六年级下册数学知识要点(人教版)

合集下载

人教版新课标六年级数学下册(4~6单元)重点知识归纳

人教版新课标六年级数学下册(4~6单元)重点知识归纳

人教版新课标六年级数学下册(4~6单元)重点知识归纳四会市龙湾学校:练志强2012年1月第四单元:统计1.扇形统计图及其特点:扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数;从扇形统计图中可以清楚地看出各部分数量同总数之间的关系。

2.制作统计图时,一定要客观准确地反映信息;在分析统计图时,不要被模糊数据所误导,一定要认真分析,准确提取统计信息。

3.折线统计图及其特点:折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。

折线统计图不但可以表示出数量的多少,而且能够清楚地表示出数量增减变化的情况。

4.在根据统计图进行比较、判断时要注意统一标准。

5.温馨提示:当扇形统计图中“其他”部分的占有率比已知占有率最小的部分大时,不能判定已知占有率最小的部分所代表的数据最小。

第五单元:数学广角1.“抽屉原理”(一):把m个物体任意放进n个空抽屉里(m>n,n是0非自然数),那么一定有一个抽屉中放进了至少2介物体。

2.“抽屉原理”(二):把多于kn个的物体任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少(k+1)个物体。

3.用“抽屉原理”解题的一般步骤是:(1)分析题意,把实际问题转化为“抽屉原理”,即弄清“抽屉”(“抽屉”是什么,有几个抽屉)和分放物体。

(2)设计“抽屉”的具体形式,即“抽屉原理”。

(3)运用原理,得出在某个“抽屉”中至少分放物体的个数,最终归到原题结论上。

4.温馨提示:要把a个物体放进n个抽屉,如果a÷n=b……c(c≠0且c<b),那么一定有一个抽屉至少可以放(b+1)个物体,而不是(b+c)个。

第六单元:整理和复习1 数与代数数的意义及分类1.整数的含义:像……-3,-2,-1,0,1,2,3,……这样的数统称整数。

整数的个数是无限的。

没有最小的整数,也没有最大的整数。

自然数是整数的一部分。

人教版小学数学六年级下册第二单元知识点汇总

人教版小学数学六年级下册第二单元知识点汇总
二、成数
1.农业上经常用“成数”来表示收成的情况。现在,“成数”已经广泛应用于表示各行各业的发展变化情况。
2.成数表示一个数是另一个数的十分之几,也就是百分之几十;但是在表示百分之几十几时,要说几成几。
3.解决成数问题时,把成数转化为百分数后,解题思路和解题方法同解决百分数问题完全相同。
三、税率
1.纳税的含义:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
2.每个公民都有依法纳税的义务。缴纳的税款叫做应纳税额,应纳税额与各种收入(销售额、营业额……)的比率叫做税率。
3.求应纳税额,就是求一个数的百分之几是多少的问题,收入×税率=应纳税额。求税率,就是求应纳税额是应纳税收入的百分之几,税率=应纳税额÷收入×100%。求收入,就是已知一个数的百分之几是多少,求这个数是多少,收入=应纳税额÷税率。
例如:打九折就是按原价的90%出售。打八五折就是按原价的85%出售。
现价=原价×折扣
原价=现价÷折扣
折扣=现价÷原价
节省钱数=原价×(1-折扣)
例如:今年我省油菜籽比去年增产两成。两成就是十分之二,改写成百分数就是20%。35%改写成成数是三成五。
提示:税收的种类不同,税率也各不相同。
提示:有时并不是全部收入都需要纳税,例如,目前个人工资或薪金收入的3500元以下的部分是不需要纳税的,而超过3500元部分则需要按规定纳税。需要纳税部分的收入叫做应税收入。
小学数学六年级下册第二单元知识点汇总(人教版)
一、折扣
1.商店有时降价出售商品,叫做打折扣销售,俗称“打折”。
2.几折就表示原价的十分之几,也就是原价的百分之几十;几几折就是原价的百分之几十几。
3.求现价,就是求原价的百分之几是多少。求原价,就是已知一个数的百分之几是多少,求这个数。

人教版小学六年级数学下册知识点_数学知识点

人教版小学六年级数学下册知识点_数学知识点

人教版小学六年级数学下册知识点_数学知识点人教版小学六年级数学下册知识点一:比例1.理解比例的意义和基本性质,会解比例。

2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

7.比例的意义:表示两个比相等的式子叫做比例。

如:2:1=6:8.组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

9.比例的性质:在比例里,两个外项的积等于两个两个内向的积。

这叫做比例的基本性质。

例如:由3:2=6:4可知3×4=2×6;或者由x×1。

5=y×1。

2可知x:y=1.2:1.5。

10.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。

11.正比例和反比例:(1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示y/x=k(一定)例如:①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。

②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。

③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。

④y=5x,y和x成正比例,因为:y÷x=5(一定)。

人教版六年级数学下册知识点归纳

人教版六年级数学下册知识点归纳

人教版六年级数学下册知识点归纳一、负数。

1. 负数的定义。

- 为了表示相反意义的量,如零上温度和零下温度、收入与支出等,我们引入负数。

像 - 3、 - 5.6、 - 2/3等带有负号“ - ”的数叫做负数;以前学过的数,像3、5.6、2/3等叫做正数(正数前面也可以加“ + ”号,如+3,一般省略不写);0既不是正数也不是负数。

2. 数轴。

- 规定了原点、正方向和单位长度的直线叫做数轴。

- 在数轴上,从左到右的顺序就是数从小到大的顺序。

所有的负数都在0的左边,也就是负数都比0小;所有的正数都在0的右边,正数都比0大。

3. 比较大小。

- 正数大于0,0大于负数,正数大于负数;两个负数比较大小,负号后面的数越大,这个负数越小,例如 - 5< - 3。

二、百分数(二)1. 折扣。

- 商店有时降价出售商品,叫做打折扣销售,通称“打折”。

几折就表示十分之几,也就是百分之几十。

例如,八折就是原价的80%,七五折就是原价的75%。

- 原价×折扣 = 现价;现价÷折扣 = 原价;现价÷原价 = 折扣。

2. 成数。

- 成数表示一个数是另一个数的十分之几,通称“几成”。

例如,“一成”就是十分之一,改写成百分数就是10%;“三成五”就是十分之三点五,改写成百分数就是35%。

3. 税率。

- 应纳税额与各种收入(销售额、营业额……)的比率叫做税率。

应纳税额 = 各种收入×税率;各种收入 = 应纳税额÷税率。

4. 利率。

- 单位时间内的利息与本金的比率叫做利率。

利息 = 本金×利率×存期;本金 = 利息÷(利率×存期);存期 = 利息÷(本金×利率)。

三、圆柱与圆锥。

1. 圆柱。

- 圆柱的认识。

- 圆柱是由两个底面和一个侧面组成的。

圆柱的两个底面是完全相同的圆,侧面是一个曲面,展开后是一个长方形(或正方形),这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。

六年级下册数学(人教版)知识点归纳总结整理

六年级下册数学(人教版)知识点归纳总结整理

人教版六年级数学下册知识点总结一、用字母表示运算定律或性质加法交换律: a+b=b+a加法结合律: (a+b)+c=a+(b+c)乘法交换律: ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac二、几何图形计算公式(1)周长:物体或封闭图形一周的长度。

①长方形周长=(长+宽)×2 C=(a+b)×2②正方形周长=边长×4 C=4a③圆的周长=圆周率×直径 =圆周率×半径×2 C=πd C =2πr(2)面积:即物体的表面或封闭图形的大小。

①长方形的面积=长×宽 S=ab②正方形的面积=边长×边长 S=a•a=a2③平行四边形的面积=底×高 S=ah④三角形的面积=底×高÷2 S=ah÷2⑤梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2⑥圆的面积=圆周率×半径S=πr2⑦直径d=2r 半径=直径÷2 r= d÷2⑧环形面积=外圆面积-内圆面积S环=S外-S内【相互联系】平面图形的面积公式是以长方形面积计算公式为基础的。

如两个完全相同的三角形、梯形可拼成一个平行四边形。

圆拼成长方形的长时1/2C,宽是R.(3)表面积:立体图形的所有面的面积之和叫做它的表面积。

①长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)②正方体的表面积=棱长×棱长×6 S=a×a×6 =6a2③圆柱体的侧面积=底面周长×高 S=Ch =2πrh④圆柱体的表面积=侧面积+底面积×2 S= Ch+2πr2 = 2πrh+2πr2 注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h 2πr=h(4)体积:物体所占空间的大小叫体积。

(完整版)人教版六年级下册数学各单元知识点

(完整版)人教版六年级下册数学各单元知识点

人教版六年级下册数学各单元知识点(李鹏辉整理)第一单元:负数1、负数:负数是数学术语,指小于0的实数,如-3。

任何正数前加上负号都等于负数。

在数轴线上,负数都在0的左侧,所有的负数都比自然数小。

负数用负号“-”标记,如-2,-5.33,-45,-0.6,-25等。

2、正数:大于0的数叫正数(不包括0)。

若一个数大于零(>0),则称它是一个正数。

正数的前面可以加上正号“+”来表示。

正数有无数个,其中分正整数,正分数和正无理数。

3、正数的几何意义:数轴上0右边的数叫做正数。

4、0既不是整数,也不是负数。

0是正、负数的界限。

正数都大于0,负数都小于0,正数大于一切负数。

5、数轴:规定了原点,正方向和单位长度的直线叫数轴。

所有的数都可以用数轴上的点来表示。

也可以用数轴来比较两个数的大小。

在数轴上表示的两个数,正方向的数大于负方向的数。

6、数轴的三要素:原点、单位长度、正方向。

第二单元:圆柱和圆锥1.圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面,其展开图是一个长方形。

(3)高的特征:圆柱有无数条高。

2.圆柱的高:两个底面之间的距离叫做高。

3.圆柱的侧面展开图:当沿高展开时展开图是长方形;当底面周长和高相等时,沿高展开图是正方形;当不沿高展开时展开图是平行四边形。

4.圆柱的侧面积:圆柱的侧面积=底面的周长×高,用字母表示为:S 侧=Ch 。

5.圆往的表面积:圆柱的表面积=侧面积+2×底面积,即S 表= S 侧+2 S 底。

6.圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积,V=Sh 。

7.圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。

该直角边叫圆锥的轴。

8.圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高。

9.圆锥的特征:(1)底面的特征:圆锥的底面一个圆。

(2)侧面的特征:圆锥的侧面是一个曲面,展开图是扇形。

六年级下册数学(人教版)知识点归纳总结复习资料

人教版六年级数学下册知识点总结一、用字母表示运算定律或性质加法交换律: a+b=b+a加法结合律: (a+b)+c=a+(b+c)乘法交换律: ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac二、几何图形计算公式(1)周长:物体或封闭图形一周的长度。

①长方形周长=(长+宽)×2 C=(a+b)×2②正方形周长=边长×4 C=4a③圆的周长=圆周率×直径 =圆周率×半径×2 C=πd C =2πr(2)面积:即物体的表面或封闭图形的大小。

①长方形的面积=长×宽 S=ab②正方形的面积=边长×边长 S=a•a=a2③平行四边形的面积=底×高 S=ah④三角形的面积=底×高÷2 S=ah÷2⑤梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2⑥圆的面积=圆周率×半径S=πr2⑦直径d=2r 半径=直径÷2 r= d÷2⑧环形面积=外圆面积-内圆面积S环=S外-S内【相互联系】平面图形的面积公式是以长方形面积计算公式为基础的。

如两个完全相同的三角形、梯形可拼成一个平行四边形。

圆拼成长方形的长时1/2C,宽是R.(3)表面积:立体图形的所有面的面积之和叫做它的表面积。

①长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)②正方体的表面积=棱长×棱长×6 S=a×a×6 =6a2③圆柱体的侧面积=底面周长×高 S=Ch =2πrh④圆柱体的表面积=侧面积+底面积×2 S= Ch+2πr2 = 2πrh+2πr2 注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h 2πr=h(4)体积:物体所占空间的大小叫体积。

人教版六年级数学下册第1-3单元易错知识点

第一单元知识要点负数的定义1、以前所学的所有数(0除外)都是正数,正数前面的“+”是可以省略不写的。

2、负数的定义:在正数前面加上“-”就是负数。

例:-16,-500,-0.4,…3、负数前面必定有“-”。

4、0既不是正数,也不是负数。

负数的作用1、负数是在人为规定正方向的前提下出现的。

2、负数常用来表示和正数意义相反的量。

3、在选择用正数还是负数表示时,首先看是否规定了正方向。

例:零上5°用+5℃表示;零下5°用-5℃表示。

收入2000元用+2000元表示;支出500元用-500元表示。

负数的读法和写法1、读法:在所读数的前面加上“负”。

例:+6.3读作正六点三。

2、写法:在所写数的前面加上“-”。

例:负三写作 -3。

认识数轴1、数轴的要素:正方向(箭头表示)、原点(0刻度)、单位长度(刻度)。

2、正方向:根据题意要求确定正方向,一般以向上或向右为正方向。

3、原点:也就是数字0所在的位置,一般根据表示数字的分布情况来确定,如果需要表示的正负数差不多相等时原点在数轴中间;如果正数比负数多得多原点偏左;如果负数比正数多得多原点偏右。

4、单位长度:由所要表示多的大小来决定刻度之间距离的大小,如果数字偏大刻度距离可以适当小一些,如果数字偏小刻度距离可以适当大一些。

单位长度不一定每个刻度只能表示1。

例:用数轴表示数1、在已给数轴上表示数:根据数字在对应的刻度上描点表示。

2、对于非整数的表示:将刻度进一步细分如32,需要将0—1之间线段分为3等份则2等份处为该数。

3、对于负数的表示:负数都在0的左面,正数都在0的右面。

例:+3.5在3和4中间,而-3.5在-3和-4中间。

4、数轴上,从左到右的顺序就是数从小到大的顺序。

0是正数和负数的分界点,所有的负数都在0的左边,也就是负数都比0小,而正数都比0大,负数都比正数小。

负号后面的数越大,这个数就越小。

例:-8<-6。

第二单元知识要点一.圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的;圆柱也可以由长方形卷曲而得到。

2023年新人教版六年级数学下册总复习知识点

六年级数学下册总复习1、整数和自然数 像…,-3,-2,-1,0,1,2,3,…这样旳数统称为(整数)。

整数旳个数是(无限)旳。

数物体旳时候,用来表达物体个数旳0,1,2,3…叫做(自然数)。

自然数整数旳(一部分)。

(“1”)是自然数旳单位。

最小旳自然数是( 0 )。

2、小数 小数表达旳就是十分之几,百分之几,千分之几……旳数,一位小数可表达为十分之几旳数,两位小数可表达为百分之几旳数,三位小数可表达为千分之几旳数 ……熟记: 51=0.2 52= 0.4 53= 0.6 54=0.8 41 =0.2543= 0.75 81= 0.125 83=0.375 85=0.625 87=0.875小数点右边第一位是(十分位),计数单位是(十分之一);第二位是(百分位),计数单位是(百分之一)…… 小数部分有几种数位,就叫做几位小数。

如3.305是( 三 )位小数3、整数、小数旳读法和写法:(四位分级法)读整数时注意先分级再读数 2830000 读作:读小数时注意小数部分顺次读出每个数位上旳数。

27.036 读作: 写数时注意写好后,一定要读一读仔细校对。

五亿零8千 写作: 三百八十点零三六 写作:为了读写以便,常常把较大旳数改写成用“万”或“亿”作单位旳数。

如只规定“改写”,成果应是精确数。

(先分级,在分级线处点上小数点) =( )亿如规定“省略”万(亿)背面旳尾数,成果应是近似数。

(退后看一位) ≈( )亿4、小数旳性质:小数旳末尾添上0或者去掉0,小数旳大小不变.判断:在小数点旳背面添上0或去掉0,小数大小不变。

( )5、小数点向右移动一位、两位、三位……本来旳数就扩大10倍、100倍、1000倍…… 小数点向左移动一位、两位、三位……本来旳数就缩小到本来旳101、1001、10001 6、正数、负数0既不是正数也不是负数,0是正数和负数旳分界点。

负数<0<正数 两个负数比较,负号背面旳数越大这个数反而越小。

人教版六年级数学(下册)期末知识要点

人教版六年级数学(下册)期末知识要点
一、小数与分数
1.小数到分数的转换
2.分数到小数的转换
3.小数的四则运算及应用
4.分数的四则运算及应用
5.小数和分数在实际生活中的应用
二、图形的认识和运用
1.直线、线段、射线的概念及特征
2.角度的认识和测量方法
3.三角形、四边形、五边形和六边形的认识及特征
4.图形的分类及性质
5.图形的周长及应用
三、数据的分析
1.统计图的认识与制作(条形图、折线图、扇形图)
2.统计图的分析与运用
3.统计总数、平均数的计算方法
4.数据的分类与整理
5.数据的应用及解决实际问题
四、时间、长度、面积单位的换算
1.时间单位的换算(秒、分钟、小时、天)
2.长度单位的换算(厘米、分米、米、千米)
3.面积单位的换算(平方厘米、平方分米、平方米、公顷)
五、算式的应用和解释
1.算式的基本性质(加、减、乘、除)
2.含括号的算式的计算(加括号、减括号)
3.一元一次方程的解法
4.问题转化为代数式的解法
5.算式的应用及解决实际问题
六、几何等价
1.镜面对称和旋转对称的认识
2.图形的基本变换(平移、对称、旋转)
3.相似图形的认识及性质
4.相等三角形的判定方法
5.几何等价及应用
以上是人教版六年级数学(下册)期末的知识要点,希望同学们能够充分掌握这些知识,认真复习巩固。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级下册数学知识要点(人教版) 新华英语学校内部学习资料第一单元 负数1、负数的由来:为了表示两种相反意义的两个量(如盈利亏损、收入支出……),光有学过的0,2,3.4, 25……是远远不够的。

所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负2、负数:小于0的数叫负数(不包括0),负数有无数个,其中有(负整数,负分数和负小数。

负数的写法:数字前面加负号“-”号,负号不可以省略。

例如:-2,-5.33,-45,-253、正数:大于0的数叫正数(不包括0),正数有无数个,其中有(正整数,正分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写。

4、0 既不是正数,也不是负数,它是正、负数的分界线。

负数都小于0,正数都大于0,负数都比正数小,正数比负数大5、数轴:规定了原点,正方向,单位长度的直线叫数轴。

数轴上0左边的数叫做负数,右边的数叫做正数。

6、比较两数的大小: ①利用数轴: 负数<0<正数 或 左边<右边②利用含义:正数之间比较大小,数字大的就大,数字小的就小。

负数之间比较大小,数字大的反而小数字小的反而大 第二单元 百分数 新华英语学校内部学习资料(一)、折扣和成数7、折扣:用于商品,现价是原价的百分之几,叫做折扣。

通称“打折”。

几折就是十分之几,也就是百分之几十。

例如八折=810 =80﹪,六折五=6.510 =65100=65﹪ 解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答 。

商品现在打八折 :现在的售价是原价的80﹪。

商品现在打六折五:现在的售价是原价的65﹪8、成数:几成就是十分之几,也就是百分之几十。

例如一成=110 =10﹪,八成五=8.510 =85100=80﹪ 解决成数的问题,关键是先将成数转化为百分数或分数。

然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪。

今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪(二)、税率和利率 新华英语学校内部学习资料9、税率(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

(3)应纳税额:缴纳的税款叫做应纳税额。

)税率:应纳税额与各种收入的比率叫做税率。

(5)应纳税额的计算方法: 应纳税额=总收入×税率 收入额=应纳税额÷税率10、利率(1)存款分为活期、整存整取和零存整取等方法。

本金:存入银行的钱叫做本金。

利息:取款时银行多支付的钱叫做利息。

利率:利息与本金的比值叫做利率。

利息的计算公式:利息=本金×利率×时间 利率=利息÷时间÷本金×100%注意:如要上利息税(国债和教育储藏的利息不纳税),则:税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率) 税后利息=本金×利率×时间×(1-利息税率)购物策略:估计费用:根据实际的问题,选择合理的估算策略,进行估算。

购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案第三单元 圆柱和圆锥 新华英语学校内部学习资料一、圆柱11、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的。

圆柱也可以由长方形卷曲而得到。

(两种方式:1.以长方形的长为底面周长,宽为高; 2.以长方形的宽为底面周长,长为高。

其中,第一种方式得到的圆柱体体积较大。

)12、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的13、圆柱的特征:圆柱的底面是完全相等的两个圆。

圆柱的侧面是一个曲面。

14、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S 增=2πr²②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh15、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr,展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形16、圆柱计算公式:底面积S底=πr²底面周长C底=πd=2πr 侧面积s侧=2πrh 表面积S表=2S底+S侧=2πr²+2πrh体积V柱=sh=πr²h 长方体,正方体,圆柱体,体积通用公式V=sh17,考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积=侧面积+一个底面积油桶的表面积 =侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类二、圆锥18、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。

圆锥也可以由扇形卷曲而得到。

19、圆锥的高是顶点与底面之间的距离,圆锥只有一条高20、圆锥的特征:圆锥的底面一个圆。

圆锥的侧面是一个曲面。

圆锥有一条高。

21、圆锥的切割:①横切:切面是圆②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S增=2rh22、圆锥公式:底面积:S底=πr²底面周长:C底=πd=2πr 体积:V锥=13πr²h圆锥的高=圆锥体积×3÷底面积圆锥底面积=圆锥体积×3÷高23. 考试常见题型:①已知圆锥的底面积和高,求体积,底面周长②已知圆锥的底面周长和高,求圆锥的体积,底面积③已知圆锥的底面周长和体积,求圆锥的高,底面积以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算三、圆柱和圆锥的关系新华英语学校内部学习资料24 .圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍圆柱与圆锥等高等体积,圆锥的底面积是圆柱的3倍。

圆柱与圆锥等底等高,体积相差23Sh25 .圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间) ③横截面的问题26 .浸水体积问题:(水面上升部分的体积是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)27 .等体积转换问题:一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的28、一个圆柱的侧面展开是一个正方形,它的高是底面直径的π倍,即h=C=πd,它的侧面积是S侧=h²29、圆柱的底面半径扩大2倍,高不变,底面积扩大4倍,体积扩大4倍。

30、圆柱的底面半径扩大2倍,高也扩大2倍,底面积扩大4倍,体积扩大8倍。

31、圆柱的底面半径扩大3倍,高缩小3倍,底面积扩大9倍,体积扩大3倍。

第四单元比例新华英语学校内部学习资料32. 两个数相除又叫做两个数的比。

33 .“:”是比号,读作“比”。

比号前面数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项得的商,叫做比值。

34. 同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

比值通常用分数表示,也可以用小数表示也可能是整数。

比的后项不能是零。

35根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

36、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

37 .求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。

它的结果必须是一个最简比,即前、后项是互质的数。

38、按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。

这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

39. 比例:表示两个比相等的式子叫比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

40、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。

这叫做比例的基本性质。

41、比和比例的区别42比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。

43比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。

44.成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示yx=k(一定)45成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

用字母表示x×y=k(一定)46、判断两种量成正比例还是成反比例的方法:关键看这两个相关联的量中相对应的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。

47比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

48比例尺的分类(1)数值比例尺和线段比例尺(2)缩小比例尺和放大比例尺49图上距离:实际距离=比例尺或图上距离实际距离=比例尺实际距离×比例尺=图上距离图上距离÷比例尺=实际距离50应用比例尺画图的步骤:(1)写出图的名称(2)确定比例尺;(3)根据比例尺求出图上距离;(4)画图(画出单位长度)(5)标出实际距离,写清地点名称(6)标出比例尺51图形的放大与缩小:形状相同,大小不同。

52用比例解决问题:根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。

53.常见的数量关系式:(成正比例或成反比例)新华英语学校内部学习资料单价×数量=总价单产量×数量=总产量速度×时间=路程工效×工作时间=工作总量总产量单产量=数量路程速度=时间工作总量工作效率=工作时间总价数量=单价总产量数量=单产量路程时间=速度工作总量工作时间=工作效率18、已知图上距离和实际距离可以求比例尺。

相关文档
最新文档