书签自引用无效。

,错误!书签自引用无效。

所示聚形:属于同一晶类的两个或两个以上的单形聚合而成的几何多面体。

大量的晶体形态是由属于同一晶类的单形聚合而成的封闭一定空间的几何多面体,如单形四方柱与平行双面形成了四方柱体的真实晶体形态空间群:描述晶体中原子通过宏观和微观对称要素组合的所有可能方式。

属于同一点群的晶体可因其微观对称要素的不同而分属不同的空间群,空间群有230种,见教材中表1- 4国际通用的空间群符号及其所代表的意义为:P:代表原始格子以及六方底心格子(六方底心格子为三方晶系和六方晶系所共有)。

F:代表面心格子。

I:代表体心格子。

C:代表(001)底心格子(即与z轴相交的平行六面体两个面中心与八个角顶有相当的构造单位配布)。

A:代表(100)底心格子(即与x轴相交的平行六面体两个面中心与八个角顶有相当的构造单位配布)。

R:代表三方原始格子。

其它符号:意义与前述相同表1- 4 晶体的空间群、点群、晶系、晶族一览表续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4点群符号m 43m2晶 系 等轴晶系 晶 族高级晶族/k/174/stu/content/1.1.3.2.htm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
国际符号 international symbol
采用国际符号,不仅可以表示出各种晶类 中有那些对称元素,而且还能表示出这 些对称元素在空间的方向。国际符号根 据各种晶类的对称性可以是三项、或二 项、或一项符号组成,它分别表示晶体 某三个、或二个、或一个方向上的对称 元素。如果在某一个方向上,同时具有 对称轴和垂直于此轴的对称面,则写成 分数形式。
8
小结 summary
❖ 密勒指数(Miller indices) ❖ 对称元素和对称操作 ❖ 晶体的三十二个点群 ❖ 对称性和点群对于压电铁电体非常重要! ❖ 只有晶体才会有压电铁电性,不存在非
晶压电铁电体。但是有非晶半导体和非 晶磁性材料。
wangcl@
9
晶体中的点群
❖ 由于无限大周期性的限制,晶体中的对称 操作只能有:1,2,3,4,6,i,m,4 ;
wangcl@
17
wangcl@
18
宏观对称元素的组合,可以导出32
种点群;宏观对称元素与微观对称元
素的组合,可以导出230种空间群。
空间群的国际符号由两部分组成,第
一部分为大写字母P、C、I、F,表
示14种布喇菲格子中的原始格子
(P)、底心格子(C)、体心格子
❖ 由于分子没有无限周期性的限制,所以 分子点群的数目要多于晶体中的点群数 目32个;
❖ 自然界对称性很多,例如:五度对称性, 足球,富勒烯C60, buckministerfullerence,碳管
wangcl@
6
wangcl@
7
wangcl@
❖ 由这些对称操作所构成的集合就是晶体中 的点群;
❖ 点:所有这些对称操作下,肯定有一个点 是不变的;
❖ 晶体中一共有32个这样的点群;
wangcl@
10
空间群 space groups 晶轴和直角坐标轴
wangcl@
11
空间群的概念
晶体的对称性,不仅包括了宏观对称元素, 而且也包括了微观Байду номын сангаас称元素。
❖ Dnd:表示除了Dn的对称性外,还包括n
个平分两个二次旋转轴夹角的对称面。
wangcl@
3
❖ T:除了四个三次旋转轴外,还包括三个 正交的二次旋转轴。
❖ Th:除了T的对称性外,还包括与二次旋 转轴垂直的三个对称面。

Td:除了T的对称性外,还包括六个平分 两个二次旋转轴夹角的对称面。
wangcl@
13
例如:国际符号31表示三次螺旋轴, 平移为c/3;国际符号32表示三次螺 旋轴,平移为2c/3。螺旋轴与螺旋线 一样,可以有左旋和右旋之别,平移 大于1/2时为左旋,平移小于1/2时 为右旋,平移等于1/2时无左旋和右 旋之别。
wangcl@
平移不变性(translation invariance) 这样微观对称元素共有两个: ❖ 螺旋轴(screw rotation) ❖ 滑移面(glide)。
wangcl@
12
螺旋轴 screw rotations
平移对称与旋转轴对称结合,即形成 “螺旋轴”。螺旋轴操作为绕此轴旋 转360/n后,再沿此轴方向平移l/n 周期,图形即可自身重合,其中n=1、 2、3、4、6,l=1、2、…、(n-1)。 螺旋轴的国际符号为21;31,32;41, 42,43;61,62,63,64,65。
❖ O:包括三个互相垂直的四次旋转轴,六 个二次旋转轴,和四个三次旋转轴。
❖ Oh:除了O的对称性外,还包括Td与Th的
对称面。
wangcl@
4
国际符号与熊氏符号对比
国际符号
熊氏符号
1
C1
2
C2
3
C3
4
C4
6
C6
m
Cs
1
Ci,S2
4
S4
wangcl@
5
其它注意事项
wangcl@
1
熊夫利斯(Schöenfles)符号
❖ Cn:字母表示旋转的意思,组标n表示旋 转的次数,n=1、2、3、4、6。例如C2 代表二次旋转轴。
❖ Cnh:表示除了n次旋转轴外,还包括一 个与此轴垂直的对称面。
❖ Cnv:表示除了n次旋转轴外,还包括一 个与此轴重合(即平行)的对称面。
wangcl@
20
wangcl@
21
wangcl@
22
Space group P212121 (222)
wangcl@
23
晶轴和直角坐标轴的选择
晶面符号和晶棱符号的确定取决于晶轴的 选择,晶轴选择方式不同,晶面符号和晶 棱符号也不一样。其次,在讨论晶体的弹 性性质、介电性质和压电性质时,采用直 角坐标系是比较方便的。由于晶轴之间夹 角不一定等于90,所以选定晶轴之后, 有时还要另选直角坐标系。选择不同的直 角坐标系,所得到的数学表达式也不一样。 为了避免混乱,必须对晶轴的选择和直角
❖ Cni:表示除了n次旋转轴外,还包括一 个对称中心。
wangcl@
2
❖ Ci:表示有一个对称中心。 ❖ S4:表示有一个四次旋转倒反轴。 ❖ Dn:表示除了n次主旋转轴外,还包括n
个与之轴垂直的二次旋转轴。
❖ Dnh:表示除了Dn的对称性外,还包括一 个与主旋转轴垂直的对称面,和n个与二 次旋转轴重合(即平行)的对称面。
(I)和面心格子(F);第二部分为
对称类型的国际符号(与点群符号类
似)。
wangcl@
19
例如空间群I 42d表示四方体心格子,
在沿c轴方向为四次旋转倒反轴,在 a轴与b轴方向上为二次旋转轴,在a 轴与b轴之间的对角线方向上为滑移 面。又如空间群P21212表示是正交 原始格子,沿a轴和b轴方向上为二 次螺旋轴,沿c轴方向为二次旋转轴。
14
wangcl@
15
滑移面 slide
平移对称与对称面结合即形成“滑 移面”。滑移面操作为对此平面反 映后,再沿平行于此平面的某个方 向上平移二分之一或四分之一周期, 图形即可自身重合。滑移面的国际 符号为a、b、c、n、d等。
wangcl@
16
例如,a表示沿a轴方向的滑移面, 平移a/2;n表示沿对角线方向的滑 移面,平移(a/2+ b/2),或 (b/2+ c/2)或(c/2+ a/2);d 表示沿对角线方向的滑移面,但平 移为(a/4+ b/4),或(b/4+ c/4)或(c/4+ a/4)。
相关文档
最新文档