算法分析与设计期末考试复习题纲完整版
《算法分析与设计》期末试题及参考答案

《算法分析与设计》期末试题及参考答案一、简要回答下列问题:1.算法重要特性是什么?1.确定性、可行性、输入、输出、有穷性2.2.算法分析的目的是什么?2.分析算法占用计算机资源的情况,对算法做出比较和评价,设计出额更好的算法。
3.3.算法的时间复杂性与问题的什么因素相关?3. 算法的时间复杂性与问题的规模相关,是问题大小n的函数。
4.算法的渐进时间复杂性的含义?4.当问题的规模n趋向无穷大时,影响算法效率的重要因素是T(n)的数量级,而其他因素仅是使时间复杂度相差常数倍,因此可以用T(n)的数量级(阶)评价算法。
时间复杂度T(n)的数量级(阶)称为渐进时间复杂性。
5.最坏情况下的时间复杂性和平均时间复杂性有什么不同?5. 最坏情况下的时间复杂性和平均时间复杂性考察的是n固定时,不同输入实例下的算法所耗时间。
最坏情况下的时间复杂性取的输入实例中最大的时间复杂度:W(n) = max{ T(n,I) } , I∈Dn平均时间复杂性是所有输入实例的处理时间与各自概率的乘积和:A(n) =∑P(I)T(n,I) I∈Dn6.简述二分检索(折半查找)算法的基本过程。
6. 设输入是一个按非降次序排列的元素表A[i:j] 和x,选取A[(i+j)/2]与x比较,如果A[(i+j)/2]=x,则返回(i+j)/2,如果A[(i+j)/2]<x,则A[i:(i+j)/2-1]找x,否则在A[ (i+j)/2+1:j] 找x。
上述过程被反复递归调用。
7.背包问题的目标函数和贪心算法最优化量度相同吗?7. 不相同。
目标函数:获得最大利润。
最优量度:最大利润/重量比。
8.采用回溯法求解的问题,其解如何表示?有什么规定?8. 问题的解可以表示为n元组:(x1,x2,……x n),x i∈S i, S i为有穷集合,x i∈S i, (x1,x2,……x n)具备完备性,即(x1,x2,……x n)是合理的,则(x1,x2,……x i)(i<n)一定合理。
《算法分析与设计》期末考试复习题纲(完整版)

《算法分析与设计》期末复习题一、选择题1.算法必须具备输入、输出和( D )等4个特性。
A.可行性和安全性 B.确定性和易读性C.有穷性和安全性 D.有穷性和确定性2.算法分析中,记号O表示( B ),记号Ω表示( A )A.渐进下界B.渐进上界C.非紧上界D.紧渐进界3.假设某算法在输入规模为n时的计算时间为T(n)=3*2^n。
在某台计算机上实现并完成概算法的时间为t秒。
现有另一台计算机,其运行速度为第一台的64倍,那么在这台新机器上用同一算法在t秒内能解输入规模为多大的问题?( B )解题方法:3*2^n*64=3*2^xA.n+8 B.n+6C.n+7 D.n+54.设问题规模为N时,某递归算法的时间复杂度记为T(N),已知T(1)=1,T(N)=2T(N/2)+N/2,用O表示的时间复杂度为( C )。
A.O(logN) B.O(N)C.O(NlogN) D.O(N²logN)5.直接或间接调用自身的算法称为( B )。
A.贪心算法 B.递归算法C.迭代算法 D.回溯法6.Fibonacci数列中,第4个和第11个数分别是( D )。
A.5,89 B.3,89C.5,144 D.3,1447.在有8个顶点的凸多边形的三角剖分中,恰有( B )。
A.6条弦和7个三角形 B.5条弦和6个三角形C.6条弦和6个三角形 D.5条弦和5个三角形8.一个问题可用动态规划算法或贪心算法求解的关键特征是问题的( B )。
A.重叠子问题 B.最优子结构性质C.贪心选择性质 D.定义最优解9.下列哪个问题不用贪心法求解( C )。
A.哈夫曼编码问题 B.单源最短路径问题C.最大团问题 D.最小生成树问题10.下列算法中通常以自底向上的方式求解最优解的是( B )。
A.备忘录法 B.动态规划法C.贪心法 D.回溯法11.下列算法中不能解决0/1背包问题的是( A )。
A.贪心法 B.动态规划C.回溯法 D.分支限界法12.下列哪个问题可以用贪心算法求解( D )。
《算法分析与设计》期末测验复习题纲(完整版)

《算法分析与设计》期末测验复习题纲(完整版)————————————————————————————————作者:————————————————————————————————日期:《算法分析与设计》期末复习题一、选择题1.算法必须具备输入、输出和( D )等4个特性。
A.可行性和安全性 B.确定性和易读性C.有穷性和安全性 D.有穷性和确定性2.算法分析中,记号O表示( B ),记号Ω表示( A )A.渐进下界B.渐进上界C.非紧上界D.紧渐进界3.假设某算法在输入规模为n时的计算时间为T(n)=3*2^n。
在某台计算机上实现并完成概算法的时间为t秒。
现有另一台计算机,其运行速度为第一台的64倍,那么在这台新机器上用同一算法在t秒内能解输入规模为多大的问题?( B )解题方法:3*2^n*64=3*2^xA.n+8 B.n+6C.n+7 D.n+54.设问题规模为N时,某递归算法的时间复杂度记为T(N),已知T(1)=1,T(N)=2T(N/2)+N/2,用O表示的时间复杂度为( C )。
A.O(logN) B.O(N)C.O(NlogN) D.O(N²logN)5.直接或间接调用自身的算法称为( B )。
A.贪心算法 B.递归算法C.迭代算法 D.回溯法6.Fibonacci数列中,第4个和第11个数分别是( D )。
A.5,89 B.3,89C.5,144 D.3,1447.在有8个顶点的凸多边形的三角剖分中,恰有( B )。
A.6条弦和7个三角形 B.5条弦和6个三角形C.6条弦和6个三角形 D.5条弦和5个三角形8.一个问题可用动态规划算法或贪心算法求解的关键特征是问题的( B )。
A.重叠子问题 B.最优子结构性质C.贪心选择性质 D.定义最优解9.下列哪个问题不用贪心法求解( C )。
A.哈夫曼编码问题 B.单源最短路径问题C.最大团问题 D.最小生成树问题10.下列算法中通常以自底向上的方式求解最优解的是( B )。
《算法设计与分析》考试题目及答案(DOC)

6. 能采用贪心算法求最优解的问题,一般具有的重要性质为:(A) A. 最优子结构性质与贪心选择性质 B.重叠子问题性质与贪心选择性质
3. 所谓贪心选择性质是指(所求问题的整体最优解可以通过一系列局部最 优的选择,即贪心选择来达到)。
4. 所谓最优子结构性质是指(问题的最优解包含了其子问题的最优解)。 5. 回溯法是指(具有限界函数的深度优先生成法)。 6. 用回溯法解题的一个显著特征是在搜索过程中动态产生问题的解空间。在任 何时刻,算法只保存从根结点到当前扩展结点的路径。如果解空间树 中 从根结点到叶结点的最长路径的长度为 h(n),则回溯法所需的计算空间通 常为(O(h(n)))。 7. 回溯法的算法框架按照问题的解空间一般分为(子集树)算法框架与
12. 用回溯法解图} 的 m 着色问题时,使用下面的函数 OK 检查当前扩展结点的
每一个儿子所相应的颜色的可用性,则需耗时(渐进时间上限)(O(mn))。
Bool Color::OK(int k) {//
for(int j=1;j<=n;j++) if((a[k][j]= =1)&&(x[j]= =x[k])) return false;
f(n)个单位时间。用 T(n)表示该分治法解规模为|P|=n 的问题所需的计算时
间,则有:T (n)
kT (n
O(1) / m)
f
(n)
n 1 n 1
计算机算法设计与分析期末复习资料

计算机算法设计与分析期末复习资料一填空题(20x1=20分)1.当有多个算法来解决集合问题时,选择算法的主要原则是选择复杂度最低的算法。
2.函数本身定义的函数是递归函数。
该算法适用于求解动态规划问题。
4.贪心算法的两个基本要素是最优子结构性质、贪心选择性质。
5.在搜索解空间树时,回溯方法通常使用深度优先的方法来提高搜索效率,以避免无效搜索。
6.根据不同的求解目标,分枝定界法和回溯法分别通过广度优先遍历或最小代价优先和深度优先搜索解空间树。
7.分支界限法和回溯法主要区别在于求解目标和搜索方式不同。
8.在执行分支定界法时,通常使用该方法来实现最大优先级队列。
9.依据求解所花费的时间和所得到的结果不同,随机化算法大致分为数值随机化算法、蒙特卡罗算法、拉斯维加斯算法和舍伍德算法四类。
10.产生伪随机数最常用的方法是线性同余法。
11.线性规划算法中旋转轴变化的目的是调整基准内变量和基准外变量的位置。
12.在最大网络流问题中,增广路径是剩余网络中容量大于0的路径。
13.应用于动态规划的待解决问题的两个基本要素是:。
14.算法必须满足的四个特征是输入、输出、确定性和有限性。
15.算法复杂性依赖于、、三个方面的复杂因素。
16.实现递归调用的关键是17.动态规划算法解决问题的重要线索是问题的性质。
18.最优子结构性质是贪婪算法的关键特征。
19.分支界限法的求解目标是找出满足约束条件的一个解,或是在满足约束条件的解中找出在某种意义下的最优解。
20.有两种常见的解空间树:子集树和置换树。
21.分支界限算法依据其从和节点表中选择获得下一扩展节点的不同方式被分为22.对于任何约束标准线性规划问题,只要基本变量设置为0,就可以得到一个解。
三概念题(6x2=12分)1.算法复杂度:指算法运行所需的计算机资源量。
需要时间资源的量称为时间复杂度,需要空间资源源的量称为空间复杂性。
2.递归算法:直接或间接调用自身的算法称为递归算法。
算法分析与设计复习题及参考答案

《算法分析与设计》课程复习资料一、名词解释:1.算法2.程序3.递归函数4.子问题的重叠性质5.队列式分支限界法6.多机调度问题7.最小生成树 二、简答题:1.备忘录方法和动态规划算法相比有何异同?简述之。
2.简述回溯法解题的主要步骤。
3.简述动态规划算法求解的基本要素。
4.简述回溯法的基本思想。
5.简要分析在递归算法中消除递归调用,将递归算法转化为非递归算法的方法。
6.简要分析分支限界法与回溯法的异同。
7.简述算法复杂性的概念,算法复杂性度量主要指哪两个方面? 8.贪心算法求解的问题主要具有哪些性质?简述之。
9.分治法的基本思想是什么?合并排序的基本思想是什么?请分别简述之。
10.简述分析贪心算法与动态规划算法的异同。
三、算法编写及算法应用分析题:1.已知有3个物品:(w1,w2,w3)=(12,10,6),(p1,p2,p3)=(15,13,10),背包的容积M=20,根据0-1背包动态规划的递推式求出最优解。
2.按要求完成以下关于排序和查找的问题。
①对数组A={15,29,135,18,32,1,27,25,5},用快速排序方法将其排成递减序。
②请描述递减数组进行二分搜索的基本思想,并给出非递归算法。
③给出上述算法的递归算法。
④使用上述算法对①所得到的结果搜索如下元素,并给出搜索过程:18,31,135。
3.已知1()*()i i k k ij r r A a +=,k =1,2,3,4,5,6,r 1=5,r 2=10,r 3=3,r 4=12,r 5=5,r 6=50,r 7=6,求矩阵链积A 1×A 2×A 3×A 4×A 5×A 6的最佳求积顺序(要求给出计算步骤)。
4.根据分枝限界算法基本过程,求解0-1背包问题。
已知n=3,M=20,(w1,w2,w3)=(12,10,6),(p1,p2,p3)=(15,13,10)。
算法设计与分析(期末总复习)

复习一、简答题(每小题5分,选答2题,共10分)1. 什么是算法?试说明算法设计分析过程的一般框架和主要步骤。
2. 简述非递归算法时间效率分析的通用方案。
3. 简述递归算法时间效率的通用方案。
4. 简述蛮力法、分治法、减治法,变治法、时空权衡、动态规划、贪婪技术、迭代改进八种算法设计技术中至少三种技术基本思想或原理。
二、分析题(每小题10分,共20分)1. 考虑下面的算法。
P52算法Mystery(n) //输入:非负整数nS=0for i 1 to n doS S + i*iReturn Sa.该算法求的是什么?b.它的基本操作是什么?c.该基本操作执行了多少次?d.该算法的效率类型是什么?2. 考虑下面的递归算法。
P52算法Secret(A[0..n-1]) //输入:包含n个实数的数组A[0..n-1]minval A[0]; maxval A[0]for i 1 to n-1 doif A[i] < minvalminval A[i]if A[i] > maxvalmaxval A[i]return maxval – minvala.该算法求的是什么?b.它的基本操作是什么?c.该基本操作执行了多少次?d.该算法的效率类型是什么?3. 考虑下面的递归算法P59算法Q(n) //输入:正整数if n=1 return 1else return Q(n-1) + 2*n -1a. 建立该函数值的递推关系并求解,以确定该算法计算的是什么;b. 建立该算法所做的乘法运算次数的递推关系并求解;c. 建立该算法所做的加减运算次数的递推关系并求解。
三、算法设计题(每小题10分,共20分)1. 应用快速排序对序列E,X,A,M,P,L,E按照字母顺序排序。
并画出相应的递归调用树。
(4章分治法)P1022. 对于下面的有向图,应用基于DFS的算法来解拓扑排序问题。
(5章减治法)P133.3. 用自底向上算法为列表1, 8, 6, 5, 3, 7, 4进行堆排序。
(完整版)算法设计与分析期末考试卷及答案a

考生 信 息 栏 ______学院______系______专业______年级姓名______学号_____ 装 订 线考 生信 息 栏 ______学院______系______专业______年级姓名______学号_____ 装 订 线 pro2(n) ex1(n/2) end if return end ex1 3.用Floyd 算法求下图每一对顶点之间的最短路径长度,计算矩阵D 0,D 1,D 2和D 3,其中D k [i, j]表示从顶点i 到顶点j 的不经过编号大于k 的顶点的最短路径长度。
三.算法填空题(共34分) 1.(10分)设n 个不同的整数按升序存于数组A[1..n]中,求使得A[i]=i 的下标i 。
下面是求解该问题的分治算法。
算法 SEARCH 输入:正整数n ,存储n 个按升序排列的不同整数的数组A[1..n]。
输出:A[1..n]中使得A[i]=i 的一个下标i ,若不存在,则输出 no solution 。
i=find ( (1) ) if i>0 then output i else output “no solution” end SEARCH 过程 find (low, high) // 求A[low..high] 中使得A[i]=i 的一个下标并返回,若不存在,考生 信息 栏 ______学院______系______ 专业 ______年级姓名______学号_____ 装订线《算法设计与分析》期考试卷(A)标准答案 一. 填空题:1. 元运算 考生 信 息 栏 ______学院______系______ 专业 ______年级姓名______ 学号_____ 装订线2. O3.∑∈n D I I t I p )()(4. 将规模为n 的问题分解为子问题以及组合相应的子问题的解所需的时间5. 分解,递归,组合6. 在问题的状态空间树上作带剪枝的DFS 搜索(或:DFS+剪枝)7. 前者分解出的子问题有重叠的,而后者分解出的子问题是相互独立(不重叠)的8. 局部9. 高10. 归并排序算法11. 不同12. v=random (low, high); 交换A[low]和A[v]的值随机选主元13. 比较n二. 计算题和简答题:1. 阶的关系:(1) f(n)= O(g(n))(2) f(n)=Ω(g(n))(3) f(n)=Ω(g(n))(4) f(n)= O(g(n))(5) f(n)=Θ(g(n))阶最低的函数是:100阶最高的函数是:n 32. 该递归算法的时间复杂性T(n)满足下列递归方程:⎩⎨⎧>+===1n ,n log T(n/2)T(n)1n , 1T(n)2 将n=k2, a=1, c=2, g(n)=n log 2, d=1代入该类递归方程解的一般形式得: T(n)=1+∑-=1k 0i i 22n log =1+k n log 2-∑-=1k 0i i =1+ k n log 2-2)1k (k -=n log 2122+n log 212+1 所以,T(n)= n log 2122+n log 212+1=)(log 2n Θ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《算法分析与设计》期末复习题一、选择题1.算法必须具备输入、输出和( D )等4个特性。
A.可行性和安全性 B.确定性和易读性C.有穷性和安全性 D.有穷性和确定性2.算法分析中,记号O表示( B ),记号Ω表示( A )A.渐进下界B.渐进上界C.非紧上界D.紧渐进界3.假设某算法在输入规模为n时的计算时间为T(n)=3*2^n。
在某台计算机上实现并完成概算法的时间为t秒。
现有另一台计算机,其运行速度为第一台的64倍,那么在这台新机器上用同一算法在t秒内能解输入规模为多大的问题?( B )解题方法:3*2^n*64=3*2^xA.n+8 B.n+6C.n+7 D.n+54.设问题规模为N时,某递归算法的时间复杂度记为T(N),已知T(1)=1,T(N)=2T(N/2)+N/2,用O表示的时间复杂度为( C )。
A.O(logN) B.O(N)C.O(NlogN) D.O(N²logN)5.直接或间接调用自身的算法称为( B )。
A.贪心算法 B.递归算法C.迭代算法 D.回溯法6.Fibonacci数列中,第4个和第11个数分别是( D )。
A.5,89 B.3,89C.5,144 D.3,1447.在有8个顶点的凸多边形的三角剖分中,恰有( B )。
A.6条弦和7个三角形 B.5条弦和6个三角形C.6条弦和6个三角形 D.5条弦和5个三角形8.一个问题可用动态规划算法或贪心算法求解的关键特征是问题的( B )。
A.重叠子问题 B.最优子结构性质C.贪心选择性质 D.定义最优解9.下列哪个问题不用贪心法求解( C )。
A.哈夫曼编码问题 B.单源最短路径问题C.最大团问题 D.最小生成树问题10.下列算法中通常以自底向上的方式求解最优解的是( B )。
A.备忘录法 B.动态规划法C.贪心法 D.回溯法11.下列算法中不能解决0/1背包问题的是( A )。
A.贪心法 B.动态规划C.回溯法 D.分支限界法12.下列哪个问题可以用贪心算法求解( D )。
A.LCS问题 B.批处理作业问题C.0-1背包问题 D.哈夫曼编码问题13.用回溯法求解最优装载问题时,若待选物品为m种,则该问题的解空间树的结点个数为()。
A.m! B.2m+1C.2m+1-1 D.2m14.二分搜索算法是利用( A )实现的算法。
A.分治策略 B.动态规划法C.贪心法 D.回溯法15.下列不是动态规划算法基本步骤的是( B )。
P44A.找出最优解的性质 B.构造最优解C.算出最优解(应该是最优值) D.定义最优解16.下面问题( B )不能使用贪心法解决。
A.单源最短路径问题 B.N皇后问题C.最小花费生成树问题 D.背包问题17.使用二分搜索算法在n个有序元素表中搜索一个特定元素,在最好情况和最坏情况下搜索的时间复杂性分别为( A )。
P17A.O(1),O(logn) B.O(n),O(logn)C.O(1),O(nlogn) D.O(n),O(nlogn)18.优先队列式分支限界法选取扩展结点的原则是( C )。
P162A.先进先出 B.后进先出C.结点的优先级 D.随机19.下面不是分支界限法搜索方式的是( D )。
P161A.广度优先 B.最小耗费优先C.最大效益优先 D.深度优先20.分支限界法解最大团问题时,活结点表的组织形式是( B )。
A.最小堆 B.最大堆C.栈 D.数组21.下列关于计算机算法的描述不正确的是(C)。
P1A.算法是指解决问题的一种方法或一个过程B.算法是若干指令的有穷序列C. 算法必须要有输入和输出D.算法是编程的思想22.下列关于凸多边形最优三角剖分问题描述不正确的是( A )。
A.n+1个矩阵连乘的完全加括号和n个点的凸多边形的三角剖分对应B.在有n个顶点的凸多边形的三角剖分中,恰有n-3条弦C.该问题可以用动态规划法来求解D.在有n个顶点的凸多边形的三角剖分中,恰有n-2个三角形23.动态规划法求解问题的基本步骤不包括( C )。
P44A.递归地定义最优值B.分析最优解的性质,并刻画其结构特征C.根据计算最优值时得到的信息,构造最优解 (可以省去的) D.以自底向上的方式计算出最优值24.分治法所能解决的问题应具有的关键特征是( C )。
P16A .该问题的规模缩小到一定的程度就可以容易地解决B .该问题可以分解为若干个规模较小的相同问题C .利用该问题分解出的子问题的解可以合并为该问题的解D .该问题所分解出的各个子问题是相互独立的25. 下列关于回溯法的描述不正确的是( D )。
P114A .回溯法也称为试探法B .回溯法有“通用解题法”之称C .回溯法是一种能避免不必要搜索的穷举式搜索法D .用回溯法对解空间作深度优先搜索时只能用递归方法实现26. 常见的两种分支限界法为( D )。
P161A. 广度优先分支限界法与深度优先分支限界法;B. 队列式(FIFO )分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式(FIFO )分支限界法与优先队列式分支限界法;二、填空题1. f(n)=3n 2+10的渐近性态f(n)= O( n 2),g(n)=10log3n 的渐近性态g(n)= O( n )。
2. 一个“好”的算法应具有正确性、 可读性 、 健壮性 和高效率和低存储量需求等特性。
3. 算法的时间复杂性函数表示为 C=F(N,I,A) ,分析算法复杂性的目的在于比较求解同意问题的两个不同算法的效率 的效率。
4. 构成递归式的两个基本要素是 递归的边界条件 和 递归的定义 。
5. 单源最短路径问题可用 分支限界法 和 贪心算法 求解。
6. 用分治法实现快速排序算法时,最好情况下的时间复杂性为 O(nlogn) ,最坏情况下的时间复杂性为 O(n^2) ,该算法所需的时间与 运行时间 和 划分 两方面因素有关。
P267. 0-1背包问题的解空间树为 完全二叉 树;n 后问题的解空间树为 排列 树;8. 常见的分支限界法有队列式(FIFO )分支限界法和优先队列式分支限界法。
9. 回溯法搜索解空间树时常用的两种剪枝函数为 约束函数 和 剪枝函数 。
10. 分支限界法解最大团问题时,活结点表的组织形式是 最大堆 ;分支限界法解单源最短路径问题时,活结点表的组织形式是 最小堆 。
三、算法填空题1. 递归求解Hanoi 塔问题/阶乘问题。
例1 :阶乘函数n! P12 阶乘的非递归方式定义: 试写出阶乖的递归式及算法。
递归式为: 边界条件 12)2()1(!⨯⨯⨯-⨯-⨯= n n n n 00)!1(1!>=⎩⎨⎧-=n n n n n递归方程递归算法:int factorial (int n){ if (n==0) return 1; 递归出口return n * factorial (n-1); 递归调用}例2:用递归技术求解Hanoi塔问题,Hanoi塔的递归算法。
P15其中Hanoi (int n, int a, int c, int b)表示将塔座A上的n个盘子移至塔座C,以塔座B为辅助。
Move(a,c)表示将塔座a上编号为n的圆盘移至塔座c上。
void hanoi (int n, int a, int c, int b){if (n > 0){hanoi(n-1, a, b, c);move(a,c);hanoi(n-1, b, c, a);}}2.用分治法求解快速排序问题。
快速排序算法 P25 、作业、课件第2章(2)42页-50页template<class Type>void QuickSort (Type a[], int p, int r){if (p<r) {int q=Partition(a,p,r);QuickSort (a,p,q-1);QuickSort (a,q+1,r);}}Partition函数的具体实现template<class Type>int Partition (Type a[], int p, int r){int i = p, j = r + 1;Type x=a[p];// 将< x的元素交换到左边区域// 将> x的元素交换到右边区域while (true) {while (a[++i] <x && i<r);while (a[- -j] >x);if (i >= j) break;Swap(a[i], a[j]);}a[p] = a[j];a[j] = x;return j;}3.用贪心算法求解最优装载问题。
最优装载问题 P95 课件第4章(2)第3-8页template<class Type>void Loading(int x[], Type w[], Type c, int n){int *t = new int [n+1];Sort(w, t, n);for (int i = 1; i <= n; i++) x[i] = 0;for (int j = 1; j <= n && w[t[j]] <= c; j++) {x[t[i]] = 1; c -= w[t[j]];}}4.用回溯法求解0-1背包/批处理作业调度 /最大团问题,要会画解空间树。
例1:用回溯法求解0-1背包P133课件第5章(2)第24-38页template<typename Typew,typename Typep>class Knap{private:Typep Bound(int i); //计算上界void Backtrack(int i);Typew c; //背包容量int n; //物品数Typew *w; //物品重量数组Typep *p; //物品价值数组Typew cw; //当前重量Typep cp; //当前价值Typep bestp; //当前最优价值};void Knap<Typew,Typep>::Backtrack(int i){ if(i>n) { bestp=cp; return; }if(cw+w[i]<=c) //进入左子树{ cw+=w[i];cp+=p[i];Backtrack(i+1);cw-=w[i];cp-=p[i]; }if(Bound(i+1)>bestp) //进入右子树Backtrack(i+1);}Typep Knap<Typew,Typep>::Bound(int i){Typew cleft=c-cw; //剩余的背包容量Typep b=cp; //b为当前价值//依次装入单位重量价值高的整个物品while(i<=n&&w[i]<=cleft){ cleft-=w[i]; b+=p[i]; i++; }if(i<=n) //装入物品的一部分b+=p[i]*cleft/w[i];return b; //返回上界}class Object //物品类{friend int Knapsack(int *,int *,int,int);public:int operator <(Object a) const{return (d>=a.d);}int ID; //物品编号float d; //单位重量价值};Typep Knapsack( Typep p[],Typew w[],Typew c,int n){ //为Typep Knapsack初始化Typew W=0; //总重量Typep P=0; //总价值Object* Q=new Object[n]; //创建物品数组,下标从0开始 for(int i=1;i<=n;i++) //初始物品数组数据{ Q[i-1].ID=i;Q[i-1].d=1.0*p[i]/w[i];P+=p[i]; W+=w[i];}if(W<=c) //能装入所有物品return P;if(W<=c) //能装入所有物品return P;QuickSort(Q,0,n-1); //依物品单位重量价值非增排序Knap<Typew,Typep> K;K.p=new Typep[n+1];K.w=new Typew[n+1];for(int i=1;i<=n;i++){ K.p[i]=p[Q[i-1].ID]; K.w[i]=w[Q[i-1].ID]; }K.cp=0; K.cw=0; K.c=c;K.n=n; K.bestp=0; K.Backtrack(1);delete[] Q; delete[] K.w;delete[] K.p; return K.bestp;}例2:批处理作业调度课件第5章(2)P2-5问题描述,课本P125-127解空间:排列树算法描述:class Flowshop{static int [][] m, // 各作业所需的处理时间[] x, // 当前作业调度[] bestx, // 当前最优作业调度[] f2, // 机器2完成处理时间f1, // 机器1完成处理时间f, // 完成时间和bestf, // 当前最优的完成时间和n; // 作业数static void Backtrack(int i){if (i > n){ for (int j = 1; j <= n; j++) bestx[j] = x[j]; bestf = f; } elsefor (int j = i; j <= n; j++) {f1+=m[x[j]][1];//第j个作业在第一台机器上所需时间f2[i]=((f2[i-1]>f1)?f2[i-1]:f1)+m[x[j]][2];f+=f2[i];if (f < bestf) //约束函数{ Swap(x[i], x[j]); Backtrack(i+1); Swap(x[i], x[j]); } f1 - =m[x[j]][1];f - =f2[i];}}例3:最大团问题,要会画解空间树。