2016-2017学年八年级(上)期末数学试卷含解析
2016-2017八年级上数学试题及答案

八年级数学试题 第 1 页 (共 9 页)2016-2017学年度第一学期期末测试八年级数学试题(满分:150分,考试时间:120分钟)一、选择题:(本题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卷对应方框内.1.若分式22-+x x 有意义,则x 的取值范围是( ). A .2=xB .2≠xC .2-=xD .2-≠x2.下列图形中,是轴对称图形的是( ).A B C D 3.下列分解因式正确的是( ). A .23)1(-=-x x x xB .))((22y x y x y x -+=+C .))((22y x y x y x +--=--D .22)12(144-=+-x x x(超范围)4.下列各组数中不能作为直角三角形的三边长的是( ) . A . 9,8,6B .25,24,7C .5.2,2,5.1D .15,12,95.如果q px x x x ++=+-2)3)(2(,那么q p ,的值分别为( ). A.6,5==q pB. 6,1-==q pC. 6,1==q pD. 6,5-==q p6. 一个正多边形的内角和是它的外角和的3倍,则这个多边形的边数是( ). A .8B .9C .7D. 67.已知2=+y x ,则222121y xy x ++的值是( ). A .2B .4C .1D .218. 化简xxx x -+-112的结果是( ) A. 1+x B. 1-x C.x - D. x八年级数学试题 第 2 页 (共 9 页)9. 如图,在△ABC 中,AB=AC ,BD平分∠ABC 交AC于点D ,AE ∥BD 交CB 的延长线于 点E .若∠E=30°,则∠BAC 的度数为( ) . A. 30B. 45C. 60D. 75超范围11.如图,ABC ∆中, 90=∠C , 30=∠A ,AB 的垂直平分线交AC 于点D ,交AB 于点E ,6=AC ,则CD 的长为( ).A .1B .2C .3D .412.如图,ABD ∆是等边三角形,以BD 为边向外作等边三角形DBC ∆,点F E ,分别在AD AB ,上且DF AE =,连接DE BF ,,两直线相交于点G ,连接CG ,下列结论:①ADE ∆≌CDG ∆, ② 60=∠BGE ,③ BG DG CG +=, ④CDG BDG S S ∆∆=.其中正确的结论有( ). A.1个B.2个C.3个D.4个二、填空题:(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷对应横线上.13.计算:)5(152ab b a -÷________. .14.已知等腰三角形两边的长分别是8和6,则该三角形的周长为 _________ . 15. 如图,DCB ABC ∠=∠,请补充一个条件:________________ ,使ABC ∆≌DCB ∆.9题图12题图11题图15题图DCBA18题图16题图八年级数学试题 第 3 页 (共 9 页)16. 如图,AD 是ABC ∆的角平分线,DF DE ,分别是ABD ∆和ACD ∆的高,6=AC ,7=AB ,ACD ∆的面积是18,则ABC ∆的面积是_______________ .17. 一组按规律排列的式子:a 2b5,38b a,…(0≠ab ),则第n 个式子是 .18.如图所示,在ABC ∆中,AC AB =,E D ,是ABC ∆内两点,AD 平分BAC ∠. 60=∠=∠E EBC ,若10=BE ,4=DE ,则BC 的长度是___________ .三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19. 解分式方程:xx x -=+--23123.20.如图,已知AE AB =,21∠=∠,E B ∠=∠, 求证:ED BC =.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出 必要的演算过程或推理步骤.21.因式分解:(1)39x x -; (2)32296y y x xy --.22.先化简,再求值:221(1)24x x x x x +-÷+-,其中x 是方程2111x x =+-的解.23. 如图,在直角坐标系中,正方形网格的边长为1,ABC ∆的顶点在网格的格点上,(1)将ABC ∆向下平移3个单位,得到111C B A ∆, 请在网格中画出111C B A ∆;(2)画出111C B A ∆关于y 轴对称的图形222C B A ∆, 并写出222C B A ∆的顶点坐标.20题图第 4 页 (共 9 页)24.如图,∠ABC = 90,D 、E 分别在BC 、AC 上,AD ⊥DE ,且AD=DE ,点F 是AE 的中点,FD 与AB 的延长线相交于点M ,连接MC . (1)求证:∠FMC =∠FCM ; (2)AD 与MC 垂直吗?并说明理由.五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25.为了改变我区城市环境,创建全国卫生城市,梓潼街道拟对滨江路带的排水道等公用设施 全面更新改造,现有甲、乙两个工程队有意承包这项工程.经调查知道:甲工程队单独完成此 项工程的时间是乙工程队单独完成此项工程时间的1.5倍,若甲、乙两工程队合作只需12天 完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2) 根据梓潼街道的要求,工程须在21天内完成.若甲工程队每天的工程费用是2.5万元,乙工程队每天的工程费用是4.5万元.请你选择一种方案(方案一:甲单独完成;方案二:乙单独完成;方案三:甲乙合作完成),既能按时完工,又能使工程费用最少,并求出最少费用是多少万元.26.我们知道,如果两个三角形全等,则它们面积相等,而两个不全等的三角形,在某些情况 下,可通过证明等底等高来说明它们的面积相等.已知ABC ∆与DEC ∆是等腰直角三角形, 90=∠=∠DCE ACB ,连接BE AD ,.(1)如图1,当 90=∠BCE 时,求证BCE ACD S S ∆∆=.(2)如图2,当 0<BCE ∠< 90时,(1)中的结论是否仍然成立?如果成立,请证明;如果不成立,说明理由.(3)如图3,在(2)的基础上,作BE CF ⊥,延长FC 交AD 于点G ,求证:点G 为AD 中点.D A B C E图2八年级数学试题 第 5 页 (共 9 页)2016-2017学年度第一学期期末测试八年级数学答案一、选择题(本大题共12个小题,每小题4分,共48分)二、填空题(本大题共6个小题,每小题4分,共24分)13. a 3-; 14.22或20 ; 15.AB=CD(答案不唯一);16.39; 17.n a 1-3n b ; 18.14.三、解答题(本大题2个小题,每题7分,共14分) 解答时每小题必须写出必要的演算过程或推理步骤. 19.解:两边同时乘以(2-x ),得323-=-+-x x ………………………3分22=x解得1=x ………………………6分经检验,1=x 是原方程的解. ………………………7分 20.证明:∵∠BAD=∠BAD ,∠1=∠2,∴∠BAD+∠1=∠BAD+∠2即∠BAC=∠EAD. ……………………………………………3分 在△BAC 和△DAE 中∵⎪⎩⎪⎨⎧∠=∠=∠=∠EAD BAC AE AB E B ∴△BAC ≌△EAD (ASA ). ………………………………………6分 ∴BC=ED. ………………………………………………………7分四、解答题(本大题4个小题,每小题10分,共40分)八年级数学试题 第 6 页 (共 9 页)21. 解:(1)原式=)9(2-x x …………………………2分=)3)(3(-+x x x …………………………5分(2)原式)96(22y x xy y --=…………………………2分 )69(22y xy x y +--=2)-3(y x y -=…………………………5分22.解:原式1422222+-⨯+--=x x x x x x x …………………………………………………………2分()()()()()12222+++---=x x x x x x x………………………………………………………4分 ()()()()()21221+++-+-=x x x x x x x 2+-=x ;…………………………………………………………………………6分 因为1112-=+x x , 所以122+=-x x ,解得3=x ,……………………………………………………8分 原式132-=-=……………………………………………………………………10分 23.解:(1)作图略…………………………………………………………………4分 (2)作图略…………………………………………………………………7分三个顶点的坐标分别为()1,12-A ,()0,32B ,()2,22C .……………10分 24.(1)证明:∵△ADE 是等腰三角形,F 是AE 的中点,DE AD ⊥∴DF ⊥AE ,DF=AF=EF. ...................................................................................2分 又∵∠ABC=90°,∠DCF,∠AMF 都与∠MAC 互余, ∴∠DCF=∠AMF又∵∠DFC=∠AFM =90°∴△DFC ≌△AFM. ……………………………………………..5分 ∴CF=MF , ∴∠FMC=∠FCM. ……………………………………..6分 (2)AD ⊥MC …………………………7分 由(1)知∠MFC=90°,FD=FE,FM=FC ∴∠FDE=∠FMC=45°.八年级数学试题 第 7 页 (共 9 页)∴DE ∥CM ,∴AD ⊥MC. (10)五、解答题(本大题2个小题,每小题12分,共24分)25天,则甲工程队单独完成该工程需1.5x 天,2分1.5×20=30(天)答:甲工程队单独完成此项工程需30天,乙单独完成此项工程需20天………5分 (2)方案一:由甲工程队单独完成需30天,工程费用755.230=⨯(万元)…7分 方案二:由乙工程队单独完成需20天, 工程费用905.420=⨯(万元)………9分 方案三:由甲、乙两队合作完成需12天, 工程费用84125.25.4=⨯+)((万元) ……11分 答:选择方案三既能按时完成,又能使工程费用最少,最少费用为84万元.…12分 26.证明:(1)∵ABC ∆与DEC ∆是等腰直角三角形∴BC AC =,EC DC =,090=∠=∠DCE ACB , 又∵090=∠BCE∴BCE ACD ∠=∠,……………………………………………………1分 在ACD ∆与BCE ∆中,⎪⎩⎪⎨⎧=∠=∠=EC DC BCE ACD BCAC ,∴ACD ∆≌BCE ∆,……………………………2分∴BCE ACD S S ∆∆=;…………………………………………………………3分 (2)过点A 作AG 垂直DC 的延长线于点G ,作CE BH ⊥,垂足为H , ……………………………………………………………………………4分 ∵090=∠=∠GCE ACB ,∴BCH ACG ∠=∠,……………………………………………………5分 在ACG ∆与BCH ∆中八年级数学试题 第 8 页 (共 9 页)⎪⎩⎪⎨⎧=∠=∠∠=∠=090BHC AGC BCH ACG BC AC ,∴ACG ∆≌BCH ∆,………………………6分∴BH AG =, ∵CE CD =, ∴CE BH CD AG ⋅=⋅2121 即BCE ACD S S ∆∆=;……………………………………………………………7分 (3)过点A 作AM 垂直CG 的延长线于点M ,过点D 作CG DN ⊥,垂足为N , ……………………………………………………………………………………8分 ∵090=∠=∠BFC ACB ,∴ 090=∠+∠BCF ACM ,090=∠+∠BCF CBF ,∴CBF ACM ∠=∠,…………………………………………………………9分 在ACM ∆与CBF ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠=090BFC AMC CBF ACM BC AC ,∴ACM ∆≌CBF ∆,∴CF AM =,…………………………………………………………………10分 同理可证DCN ∆≌CEF ∆,…………………………………………………11分 ∴ CF DN =, ∴ AM DN =, 在AGM ∆与DGN ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠=090DNG AMG DGN AGM DN AM ,∴AGM ∆≌DGN ∆,∴DG AG =,即G 为AD 中点.………………………………………………………………12分。
学校16—17学年上学期八年级期末考试数学试题(扫描版)(附答案)

2016-2017学年第一学期期末考试八年级数学试题参考答案一、选择题(本题共36分,每小题3分)二、填空题(本题共24分,每小题3分)x;12. 6<x<12;13.4,0),(4,4),(0,4);14.-6;15.①11.②④三、解答题(本题共16分,每小题4分)16.(1))解:方程两边乘以,得------------------------1分解得.--------------------------2分检验:当时,.---------------------------------3分所以,原分式方程的解为.---------------------------4分(2))a2(x﹣y)+4b2(y﹣x)=a2(x﹣y)﹣4b2(x﹣y)------------------------1分=(x﹣y)(a2﹣4b2)---------------------------------------2分=(x﹣y)(a+2b)(a﹣2b).---------------------------------4分17. 解:原式=[﹣]×,=×,-----------------2分=×,-------------------------------------------3分=,--------------------------------------------4分2x+5>1,2x>﹣4,x>﹣2,-------------------------------------------5分∵x是不等式2x+5>1的负整数解,∴x=﹣1,--------------------------------------------6分把x=﹣1代入中得:=3.--------------------------------------------8分18. 解:(1)如图,A′(﹣2,4),B′(3,﹣2),C′(﹣3,1);-----------------3分-- ------6分(2)S△ABC=6×6﹣×5×6﹣×6×3﹣×1×3,=36﹣15﹣9﹣1,=10.--------------------------------------10分19. (1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.--------------------------------2分又∵AE=BD,∴△AEC≌△BDA(SAS).--------------------------------2分∴AD=CE;--------------------------------5分(2)解:∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,--------------------------------7分∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.--------------------------------10分20. 解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x 元,…………1分由题意,得=2×+500,解得x=3,经检验x=3是方程的解. (3)分答:该种干果的第一次进价是每千克3元…………5分(2)30009000+-5006+500660%-3000+9000 331+20%⨯⨯⨯⨯()()()…………7分=(1000+2500﹣500)×6+1800﹣12000=3000×6+1800﹣12000=18000+1800﹣12000=7800(元).…………9分答:超市销售这种干果共盈利7800元.…………10分21. 1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,------------1分由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-------------------------------3分∴∠ABC=∠ACB,∴AB=AC;------------------------------4分(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,--------------------------5分由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-----------6分∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;--------------------------9分(3)解:不一定成立,-------------------------10分当∠A 的平分线所在直线与边BC 的垂直平分线重合时AB=AC ,否则AB ≠AC .(如示例图)--------------------------12分22. 解:(1)第一个图形中阴影部分的面积是a 2﹣b 2,第二个图形的面积是(a+b )(a ﹣b ),则a 2﹣b 2=(a+b )(a ﹣b ).故答案是B ; ------------------3分(2)①∵x 2﹣9y 2=(x+3y )(x ﹣3y ),------------------------5分∴12=4(x ﹣3y )------------------------6分得:x ﹣3y=3;------------------------8分 ②111111111+11+-1+1-+1-2233999910010031421009810199=223399991001001101=2100101=200⨯⨯⨯⨯⨯⨯⨯()(﹣)()(1)......()()(1)()......9分............10分......11分......12分。
2016—2017学年八年级上期末数学试题(含答案)

2016-2017年秋期八年级上期末教学质量检测数学试卷出题人:曾琴一、选择题〔本大题共10个小题,每小题3分,共30分〕1.若分式有意义,则x满足的条件是A.x≠0B.x≠3C.x≠-3D.x≠±32.计算:(-x)3·(-2x)的结果是A.-2x4B.-2x3C.2x4D.2x33.在平面直角坐标系中,点A(7,-2)关于x轴对称的点A′的坐标是A.(7,2)B.(7,-2)C.(-7,2) D.(-7,-2)4.若△ABC≌△A′B′C′,且AB=AC=9,△ABC的周长为26cm,则B′C′的长为A.10cmB.9cmC.4cmD.8cm5.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P为:A.90°﹣α B. 90°+αC. C. 360°﹣α6.分式方程1226x x=+的解为第5题图A.x=-2B.x=2 C.x=-3D.x=37.计算:201423⎛⎫⎪⎝⎭×(-1.5)2015的结果是A.-32B.32C.-23D.238. 下列各图形都是轴对称图形,其中对称轴最多的是A.等腰直角三角形B.直线C.等边三角形D.正方形9.已知△ABC的两边长分别为AB=9、AC=2,第三边BC的长为奇数,则BC的长是A.5B.7C.9D.1110.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为A. 5B. 5或6C. 5或7D. 5或6或7二、填空题(本大题共6个小题,每小题3分,共18分)请将答案直接填在答题卷对应的横线上.11.分解因式:4x2-1=.12.若分式2212xx x-+-=0,则x=.A )BCD 84° (第13题)13.如图,在△ABC 中,点D 是BC 上一点,∠BAD =84°,AB =AD =DC ,则∠CAD =.14.如图,在△ABC 中,EF 是AB 边的垂直平分线,AC =18cm ,BC =16cm 则△BCE 的周长为cm .15.等腰三角形的周长为24cm ,腰长为xcm ,则x 的取值X 围是________.16.已知b a b a +=+111 ,则ba ab +的值。
人教版八年级(上)期末数学试卷+答案解析

2016-2017学年北京市海淀区八年级(上)期末数学试卷一.选择题(本大题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.1.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A.B.C.D.2.下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a33.石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体.石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学记数法表示为()A.1×10﹣6 B.10×10﹣7C.0.1×10﹣5D.1×1064.在分式中x的取值范围是()A.x>﹣2 B.x<﹣2 C.x≠0 D.x≠﹣25.下列各式中,从左到右的变形是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2xy6.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC7.下列各式中,计算正确的是()A.(15x2y﹣5xy2)÷5xy=3x﹣5y B.98×102==9996C. D.(3x+1)(x﹣2)=3x2+x﹣28.如图,∠D=∠C=90°,E是DC的中点,AE平分∠DAB,∠DEA=28°,则∠ABE 的度数是()A.62 B.31 C.28 D.259.在等边三角形ABC中,D,E分别是BC,AC的中点,点P是线段AD上的一个动点,当△PCE的周长最小时,P点的位置在()A.△ABC的重心处 B.AD的中点处C.A点处D.D点处10.定义运算=,若a≠﹣1,b≠﹣1,则下列等式中不正确的是()A.×=1 B. +=C.()2=D.=1二.填空题(本大题共24分,每小题3分)11.如图△ABC,在图中作出边AB上的高CD.12.分解因式:x2y﹣4xy+4y=.13.写出点M(﹣2,3)关于x轴对称的点N的坐标.14.如果等腰三角形的两边长分别是4、8,那么它的周长是.15.计算:﹣4(a2b﹣1)2÷8ab2=.16.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于D点.若BD平分∠ABC,则∠A=°.17.教材中有如下一段文字:思考如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC,固定住长木棍,转动短木棍,得到△ABD,这个实验说明了什么?如图中的△ABC与△ABD满足两边和其中一边的对角分别相等,即AB=AB,AC=AD,∠B=∠B,但△ABC与△ABD不全等.这说明,有两边和其中一边的对角分别相等的两个三角形不一定全等.小明通过对上述问题的再思考,提出:两边分别相等且这两边中较大边所对的角相等的两个三角形全等.请你判断小明的说法.(填“正确”或“不正确”)18.如图1,△ABC中,AD是∠BAC的平分线,若AB=AC+CD,那么∠ACB与∠ABC有怎样的数量关系?小明通过观察分析,形成了如下解题思路:如图2,延长AC到E,使CE=CD,连接DE.由AB=AC+CD,可得AE=AB.又因为AD是∠BAC的平分线,可得△ABD≌△AED,进一步分析就可以得到∠ACB与∠ABC的数量关系.(1)判定△ABD与△AED全等的依据是;(2)∠ACB与∠ABC的数量关系为:.三.解答题(本大题共18分,第19题4分,第20题4分,第21题10分)19.分解因式:(a﹣4b)(a+b)+3ab.20.如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.21.解下列方程:(1)=;(2)﹣1=.四.解答题(本大题共14分,第22题4分,第23、24题各5分)22.已知a+b=2,求(+)•的值.23.如图,在等边三角形ABC的三边上,分别取点D,E,F,使得△DEF为等边三角形,求证:AD=BE=CF.24.列方程解应用题:老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂.”(摘自《住的梦》)金黄色的银杏叶为北京的秋增色不少.小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树.他先让爸爸开车驶过这段公路,发现速度为60千米/小时,走了约3分钟,由此估算这段路长约千米.然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米.小宇计划从路的起点开始,每a米种一棵树,绘制示意图如下:考虑到投入资金的限制,他设计了另一种方案,将原计划的a扩大一倍,则路的两侧共计减少200棵树,请你求出a的值.五.解答题(本大题共14分,第25、26题各7分)25.在我们认识的多边形中,有很多轴对称图形.有些多边形,边数不同对称轴的条数也不同;有些多边形,边数相同但却有不同数目的对称轴.回答下列问题:(1)非等边的等腰三角形有条对称轴,非正方形的长方形有条对称轴,等边三角形有条对称轴;(2)观察下列一组凸多边形(实线画出),它们的共同点是只有1条对称轴,其中图1﹣2和图1﹣3都可以看作由图1﹣1修改得到的,仿照类似的修改方式,请你在图1﹣4和图1﹣5中,分别修改图1﹣2和图1﹣3,得到一个只有1条对称轴的凸五边形,并用实线画出所得的凸五边形;(3)小明希望构造出一个恰好有2条对称轴的凸六边形,于是他选择修改长方形,图2中是他没有完成的图形,请用实线帮他补完整个图形;(4)请你画一个恰好有3条对称轴的凸六边形,并用虚线标出对称轴.26.钝角三角形ABC中,∠BAC>90°,∠ACB=α,∠ABC=β,过点A的直线l交BC边于点D.点E在直线l上,且BC=BE.(1)若AB=AC,点E在AD延长线上.①当α=30°,点D恰好为BE中点时,补全图1,直接写出∠BAE=°,∠BEA=°;②如图2,若∠BAE=2α,求∠BEA的度数(用含α的代数式表示);(2)如图3,若AB<AC,∠BEA的度数与(1)中②的结论相同,直接写出∠BAE,α,β满足的数量关系.附加题:(本题最高10分,可计入总分,但全卷总分不超过100分)27.一个多边形如果是轴对称图形,那么它的边数与对称轴的条数之间存在联系吗?(1)以凸六边形为例,如果这个凸六边形是轴对称图形,那么它可能有条对称轴;(2)凸五边形可以恰好有两条对称轴吗?如果存在请画出图形,并用虚线标出两条对称轴;否则,请说明理由;(3)通过对(1)中凸六边形的研究,请大胆猜想,一个凸多边形如果是轴对称图形,那么它的边数与对称轴的条数之间的联系是:.2016-2017学年北京市海淀区八年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.1.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A.B.C.D.【考点】利用轴对称设计图案.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;故选:D.2.下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;负整数指数幂.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、底数不变指数相减,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相乘,故C正确;D、积的乘方等于乘方的积,故D错误;故选:C.3.石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体.石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学记数法表示为()A.1×10﹣6 B.10×10﹣7C.0.1×10﹣5D.1×106【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 001=1×10﹣6,故选A.4.在分式中x的取值范围是()A.x>﹣2 B.x<﹣2 C.x≠0 D.x≠﹣2【考点】分式有意义的条件.【分析】根据分式有意义的条件可得x+2≠0,再解即可.【解答】解:由题意得:x+2≠0,解得:x≠﹣2,故选:D.5.下列各式中,从左到右的变形是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2xy【考点】因式分解的意义.【分析】根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.【解答】解:A、2a2﹣2a+1=2a(a﹣1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;B、(x+y)(x﹣y)=x2﹣y2,这是整式的乘法,故此选项不符合题意;C、x2﹣6x+5=(x﹣5)(x﹣1),是因式分解,故此选项符合题意;D、x2+y2=(x﹣y)2+2xy,等号的右边不是整式的积的形式,故此选项不符合题意;故选C.6.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC【考点】全等三角形的性质.【分析】根据全等三角形的性质可得到AD=AE、AB=AC,则可得到BD=CE,∠B=∠C,则可证明△BDF≌△CEF,可得DF=EF,可求得答案.【解答】解:∵△ABE≌△ACD,∴AB=AC,AD=AE,∠B=∠C,故A正确;∴AB﹣AD=AC﹣AE,即BD=EC,故D正确;在△BDF和△CEF中∴△BDF≌△CEF(ASA),∴DF=EF,故C正确;故选B.7.下列各式中,计算正确的是()A.(15x2y﹣5xy2)÷5xy=3x﹣5y B.98×102==9996C. D.(3x+1)(x﹣2)=3x2+x﹣2【考点】分式的加减法;多项式乘多项式;平方差公式;整式的除法.【分析】根据分式的加减法,整式的除法,多项式乘多项式的运算方法和平方差公式,逐项判断即可.【解答】解:∵(15x2y﹣5xy2)÷5xy=3x﹣y,∴选项A不正确;∵98×102==9996,∴选项B正确;∵﹣1=﹣,∴选项C不正确;∵(3x+1)(x﹣2)=3x2﹣5x﹣2,∴选项D不正确.故选:B.8.如图,∠D=∠C=90°,E是DC的中点,AE平分∠DAB,∠DEA=28°,则∠ABE 的度数是()A.62 B.31 C.28 D.25【考点】平行线的判定与性质;角平分线的定义.【分析】过点E作EF⊥AB于F,根据角平分线上的点到角的两边距离相等可得DE=EF,根据线段中点的定义可得DE=CE,然后求出CE=EF,再根据到角的两边距离相等的点在角的平分线上证明即可得出BE平分∠ABC,最后求得∠ABE的度数.【解答】解:如图,过点E作EF⊥AB于F,∵∠D=∠C=90°,AE平分∠DAB,∴DE=EF,∵E是DC的中点,∴DE=CE,∴CE=EF,又∵∠C=90°,∴点E在∠ABC的平分线上,∴BE平分∠ABC,又∵AD∥BC,∴∠ABC+∠BAD=180°,∴∠AEB=90°,∴∠BEC=90°﹣∠AED=62°,∴Rt△BCE中,∠CBE=28°,∴∠ABE=28°.故选:C.9.在等边三角形ABC中,D,E分别是BC,AC的中点,点P是线段AD上的一个动点,当△PCE的周长最小时,P点的位置在()A.△ABC的重心处 B.AD的中点处C.A点处D.D点处【考点】三角形的重心;等边三角形的性质;轴对称﹣最短路线问题.【分析】连接BP,根据等边三角形的性质得到AD是BC的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可.【解答】解:连接BP,∵△ABC是等边三角形,D是BC的中点,∴AD是BC的垂直平分线,∴PB=PC,△PCE的周长=EC+EP+PC=EC+EP+BP,当B、E、E在同一直线上时,△PCE的周长最小,∵BE为中线,∴点P为△ABC的重心,故选:A.10.定义运算=,若a≠﹣1,b≠﹣1,则下列等式中不正确的是()A.×=1 B. +=C.()2=D.=1【考点】分式的混合运算.【分析】根据定义:=,一一计算即可判断.【解答】解:A、正确.∵=,=.∴×=×=1.B、错误. +=+=.C、正确.∵()2=()2==.D、正确.==1.故选B.二.填空题(本大题共24分,每小题3分)11.如图△ABC,在图中作出边AB上的高CD.【考点】作图—基本作图.【分析】过点C作BA的延长线于点D即可.【解答】解:如图所示,CD即为所求.12.分解因式:x2y﹣4xy+4y=y(x﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式y,再对余下的多项式利用完全平方公式继续分解.【解答】解:x2y﹣4xy+4y,=y(x2﹣4x+4),=y(x﹣2)2.13.写出点M(﹣2,3)关于x轴对称的点N的坐标(﹣2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可以直接写出答案.【解答】解:∵M(﹣2,3),∴关于x轴对称的点N的坐标(﹣2,﹣3).故答案为:(﹣2,﹣3)14.如果等腰三角形的两边长分别是4、8,那么它的周长是20.【考点】等腰三角形的性质;三角形三边关系.【分析】解决本题要注意分为两种情况4为底或8为底,还要考虑到各种情况是否满足三角形的三边关系来进行解答.【解答】解:∵等腰三角形有两边分别分别是4和8,∴此题有两种情况:①4为底边,那么8就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20,故答案为:2015.计算:﹣4(a2b﹣1)2÷8ab2=﹣.【考点】整式的除法;幂的乘方与积的乘方;负整数指数幂.【分析】原式利用幂的乘方与积的乘方运算法则,以及整式的除法法则计算即可得到结果.【解答】解:原式=﹣4a4b﹣2÷8ab2=﹣2a3b﹣4=﹣,故答案为:﹣16.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于D点.若BD平分∠ABC,则∠A=36°.【考点】等腰三角形的性质;线段垂直平分线的性质.【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵AB=AC,∴∠C=∠ABC,∵AB的垂直平分线MN交AC于D点.∴∠A=∠ABD,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠C=2∠A=∠ABC,设∠A为x,可得:x+x+x+2x=180°,解得:x=36°,故答案为:3617.教材中有如下一段文字:思考如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC,固定住长木棍,转动短木棍,得到△ABD,这个实验说明了什么?如图中的△ABC与△ABD满足两边和其中一边的对角分别相等,即AB=AB,AC=AD,∠B=∠B,但△ABC与△ABD不全等.这说明,有两边和其中一边的对角分别相等的两个三角形不一定全等.小明通过对上述问题的再思考,提出:两边分别相等且这两边中较大边所对的角相等的两个三角形全等.请你判断小明的说法正确.(填“正确”或“不正确”)【考点】全等三角形的判定.【分析】小明的说法正确.如图,△ABC和△DEF中,AB>AC,ED>DF,AB=DE,AC=DF,∠ACB=∠DFE,作AG⊥BC于G,DH⊥EF于H.首先证明△ACG≌△DFH,推出AG=DH,再证明△ABG≌△DEH,推出∠B=∠E,由此即可证明△ABC≌△DEF.【解答】解:小明的说法正确.理由:如图,△ABC和△DEF中,AB>AC,ED>DF,AB=DE,AC=DF,∠ACB=∠DFE,作AG⊥BC于G,DH⊥EF于H.∵∠ACB=∠DFE,∴∠ACG=∠DFH,在△ACG和△DFH中,,∴△ACG≌△DFH,∴AG=DH,在Rt△ABG和Rt△DEH中,,∴△ABG≌△DEH,∴∠B=∠E,在△ABC和△DEF中,,∴△ABC≌△DEF.(当△ABC和△DEF是锐角三角形时,证明方法类似).故答案为正确.18.如图1,△ABC中,AD是∠BAC的平分线,若AB=AC+CD,那么∠ACB与∠ABC有怎样的数量关系?小明通过观察分析,形成了如下解题思路:如图2,延长AC到E,使CE=CD,连接DE.由AB=AC+CD,可得AE=AB.又因为AD是∠BAC的平分线,可得△ABD≌△AED,进一步分析就可以得到∠ACB与∠ABC的数量关系.(1)判定△ABD与△AED全等的依据是SAS;(2)∠ACB与∠ABC的数量关系为:∠ACB=2∠ABC.【考点】等腰三角形的性质;全等三角形的判定.【分析】(1)根据已知条件即可得到结论;(2)根据全等三角形的性质和等腰三角形的性质即可得到结论.【解答】解:(1)SAS;(2)∵△ABD≌△AED,∴∠B=∠E,∵CD=CE,∴∠CDE=∠E,∴∠ACB=2∠E,∴∠ACB=2∠ABC.故答案为:SAS,∠ACB=2∠ABC.三.解答题(本大题共18分,第19题4分,第20题4分,第21题10分)19.分解因式:(a﹣4b)(a+b)+3ab.【考点】因式分解﹣运用公式法.【分析】原式整理后,利用平方差公式分解即可.【解答】解:原式=a2﹣3ab﹣4b2+3ab=a2﹣4b2=(a﹣2b)(a+2b).20.如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.【考点】全等三角形的判定与性质.【分析】欲证明DE=CB,只要证明△ADE≌△ACB即可.【解答】证明:∵DE∥BC,∴∠D=∠C,∠E=∠B.∵点A为DC的中点,∴DA=CA.在△ADE和△ACB中,,∴△ADE≌△ACB.∴DE=CB.21.解下列方程:(1)=;(2)﹣1=.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:5x+2=3x,解得:x=﹣1,经检验x=﹣1是增根,原方程无解;(2)去分母得:x(x﹣2)﹣(x+2)(x﹣2)=x+2,解得:x=,经检验x=是分式方程的解.四.解答题(本大题共14分,第22题4分,第23、24题各5分)22.已知a+b=2,求(+)•的值.【考点】分式的化简求值.【分析】先化简题目中的式子,然后将a+b的值代入化简后的式子即可解答本题.【解答】解:===,当a+b=2时,原式=.23.如图,在等边三角形ABC的三边上,分别取点D,E,F,使得△DEF为等边三角形,求证:AD=BE=CF.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【分析】只要证明△ADF≌△BED,得AD=BE,同理可证:BE=CF,由此即可证明.【解答】解:在等边三角形ABC中,∠A=∠B=60°.∴∠AFD+∠ADF=120°.∵△DEF为等边三角形,∴∠FDE=60°,DF=ED.∵∠BDE+∠EDF+∠ADF=180°,∴∠BDE+∠ADF=120°.∴∠BDE=∠AFD.在△ADF和△BED中,,∴△ADF≌△BED.∴AD=BE,同理可证:BE=CF.∴AD=BE=CF.24.列方程解应用题:老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂.”(摘自《住的梦》)金黄色的银杏叶为北京的秋增色不少.小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树.他先让爸爸开车驶过这段公路,发现速度为60千米/小时,走了约3分钟,由此估算这段路长约3千米.然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米.小宇计划从路的起点开始,每a米种一棵树,绘制示意图如下:考虑到投入资金的限制,他设计了另一种方案,将原计划的a扩大一倍,则路的两侧共计减少200棵树,请你求出a的值.【考点】分式方程的应用.【分析】根据题意列出分式方程进行解答即可.【解答】解:这段路长约60×=3千米;由题意可得:.解方程得:a=15.经检验:a=15满足题意.答:a的值是15.故答案为:3五.解答题(本大题共14分,第25、26题各7分)25.在我们认识的多边形中,有很多轴对称图形.有些多边形,边数不同对称轴的条数也不同;有些多边形,边数相同但却有不同数目的对称轴.回答下列问题:(1)非等边的等腰三角形有1条对称轴,非正方形的长方形有2条对称轴,等边三角形有3条对称轴;(2)观察下列一组凸多边形(实线画出),它们的共同点是只有1条对称轴,其中图1﹣2和图1﹣3都可以看作由图1﹣1修改得到的,仿照类似的修改方式,请你在图1﹣4和图1﹣5中,分别修改图1﹣2和图1﹣3,得到一个只有1条对称轴的凸五边形,并用实线画出所得的凸五边形;(3)小明希望构造出一个恰好有2条对称轴的凸六边形,于是他选择修改长方形,图2中是他没有完成的图形,请用实线帮他补完整个图形;(4)请你画一个恰好有3条对称轴的凸六边形,并用虚线标出对称轴.【考点】四边形综合题;等腰三角形的性质;等边三角形的性质;矩形的性质;轴对称图形.【分析】(1)根据等腰三角形的性质、矩形的性质以及等边三角形的性质进行判断即可;(2)中图1﹣2和图1﹣3都可以看作由图1﹣1修改得到的,在图1﹣4和图1﹣5中,分别仿照类似的修改方式进行画图即可;(3)长方形具有两条对称轴,在长方形的右侧补出与左侧一样的图形,即可构造出一个恰好有2条对称轴的凸六边形;(4)在等边三角形的基础上加以修改,即可得到恰好有3条对称轴的凸六边形.【解答】解:(1)非等边的等腰三角形有1条对称轴,非正方形的长方形有2条对称轴,等边三角形有3条对称轴,故答案为:1,2,3;(2)恰好有1条对称轴的凸五边形如图中所示.(3)恰好有2条对称轴的凸六边形如图所示.(4)恰好有3条对称轴的凸六边形如图所示.26.钝角三角形ABC中,∠BAC>90°,∠ACB=α,∠ABC=β,过点A的直线l交BC边于点D.点E在直线l上,且BC=BE.(1)若AB=AC,点E在AD延长线上.①当α=30°,点D恰好为BE中点时,补全图1,直接写出∠BAE=60°,∠BEA= 30°;②如图2,若∠BAE=2α,求∠BEA的度数(用含α的代数式表示);(2)如图3,若AB<AC,∠BEA的度数与(1)中②的结论相同,直接写出∠BAE,α,β满足的数量关系.【考点】全等三角形的判定与性质.【分析】(1)①只要证明AE⊥BC,△BCE是等边三角形即可解决问题.②如图2中,延长CA到F,使得BF=BC,则BF=BE=BC,连接BF,作BM⊥AF于M,BN ⊥AE于N.只要证明Rt△BMF≌Rt△BNE,推出∠BEA=∠F,由BF=BC,推出∠F=∠C=α,推出∠BEA=α即可.(2)如图3中,连接EC,由△ADC∽△BDE,推出=,推出=,由∠ADB=∠CDE,推出△ADB∽△CDE,推出∠BAD=∠DCE,∠ABD=∠DEC=β,由BC=BE,推出∠BCE=∠BEC,推出∠BAE=∠BEC=∠BEA+∠DEC=α+β.【解答】解:(1)①补全图1,如图所示.∵AB=AC,BD=DC,∴AE⊥BC,∴EB=EC,∠ADB=90°,∵∠ABC=30°,∴∠BAE=60°∵BC=BE,∴△BCE是等边三角形,∠DEB=∠DEC,∴∠BEC=60°,∠BEA=30°故答案为60,30.②如图2中,延长CA到F,使得BF=BC,则BF=BE=BC,连接BF,作BM⊥AF于M,BN⊥AE于N.∵AB=AC,∴∠ABC=∠C=α,∴∠MAB=2α,∵∠BAN=2α,∴∠BAM=∠BAN,∴BM=BN,在Rt△BMF和Rt△BNE中,,∴Rt△BMF≌Rt△BNE.∴∠BEA=∠F,∵BF=BC,∴∠F=∠C=α,∴∠BEA=α.(2)结论:∠BAE=α+β.理由如下,如图3中,连接EC,∵∠ACD=∠BED=α,∠ADC=∠BDE,∴△ADC∽△BDE,∴=,∴=,∵∠ADB=∠CDE,∴△ADB∽△CDE,∴∠BAD=∠DCE,∠ABD=∠DEC=β,∵BC=BE,∴∠BCE=∠BEC,∴∠BAE=∠BEC=∠BEA+∠DEC=α+β.附加题:(本题最高10分,可计入总分,但全卷总分不超过100分)27.一个多边形如果是轴对称图形,那么它的边数与对称轴的条数之间存在联系吗?(1)以凸六边形为例,如果这个凸六边形是轴对称图形,那么它可能有1,2,3或6条对称轴;(2)凸五边形可以恰好有两条对称轴吗?如果存在请画出图形,并用虚线标出两条对称轴;否则,请说明理由;(3)通过对(1)中凸六边形的研究,请大胆猜想,一个凸多边形如果是轴对称图形,那么它的边数与对称轴的条数之间的联系是:对称轴的条数是多边形边数的约数.【考点】作图﹣轴对称变换.【分析】(1)根据凸六边形进行画图,然后猜想即可;(2)根据题意画出图形,再结合轴对称图形的定义进行分析即可;(3)根据(1)中所得的数据可得答案.【解答】解:(1)凸六边形是轴对称图形,那么它可能有1,2,3或6条对称轴,故答案为:1,2,3或6;(2)不可以.理由如下:根据轴对称图形的定义,若一个凸多边形是轴对称图形,则对称轴与多边形的交点是多边形的顶点或一条边的中点.若多边形的边数是奇数,则对称轴必经过一个顶点和一条边的中点.如图1,设凸五边形ABCDE是轴对称图形,恰好有两条对称轴l1,l2,其中l1经过A和CD的中点.若l2⊥l1,则l2与五边形ABCDE的两个交点关于l1对称,与对称轴必经过一个顶点和一条边的中点矛盾;若l2不垂直于l1,则l2关于l1的对称直线也是五边形ABCDE的对称轴,与恰好有两条对称轴矛盾.所以,凸五边形不可以恰好有两条对称轴.(3)对称轴的条数是多边形边数的约数.2017年3月17日。
【最新】2016-2017学年北师大版八年级上册期末数学试卷及答案

,
结论是 13.如果 a、 b 同号,则点 P(a,b)在
. 象限.
xy5
14.方程组
的解是
.
2x y 1
得 分 评卷人 三、解答题 (本大题共有 9 个小题,满分 58 分)
15.(本小题 4 分)计算: 3 ( 12 48 )
八年级数学试卷
第小题 5 分)已知
19.(本小题 5 分)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场 调查榕树的单价比香樟树少 20 元,购买 3 棵榕树和 2 棵香樟树共需 340 元.请问榕树和香樟树的单价各多少?
八年级数学试卷
第5 页
(共 8 页)
19.(本小题 5 分)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场 调查榕树的单价比香樟树少 20 元,购买 3 棵榕树和 2 棵香樟树共需 340 元.请问榕树和香樟树的单价各多少?
八年级数学试卷
第5 页
(共 8 页)
18.(本小题 5 分)长方形的两条边长分别为 4, 6,建立适当的直角坐标系, 使它的一个顶点的坐标为( - 2, - 3).请你写出另外三个顶点的坐标.
2016-2017 学年上学期末综合素质测评 八年级数学试卷
(全卷满分 100 分,考试时间 120 分钟)
题号
一
二
三
总分
得分
得分
评卷人
一、选择题 (本大题共 8 个小题,每小题只有一个正
确选项,每小题 3 分,满分 24 分)
1.计算 - 32 的结果是(
)
A.- 3
B. 3
C. - 9
D.9
2.下列几组数能作为直角三角形的三边长的是(
第2 页
(共 8 页)
20162017学年八年级上期末数学试卷两套合集二附答案解析

2016-2017学年八年级(上)期末数学试卷两套合集二附答案解析2016-2017学年八年级(上)期末数学试卷一、选择题:每题2分,共12分.1.要使分式成心义,那么x的取值应知足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣12.以下大学的校徽图案是轴对称图形的是()A.清华大学B.北京大学C.人民大学D.浙江大学3.以下计算正确的选项是()A.3a﹣a=2 B.a2•a3=a6C.a2+2a2=3a2D.(a+b)2=a2+b24.假设三角形两边长别离为6cm,2cm,第三边长为偶数,那么第三边长为()A.2cm B.4cm C.6cm D.8cm5.如下图,亮亮书上的三角形被墨迹污染了一部份,专门快他就依照所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA6.化简的结果是()A.B.C.a﹣b D.b﹣a二、填空题:每题3分,共24分.7.写出一个运算结果是a6的算式.8.计算:(2016)0+()2﹣(﹣1)2016= .9.分解因式:a3﹣a= .10.假设3x=15,3y=5,那么3x﹣2y= .11.一个多边形内角和是一个四边形内角和的4倍,那么那个多边形的边数是.12.在平面直角坐标系中,点P(﹣2,3)关于x轴对称的点P1的坐标是.13.假设分式的值为0,那么x的值为.14.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,那么AC= .三、解答题:每题5分,共20分.15.因式分解:2a2﹣4a+2.16.化简:x(4x+3y)﹣(2x+y)(2x﹣y)17.解分式方程:.18.先化简,再求值:(﹣)÷,其中x=﹣3.四、解答题:每题7分,共28分.19.已知:图①、图②均为5×6的正方形网格,点A、B、C在格点(小正方形的极点)上.请你别离在图①、图②中确信格点D,画出一个以A、B、C、D为极点的四边形,使其为轴对称图形,并画出对称轴.20.如图是一个长为2a、宽为2b的长方形,沿图中虚线用剪子均匀分成四块小长方形,然后按图2形状拼成一个正方形.(1)请利用图2中的空白部份面积的不同表示方式,写出一个关于a、b的恒等式.(2)假设a+b=10,ab=6,依照你所取得的恒等式,求(a﹣b)的值.21.如图AB=AC,BD=CD,DE⊥BA,点E为垂足,DF⊥AC,点F为垂足,求证:DE=DF.22.已知,小敏、小聪两人在x=2,y=﹣1的条件下别离计算P和Q的值,小敏说P的值比Q大,小聪说Q的值比P大,请你判定谁的结论正确?并说明理由.五、解答题:每题8分,共16分.23. 2016年中秋节期间,某商城隆重开业,某商家有打算选购甲、乙两种礼盒作为开业期间给予买家的礼物,已知甲礼盒的单价是乙礼盒单价的1.5倍;用600元单独购买甲种礼盒比单独购买乙种礼盒要少10个.(1)求甲、乙两种礼盒的单价别离为多少元?(2)假设商家打算购买这两种礼盒共40个,且投入的经费不超过1050元,那么购买的甲种礼盒最多买多少个?24.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于M,交AC于N.(1)假设∠ABC=70°,那么∠MNA的度数是.(2)连接NB,假设AB=8cm,△NBC的周长是14cm.①求BC的长;②在直线MN上是不是存在P,使由P、B、C组成的△PBC的周长值最小?假设存在,标出点P的位置并求△PBC的周长最小值;假设不存在,说明理由.六、解答题:每题10分,共20分.25.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(极点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是不是成立?假设不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系.26.研究性学习:在平面直角坐标系中,等腰三角形ABC的极点A的坐标为(2,2).(1)假设底边BC在x轴上,请写出1组知足条件的点B、点C的坐标:;设点B、点C的坐标别离为(m,0)、(n,0),你以为m、n应知足如何的条件?答:.(2)假设底边BC的两头点别离在x轴、y轴上,请写出1组知足条件的点B、点C的坐标:;设点B、点C的坐标别离为(m,0)、(0,n),你以为m、n应知足如何的条件?答:.参考答案与试题解析一、选择题:每题2分,共12分.1.要使分式成心义,那么x的取值应知足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣1【考点】分式成心义的条件.【分析】依照分式成心义,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣2≠0,解得x≠2.应选:A.【点评】此题考查了分式成心义的条件,从以下三个方面透彻明白得分式的概念:(1)分式无心义⇔分母为零;(2)分式成心义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.以下大学的校徽图案是轴对称图形的是()A.清华大学B.北京大学C.人民大学D.浙江大学【考点】轴对称图形.【分析】依照轴对称图形的概念对各选项分析判定即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.应选B.【点评】此题考查了轴对称图形的概念,轴对称图形的关键是寻觅对称轴,图形两部份折叠后可重合.3.以下计算正确的选项是()A.3a﹣a=2 B.a2•a3=a6C.a2+2a2=3a2D.(a+b)2=a2+b2【考点】同底数幂的乘法;归并同类项;完全平方公式.【分析】依照同底数幂的乘法、归并同类项、完全平方公式的运算法那么结合选项求解.【解答】解:A、3a﹣a=2a,计算错误,故本选项错误;B、a2•a3=a5,计算错误,故本选项错误;C、a2+2a2=3a2,计算正确,故本选项正确;D、(a+b)2=a2+2ab+b2,计算错误,故本选项错误.应选C.【点评】此题考查了同底数幂的乘法、归并同类项、完全平方公式等知识,把握各知识点的运算法那么是解答此题的关键.4.假设三角形两边长别离为6cm,2cm,第三边长为偶数,那么第三边长为()A.2cm B.4cm C.6cm D.8cm【考点】三角形三边关系.【分析】依照三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,求得第三边的取值范围,再进一步进行分析.【解答】解:依照三角形的三边关系,得第三边大于4cm,而小于8cm.又第三边是偶数,那么应是6cm.应选C.【点评】此题考查了三角形的三边关系,同时注意偶数这一条件.5.如下图,亮亮书上的三角形被墨迹污染了一部份,专门快他就依照所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【考点】全等三角形的判定.【分析】依照图象,三角形有两角和它们的夹边是完整的,因此能够依照“角边角”画出.【解答】解:依照题意,三角形的两角和它们的夹边是完整的,因此能够利用“角边角”定理作出完全一样的三角形.应选D.【点评】此题考查了三角形全等的判定的实际运用,熟练把握判定定理并灵活运用是解题的关键.6.化简的结果是()A.B.C.a﹣b D.b﹣a【考点】分式的混合运算.【分析】先算小括号里的,再把除法统一成乘法,约分化为最简.【解答】解:原式=()•==﹣,应选B.【点评】分式的四那么运算是整式四那么运算的进一步进展,在计算时,第一要弄清楚运算顺序,先去括号,再进行分式的乘除.二、填空题:每题3分,共24分.7.(2021•滨州)写出一个运算结果是a6的算式a2•a4(答案不唯一).【考点】幂的乘方与积的乘方;同底数幂的乘法;同底数幂的除法.【专题】开放型.【分析】依照同底数幂的乘法法那么,底数不变,指数相加,可得答案.【解答】解:a2•a4=a6,故答案为:a2•a4(答案不唯一).【点评】此题考查了同底数幂的乘法,同底数幂相乘,底数不变,指数相加.8.计算:(2016)0+()2﹣(﹣1)2016= .【考点】零指数幂.【分析】依照非零的零次幂等于1,负数的偶数次幂是正数,可得答案.【解答】解:原式=1+﹣1=,故答案为:.【点评】此题考查了零次幂,利用非零的零次幂等于1,负数的偶数次幂是正数是解题关键.9.分解因式:a3﹣a= a(a+1)(a﹣1).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).【点评】此题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解完全.10.假设3x=15,3y=5,那么3x﹣2y= .【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】直接利用同底数幂的除法运算法那么将原式变形进而得出答案.【解答】解:∵3x=15,3y=5,∴3x﹣2y=3x÷(3y)2=15÷25=.故答案为:.【点评】此题要紧考查了同底数幂的除法运算法那么,正确将原式变形是解题关键.11.一个多边形内角和是一个四边形内角和的4倍,那么那个多边形的边数是10 .【考点】多边形内角与外角.【分析】多边形的外角和是360度,多边形的外角和是内角和的4倍,那么多边形的内角和是360×4=1440度,再由多边形的内角和列方程解答即可.【解答】解:设那个多边形的边数是n,由题意得,(n﹣2)×180°=360°×4解得n=10.故答案为:10.【点评】此题要紧考查了多边形的内角和定理与外角和定理,熟练把握定理是解题的关键.12.在平面直角坐标系中,点P(﹣2,3)关于x轴对称的点P1的坐标是P1(﹣2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【分析】依照关于x轴对称的点,横坐标相同,纵坐标互为相反数;那么P1的坐标为(﹣2,﹣3).【解答】解:∵P(﹣2,3)与P1关于x轴对称,∴横坐标相同,纵坐标互为相反数,∴P1的坐标为(﹣2,﹣3).故答案为(﹣2,﹣3).【点评】考查了关于x轴、y轴对称的点的坐标,解决此题的关键是把握好对称点的坐标规律,注意结合图象,进行经历和解题.13.假设分式的值为0,那么x的值为﹣3 .【考点】分式的值为零的条件.【分析】依照分式成心义的条件可得x2﹣9=0,且(x﹣1)(x﹣3)≠0,再解即可.【解答】解:由题意得:x2﹣9=0,且(x﹣1)(x﹣3)≠0,解得:x=﹣3,故答案为:﹣3.【点评】此题要紧考查了分式值为零的条件,关键是把握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”那个条件不能少.14.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,那么AC= 6 .【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】先作辅助线,然后利用垂直平分线的性质求出AD=BD,最后解直角三角形计算.【解答】解:连接BD∵DE垂直平分AB∴AD=BD∴∠DBA=∠A=30°∴∠CBD=30°∴BD=2CD=4∴AC=CD+AD=CD+BD=2+4=6.答案6.【点评】此题要紧考查线段的垂直平分线的性质和直角三角形的性质.三、解答题:每题5分,共20分.15.因式分解:2a2﹣4a+2.【考点】提公因式法与公式法的综合运用.【专题】计算题.【分析】原式提取2,利用完全平方公式分解即可.【解答】解:原式=2(a2﹣2a+1)=2(a﹣1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练把握因式分解的方式是解此题的关键.16.化简:x(4x+3y)﹣(2x+y)(2x﹣y)【考点】整式的混合运算.【专题】计算题.【分析】原式第一项利用单项式乘以多项式法那么计算,第二项利用平方差公式化简,去括号归并即可取得结果.【解答】解:原式=4x2+3xy﹣4x2+y2=3xy+y2.【点评】此题考查了整式的混合运算,熟练把握运算法那么是解此题的关键.17.解分式方程:.【考点】解分式方程.【专题】计算题;压轴题.【分析】观看可得2﹣x=﹣(x﹣2),因此方程的最简公分母为:(x﹣2),去分母将分式方程化为整式方程后再求解,注意查验.【解答】解:方程两边同乘(x﹣2),得:1=﹣(1﹣x)﹣3(x﹣2)整理得:1=x﹣1﹣3x+6,解得:x=2,经查验x=2是增根,∴原分式方程无解.【点评】(1)解分式方程的大体思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程必然注意要验根;(3)分式方程去分母时不要漏乘.18.先化简,再求值:(﹣)÷,其中x=﹣3.【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分取得最简结果,将x的值代入计算即可求出值.【解答】解:原式=[﹣]•=﹣=﹣,当x=﹣3时,原式=.【点评】此题考查了分式的化简求值,熟练把握运算法那么是解此题的关键.四、解答题:每题7分,共28分.19.已知:图①、图②均为5×6的正方形网格,点A、B、C在格点(小正方形的极点)上.请你别离在图①、图②中确信格点D,画出一个以A、B、C、D为极点的四边形,使其为轴对称图形,并画出对称轴.【考点】利用轴对称设计图案.【分析】依照轴对称图形的性质设计出轴对称图形即可.【解答】解:如下图:.【点评】此题要紧考查了利用轴对称设计图案,正确把握轴对称图形概念是解题关键.20.如图是一个长为2a、宽为2b的长方形,沿图中虚线用剪子均匀分成四块小长方形,然后按图2形状拼成一个正方形.(1)请利用图2中的空白部份面积的不同表示方式,写出一个关于a、b的恒等式(a+b)2=(a ﹣b)2+4ab .(2)假设a+b=10,ab=6,依照你所取得的恒等式,求(a﹣b)的值.【考点】完全平方公式的几何背景.【分析】(1)阴影部份的面积能够看做是边长(a﹣b)的正方形的面积,也能够看做边长(a+b)的正方形的面积减去4个小长方形的面积;(2)利用(1)的结论,把(a﹣b)2=(a+b)2﹣4ab,把数值整体代入即可.【解答】解:(1)恒等式为:(a+b)2=(a﹣b)2+4ab.例如:当a=5,b=2时,(a+b)2=(5+2)2=49(a﹣b)2=(5﹣2)2=94ab=4×5×2=40因为49=40+9,因此(a+b)2=(a﹣b)2+4ab.故答案为::(a+b)2=(a﹣b)2+4ab.(2)∵a+b=10,(a+b)2=100,∵(a+b)2=(a﹣b)2+4ab,ab=6,∴(a﹣b)2=(a+b)2﹣4ab=100﹣4×6=76,∴a﹣b=2或a﹣b=﹣2,∵a>b,∴a﹣b=2.【点评】此题考查了列代数式,完全平方公式的实际应用,完全平方公式与正方形的面积公式和长方形的面积公式常常联系在一路.要学会观看.21.如图AB=AC,BD=CD,DE⊥BA,点E为垂足,DF⊥AC,点F为垂足,求证:DE=DF.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】利用“边边边”证明△ABD和△ACD全等,依照全等三角形对应角相等可得∠BAD=∠CAD,再依照角平分线上的点到角的两边的距离相等即可得证.【解答】证明:在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,∵DE⊥BA,DF⊥AC,∴DE=DF.【点评】此题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,求出∠BAD=∠CAD是解题的关键.22.已知,小敏、小聪两人在x=2,y=﹣1的条件下别离计算P和Q的值,小敏说P的值比Q大,小聪说Q的值比P大,请你判定谁的结论正确?并说明理由.【考点】分式的化简求值;整式的混合运算—化简求值.【专题】探讨型.【分析】先依照分式及整式混合运算的法那么把原式进行化简,再把x=2,y=﹣1时期入求出P、Q 的值,比较出其大小即可.【解答】解:都不正确.∵P=﹣==x﹣y,∴当x=2,y=﹣1时,P=2+1=3;∵Q=(x+y)(x+y﹣2y)=(x+y)(x﹣y),∴当x=2,y=﹣1时,Q=(2﹣1)(2+1)=3,∴P=Q.【点评】此题考查的是分式的化简求值及整式的化简求值,熟知分式及整式混合运算的法那么是解答此题的关键.五、解答题:每题8分,共16分.23.2016年中秋节期间,某商城隆重开业,某商家有打算选购甲、乙两种礼盒作为开业期间给予买家的礼物,已知甲礼盒的单价是乙礼盒单价的1.5倍;用600元单独购买甲种礼盒比单独购买乙种礼盒要少10个.(1)求甲、乙两种礼盒的单价别离为多少元?(2)假设商家打算购买这两种礼盒共40个,且投入的经费不超过1050元,那么购买的甲种礼盒最多买多少个?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)依照题意能够取得相应的分式方程,从而能够解答此题;(2)依照题意能够取得相应的不等式,从而能够解答此题.【解答】解:(1)设乙种礼盒购买了x个,解得,x=20,经查验x=20是原分式方程的解,那么1.5x=30,即甲、乙两种礼盒的单价别离为30元、20元;(2)设购买甲种礼盒x个,30x+20(40﹣x)≤1050,解得,x≤25即购买的甲种礼盒最多买25个.【点评】此题考查分式方程的应用、一元一次不等式的应用,解题的关键是明确题意,找出所求问题需要的条件.24.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于M,交AC于N.(1)假设∠ABC=70°,那么∠MNA的度数是50°.(2)连接NB,假设AB=8cm,△NBC的周长是14cm.①求BC的长;②在直线MN上是不是存在P,使由P、B、C组成的△PBC的周长值最小?假设存在,标出点P的位置并求△PBC的周长最小值;假设不存在,说明理由.【考点】轴对称-最短线路问题;线段垂直平分线的性质;等腰三角形的性质.【分析】(1)依照等腰三角形的性质得出∠ABC=∠ACB=70°,求得∠A=40°,依照线段的垂直平分线的性质得出AN=BN,进而得出∠ABN=∠A=40°,依照三角形内角和定理就可得出∠ANB=100°,依照等腰三角形三线合一就可求得∠MNA=50°;(2)①依照△NBC的周长=BN+CN+BC=AN+NC+BC=AC+BC就可求得.②依照轴对称的性质,即可判定P确实是N点,因此△PBC的周长最小值确实是△NBC的周长.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=40°,∵MN是AB的垂直平分线,∴AN=BN,∴∠ABN=∠A=40°,∴∠ANB=100°,∴∠MNA=50°;故答案为50°.(2)①∵AN=BN,∴BN+CN=AN+CN=AC,∵AB=AC=8cm,∴BN+CN=8cm,∵△NBC的周长是14cm.∴BC=14﹣8=6cm.②∵A、B关于直线MN对称,∴连接AC与MN的交点即为所求的P点,现在P和N重合,即△BNC的周长确实是△PBC的周长最小值,∴△PBC的周长最小值为14cm.【点评】此题考查了等腰三角形的性质,线段的垂直平分线的性质,三角形内角和定理和轴对称的性质,熟练把握性质和定理是解题的关键.六、解答题:每题10分,共20分.25.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(极点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是不是成立?假设不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)依照等边三角形的性质及等式的性质就能够够得出△ABD≌△ACE,从而得出结论;(2)依照等边三角形的性质及等式的性质就能够够得出△ABD≌△ACE,就能够够得出BD=CE,就能够够得出AC=CE﹣CD;(3)先依照条件画出图形,依照等边三角形的性质及等式的性质就能够够得出△ABD≌△ACE,就能够够得出BD=CE,就能够够得出AC=CD﹣CE.【解答】解:(1)∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE.∵BC=BD+CD,AC=BC,∴AC=CE+CD;(2)AC=CE+CD不成立,AC、CE、CD之间存在的数量关系是:AC=CE﹣CD.理由:∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE在△ABD和△ACE中,∴△ABD≌△ACE(SAS)∴BD=CE ∴CE﹣CD=BD﹣CD=BC=AC,∴AC=CE﹣CD;(3)补全图形(如图)AC、CE、CD之间存在的数量关系是:AC=CD﹣CE.理由:∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,∴∠BAD=∠CAE在△ABD和△ACE中,∴△ABD≌△ACE(SAS)∴BD=CE.∵BC=CD﹣BD,∴BC=CD﹣CE,∴AC=CD﹣CE.【点评】此题考查了等边三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.26.研究性学习:在平面直角坐标系中,等腰三角形ABC的极点A的坐标为(2,2).(1)假设底边BC在x轴上,请写出1组知足条件的点B、点C的坐标:(0,0)(4,0);设点B、点C的坐标别离为(m,0)、(n,0),你以为m、n应知足如何的条件?答:m+n=4 .(2)假设底边BC的两头点别离在x轴、y轴上,请写出1组知足条件的点B、点C的坐标:(2,0)(0,2);设点B、点C的坐标别离为(m,0)、(0,n),你以为m、n应知足如何的条件?答:m=n .【考点】等腰三角形的性质;坐标与图形性质.【分析】(1)假设底边BC在x轴上,那么B,C必然关于直线x=2对称.(2)假设底边BC的两头点别离在x轴、y轴上,那么B,C必然关于直线y=x对称.【解答】解:(1)假设底边BC在x轴上,那么点B、点C的坐标能够是:(0,0)(4,0);设点B、点C的坐标别离为(m,0)、(n,0),那么B、C关于点(2,0)对称,∴m+n=4.(2)假设底边BC的两头点别离在x轴、y轴上,点B、点C的坐标能够是:(2,0)(0,2);设点B、点C的坐标别离为(m,0)、(0,n),那么点B、C关于直线y=x对称,∴m=n.故别离填:(0,0)(4,0),m+n=4,(2,0)(0,2),m=n(m、n≠4、0).【点评】此题考查了的研究性的性质及坐标与图形的性质;解题要紧应用了等腰三角形的三线合必然理,等腰三角形的顶角极点必然在底边的垂直平分线上,结合图形做题是比较关键的.2016-2017学年八年级(上)期末数学试卷一、填空题1.如图,△ABC≌△DEF,EB=8,AE=2,那么DE= .2.分式无心义的条件是x= .3.化简:÷= .4.假设方程无解,那么m= .5.已知a+b=2,那么a2﹣b2+4b的值为.6.已知:如图,∠ACB=∠DBC,要使△ABC≌△DCB,只需增加的一个条件是(只需填写一个你以为适合的条件).7.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,那么AC= .8.如图,∠1=∠2=30°,∠3=∠4,∠A=80°,那么x= 度,y= 度.二、选择题9.以下长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.1,2,3 D.5,6,1010.以下计算正确的选项是()A.(x3)3=x6B.a6•a4=a24C.(﹣mn)4÷(﹣mn)2=m2n2D.3a+2a=5a211.在如图的网格中,在网格上找到点C,使△ABC为等腰三角形,如此的点有几个()A.8 B.9 C.10 D.1112.计算(18x4﹣48x3+6x)÷6x的结果为()A.3x3﹣13x2 B.3x3﹣8x2C.3x3﹣8x2+6x D.3x3﹣8x2+113.如图,在△ABC中,∠ACB=90°,∠A=20°,假设将△ABC沿CD折叠,使点B落在AC边上的点E处,那么∠CED的度数是()A.30° B.40° C.50° D.70°14.如下图,l是四边形ABCD的对称轴,AD∥BC,现给出以下结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC.其中正确的结论有()A.1个B.2个C.3个D.4个三、计算与作图题(本大题共4小题,每题6分,共24分)15.分解因式:3x2y+12xy2+12y3.16.先化简,再求值:,其中m=9.17.解方程: =﹣1.18.请在以下三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形通过轴对称变换后取得的图形,且所画的三角形极点与方格中的小正方形极点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)四、(本大题共3小题,每题8分,共24分)19.如下图,点B、F、C、E在同一条直线上,AB∥DF,AC∥DE,AC=DE,FC与BE相等吗?请说明理由.20.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E,A在直线DC的同侧,连接AE.(1)求证:△ACE≌△BCD;(2)线段AE与BC有什么位置关系?请说明理由.21.千年古镇赵化开发的鑫城小区的内坝是一块长为(3a+b)米,宽为(2a+b)米的长方形地,物业部门打算将内坝进行绿化(如图阴影部份),中间部份将修建一仿古小景点(如图中间的正方形),那么绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.五、(本大题共2小题,每题9分,共18分)22.在△ABC中,∠BAC=90°,∠B=45°,D为BC上一点,BD=AB,DE⊥BC,交AC于点E.(1)求证:△ADE是等腰三角形;(2)图中除△ADE是等腰三角形外,还有无等腰三角形?假设有,请一一写出来(不要求证明);假设没有,请说明理由.23.为庆贺2021年元旦的到来,学校决定举行“庆元旦迎新年”文艺演出,依照演出需要,用700元购进甲、乙两种花束共260朵,其中甲种花束比乙种花束少用100元,已知甲种花束单价比乙种花束单价高20%,乙种花束的单价是多少元?甲、乙两种花束各购买了多少朵?六、(本大题共1小题,共12分)24.小敏与同桌小颖在课下学习中碰到如此一道数学题:“如图(1),在等边三角形ABC中,点E 在AB上,点D在CB的延长线上,且ED=EC,试确信线段AE与DB的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答:(1)取特殊情形,探讨讨论:当点E为AB的中点时,如图(2),确信线段AE与DB的大小关系,请你写出结论:AE DB(填“>”,“<”或“=”),并说明理由.(2)特例启发,解答题目:解:题目中,AE与DB的大小关系是:AE=DB(填“>”,“<”或“=”).理由如下:如图(3),过点E作EF∥BC,交AC于点F.(请你将剩余的解答进程完成)(3)拓展结论,设计新题:在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,假设△ABC的边长为1,AE=2,求CD的长(请你画出图形,并直接写出结果).参考答案与试题解析一、填空题1.如图,△ABC≌△DEF,EB=8,AE=2,那么DE= 10 .【考点】全等三角形的性质.【分析】结合图形和已知条件求出AB的长度,再依照全等三角形对应边相等得DE=AB.【解答】解:∵EB=8,AE=2,∴AB=EB+AE=8+2=10,∵△ABC≌△DEF,∴DE=AB=10.【点评】此题要紧考查全等三角形对应边相等的性质,熟练把握性质并灵活运用是解题的关键.2.分式无心义的条件是x= ﹣3 .【考点】分式成心义的条件.【分析】依照分式无心义的条件进行填空即可.【解答】解:∵分式无心义,∴x+3=0,∴x=﹣3,故答案为﹣3.【点评】此题考查了分式无心义的条件,分母为0分式无心义.3.化简:÷= .【考点】分式的乘除法.【专题】计算题;分式.【分析】原式利用除法法那么变形,约分即可取得结果.【解答】解:原式=•=,故答案为:【点评】此题考查了分式的乘除法,熟练把握运算法那么是解此题的关键.4.假设方程无解,那么m= 1 .【考点】分式方程的解.【专题】计算题.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解那个整式方程取得的解使原方程的分母等于0.【解答】解:方程去分母得:(x﹣3)(2﹣x)=m(x﹣2)解得:x=3﹣m,∴当x=2时分母为0,方程无解,即3﹣m=2,∴m=1时方程无解.故答案为:1.【点评】此题考查了分式方程无解的条件,是需要识记的内容.5.已知a+b=2,那么a2﹣b2+4b的值为 4 .【考点】因式分解的应用.【分析】把所给式子整理为含(a+b)的式子的形式,再代入求值即可.【解答】解:∵a+b=2,∴a2﹣b2+4b,=(a+b)(a﹣b)+4b,=2(a﹣b)+4b,=2a+2b,=2(a+b),=2×2,=4.故答案为:4.【点评】此题考查了利用平方差公式分解因式,利用平方差公式和提公因式法整理出a+b的形式是求解此题的关键,同时还隐含了整体代入的数学思想.6.已知:如图,∠ACB=∠DBC,要使△ABC≌△DCB,只需增加的一个条件是∠A=∠D或∠ABC=∠DCB或BD=AC (只需填写一个你以为适合的条件).【考点】全等三角形的判定.【专题】开放型.【分析】已知一条公共边和一个角,有角边角或角角边定理,再补充一组对边相等或一组对角相等即可.【解答】解:添加∠A=∠D,∠ABC=∠DCB,BD=AC后可别离依照AAS、SAS、SAS判定△ABC≌△ADC.故填∠A=∠D或∠ABC=∠DCB或BD=AC.【点评】此题考查三角形全等的判定方式;判定两个三角形全等的一样方式有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,依照已知结合图形及判定方式选择条件是正确解答此题的关键.7.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,那么AC= 6 .【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】先作辅助线,然后利用垂直平分线的性质求出AD=BD,最后解直角三角形计算.【解答】解:连接BD∵DE垂直平分AB。
2016-2017学年苏教版八年级数学上册期末试卷(含答案)word版
2016-2017学年苏教版八年级数学上册期末试卷(含答案)word版2016-2017学年苏教版八年级数学上册期末试卷一、细心填一填本大题共有13小题,20空,每空2分,共40分。
1.4的平方根是2;124的算术平方根是11;9的立方根为-2.2.计算:(1)a÷a=1;(2)(m+2n)(m-2n)=m^2-4n^2;(3)0.3.在数轴上与表示3的点距离最近的整数点所表示的数是3.4.如图,△ABC中,∠ABC=38°,BC=6cm,E为BC 的中点,平移△ABC得到△DEF,则∠DEF=38°,平移距离为6cm。
5.正九边形绕它的旋转中心至少旋转40°后才能与原图形重合。
6.如图,若□ABCD与□EBCF关于BC所在直线对称,且∠ABE=90°,则∠F=90°。
7.如图,在正方形ABCD中,以BC为边在正方形外部作等边三角形BCE,连结DE,则∠CDE的度数为60°。
8.如图,在□ABCD中,∠ABC的平分线交AD于点E,且AE=DE=1,则□ABCD的周长等于4+2√2.9.AD∥BC,∠A=2∠B=40°。
10.在梯形ABCD中,∠C=90°,则∠D的度数为90°。
11.如图,在△ABC中,AB=AC=5,BC=6,点E,F是中线AD上的两点,则图中阴影部分的面积是6.12.直角三角形三边长分别为2,3,m,则m=√5.13.矩形ABCD的周长为24,面积为32,则其四条边的平方和为100;对角线AC、BD相交于点O,其中AC+BD=28,CD=10.(1)若四边形ABCD是平行四边形,则△OCD的周长为22;(2)若四边形ABCD是菱形,则菱形的面积为48;(3)若四边形ABCD是矩形,则AD的长为8.二、精心选一选本大题共有7小题,每小题2分,共14分。
在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内。
【最新】2016-2017学年北师大版八年级数学上册期末试卷及答案
C .第三象限
D .第四象限
2. 二元一次方程 x- 2y=1 有无数多个解,下列四组值中是该方程的解的是(
▲)
x0
A.
y1
x1
B.
y1
x1
C.
y1
x1
D.
y0
3. 2016 年 1 月份,某市一周空气质量报告中某项污染指数的数据是:
31, 35, 31,
33, 30, 33, 31.則下列关于这列数据表述正确的是(
本卷共六大题,全
一、选择题(本大题共 6 小题,每小题 3 分,共 18 分)每题只有一个正确的选项
1. 点 P(﹣ 3,﹣ 4)位于( ▲ ) A.第一象限 B .第二象限
C .第三象限
D .第四象限
2. 二元一次方程 x- 2y=1 有无数多个解,下列四组值中是该方程的解的是(
▲)
x0
A.
y1
x1
C .第三象限
D .第四象限
2. 二元一次方程 x- 2y=1 有无数多个解,下列四组值中是该方程的解的是(
▲)
x0
A.
y1
x1
B.
y1
x1
C.
y1
x1
D.
y0
3. 2016 年 1 月份,某市一周空气质量报告中某项污染指数的数据是:
31, 35, 31,
33, 30, 33, 31.則下列关于这列数据表述正确的是(
A. 1 条
B
.2条
C
.3条
D
.4 条
5. 在以下四种沿 AB 折叠的方法中,不一定能判定纸带两条边线
a、 b 互相平行的
是( ▲ )
A.如图 1,展开后测得∠ 1=∠ 2
20162017学年度上学期期末八年级数学试题含答案
2016-2017学年度上学期期末考试八年级数学试题 2017.01第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1. 在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是A .B .C .D . 2. 若分式51+x 有意义,则x 的取值范围是 A .5->x B .5-<x C .5≠x D .5-≠x3. 下列运算正确的是A . ()623a a -=-B .842a a a ÷=C . 222)(b a b a +=+D .4)21(2=-- 4. 多项式m mx -2与多项式122+-x x 的公因式是A.1-xB.1+xC.12-xD.2)1(-x5.如图,在△ABC 中,AB =AC ,过A 点作AD ∥BC ,若∠BAD =110°,则∠BAC 的大小为A .30°B .40°C .50°D .70°6. 在平面直角坐标系中,已知点A (-2,a )和点B (b ,-3)关于y 轴对称,则ab 的值 是A .-1B .1C .6D .-67.若2(1)(3)x x x mx n -+=++,则m n +=A .-1B .-2C .-3D .28. 已知4x y +=,3xy =,则22x y +的值为A .22B .16C .10D .4(第5题图)9. 在Rt △ABC 中,已知∠C =90°,有一点D 同时满足以下三个条件:①在直角边BC 上;②在∠CAB 的角平分线上;③在斜边AB 的垂直平分线上,那么∠B 等于A .60°B .45°C .30°D .15°10.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF =AC ,则∠ABC 的大小是A .40°B .45°C .50°D .60°11. 下列判断中,正确的个数有①斜边对应相等的两个直角三角形全等;②有两个锐角相等的两个直角三角形不一定全等;③一条直角边对应相等的两个等腰直角三角形全等;④一个锐角和一条直角边分别相等的两个直角三角形全等.A. 4个B. 3个C. 2个D. 1个12. 化简2221121a a a a a a +-÷--+的结果是 A.1a B.a C.11a a +- D.11a a -+ 13.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是 A. 15B. 30C. 45D. 6014. 如图,AD 为 △ABC 的角平分线,DE ⊥AB 于点 E ,DF ⊥AC 于点 F ,连接 EF 交 AD 于点 O .则下列结论:①DE=DF ;②△ADE ≌△ADF ;③︒=∠+∠90CDF BDE ;④AD 垂直平分EF.其中正确结论的个数是A. 1个B. 2个C. 3个D. 4个(第10题图) (第13题图) (第14题图)第Ⅱ卷 非选择题(共78分)二、填空题:(本题共5小题,每小题3分,共15分)15.分解因式:822-x =________________.16. 如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =______度.17. 请在横线上补上一项,使多项式9_______42++x 成为完全平方式.18. 如图,已知AB ∥CF ,E 为DF 的中点,若AB =7cm ,CF =4cm ,则BD =cm .19. 阅读理解:若3,253==b a ,试比较b a ,的大小关系.小明同学是通过下列方式来解答问题的:因为322)(55315===a a ,273)(33515===b b ,而2732>,∴1515b a > ∴b a >.解答上述问题逆用了幂的乘方,类比以上做法,若3,297==y x ,试比较x 与y 的大小关系为x ______y .(填“>”或“<”)三、解答题(本题满分63分)20.(本题满分8分,每小题4分)(1)计算:()343212a b a b •÷-2 ;(2)分解因式:322484y xy y x -+-.21.(本题满分7分)解方程:31.11x x x -=-+(第16题图) (第18题图)22.(本题满分8分)先化简,再求值: 9)3132(2-÷-++x x x x ,其中5x .=-23. (本题满分9分)已知:如图,C 是AB 上一点,点D ,E 分别在AB 两侧,AD ∥BE ,且AD =BC ,BE =AC .(1)求证:CD =CE ;(2)连接DE ,交AB 于点F ,猜想△BEF 的形状,并给予证明.24.(本题满分10分)某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?(第23题图)小丽同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)她用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是___________________;(2)如果要拼成一个长为)2(b a +,宽为)(b a +的大长方形,则需要2号卡片______ 张,3号卡片 张;(3)当她拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式2223b ab a ++分解因式,其结果是 ;(4)动手操作,请你依照小丽的方法,利用拼图分解因式2265b ab a ++=________________;并画出拼图.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等边△AMN,连结CN.求证:CN∥AB.(第26题图1)【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论CN∥AB还成立吗?请说明理由.(第26题图2)2016-2017学年度上学期期末考试八年级数学参考答案 2017-1一、选择题(每小题3分,共42分)1-~5 CDDAB 6~10 DACCB 11~14 BABC二、填空题(每小题3分,共15分)15.)2)(2(2-+x x 16. ︒25 17. x 12 (或x 12-或x 12±) 18. 3 19.<三、解答题(本大题共7小题,共63分)20. (8分)解:(1)原式3432812a b a b =-÷ ……2分 (2)223484x y xy y -+- 223b =- …………4分 224(2)y x xy y =--+ ……2分 21.(7分)解:方程两边同乘()(1)1x x +-,得 24()y x y =-- ………4分 ()()()()11131x x x x x +-+-=- ……………………………………2分解得,2x = ……………………………………………5分检验:当2x =时,()(1)10x x +-≠ …………………………………………6分 ∴2x =是原分式方程的解. ……………………………………………7分 22.(8分).xx x x x )3)(3()3132(-+⨯--+=原式 ………………………...2分 xx x x 3)3(2+--= ……………………….….4分 xx x x x 9362-=---= …………………………………..6分 当2-=x 时,原式=2112929=---=-x x ……………………8分 23. (9分)(1)证明:∵AD ∥BE ,∴∠A =∠B ,………………………………..1分在△ADC 和△BCE 中⎪⎩⎪⎨⎧=∠=∠=BE AC B A BCAD ∴△ADC ≌△BCE (SAS ),………………………3分∴CD =CE ;……………………………………..…..4分(2)△BEF 为等腰三角形,……………………………………5分证明如下:由(1)可知CD =CE ,∴∠CDE =∠CED ,………………………………………….…6分 由(1)可知△ADC ≌△BEC ,∴∠ACD =∠BEC ,…………………………………………….7分∴∠CDE +∠ACD =∠CED +∠BEC ,即∠BFE =∠BED ,……………………………………..……...8分∴BE=BF , ∴△BEF 是等腰三角形.………………………………….….9分24.(10分)解:(1)设该商家第一次购进机器人x 个,……………….…1分 依题意得:+10=,……………..3分解得x =100.…………………………………....5分经检验x =100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.……………………6分(2)设每个机器人的标价是a 元.则依题意得:(100+200)a ﹣11000﹣24000≥(11000+24000)×20%,..8分解得a ≥140.……………………………………………...9分答:每个机器人的标价至少是140元.…………………..10分25.(10分)解:(1)222)(2b a b ab a +=++……………….…2分(2) 2, 3 …………….…4分(3) ))(2(2322b a b a b ab a ++=++ …………….…6分(4) )2)(3(6522b a b a b ab a ++=++………….…8分 作图正确 ………….…10分26.(11分)(1)证明:∵△ABC 和△AMN 都是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,….1分∴∠BAM +∠MAC =∠MAC +∠CAN , ∴∠BAM =∠CAN ,………………………….2分在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB ∴△ABM ≌△ACN (SAS ), (4)分∴∠ACN =∠ABM =60°……………………………..5分∵∠ACB=60° ∴∠BCN+∠ABM=180°;…………6分∴CN ∥AB…………………………………………….7分(2)成立,…………………………………………8分理由如下:∵△ABC 和△AMN 都是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAC+∠CAM=∠CAM+∠MAN , ∴∠BAM=∠CAN在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB , ∴△ABM ≌△ACN (SAS ),………9分∴∠ACN=∠ABM =60°…………………………….10分∵∠ACB=60° ∴∠BCN+∠ABM=180°;∴CN∥AB……………………………………………………...11分。
2016-2017学年初二上学期期末数学试卷(含答案)word版
EDCBA2016-2017学年初二上学期期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1. 下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A B C D 2. 下列计算正确的是( )A .32x x x =+B .632x x x =⋅C .623)(x x =D .339x x x =÷ 3.下列式子为最简二次根式的是( )A 、3B 、4C 、8D 、21 4.如果2-x 有意义,那么x 的取值范围是( )A .x >2B .x ≥2C .x ≤2D .x <25.如图在△ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于D ,如果AC =3 cm ,那么AE +DE 等于( )A .2 cmB .3 cmC .4 cmD .5 cm6.如图,所示的图形面积由以下哪个公式表示 2222222222.()().()=2.()2.()()A a b a a b b a bB a b a ab bC a b a ab bD a b a b a b -=-+---++=++-=-+7.若分式211x x --的值为0,则x 的值为( )A . 1.x =B . 1.x =-C . 1.x =±D . 1.x ≠ 8.若11,x x -=则221x x+的值是 ( ) A .3 B .2 C .1 D .49. 如图,△ABC中, AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,连接OC,OB,则图中全等的三角形有A.1对B.2对C.3对D.4对10.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()A.B.2C.2D.二、填空题(本题共14分,每空2分)11. 中国女药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素, 这是中国医学界迄今为止获得的最高奖项.已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学技术法表示为.12. 如图,AB=AC,点E,点D分别在AC,AB上,要使△ABE≌△ACD,应添加的条件是 .(添加一个条件即可)13.若22(3)16+-+是一个完全平方式,那么m应为 .x m x14.如图,Rt △ABC 的斜边AB 的中垂线MN 与AC 交于点M ,∠A=150,BM=2,则 △AMB 的面积为 .15.在平面直角坐标系xOy 中,已知点A (2,3),在坐标轴上找一点P ,使得△AOP 是等腰三角形,则这样的点P 共有 个. 16. 观察下列关于自然数的等式:514322=⨯- ① 924522=⨯- ② 1334722=⨯- ③根据上述规律解决下列问题:⑴完成第四个等式: ;⑵写出你猜想的第n 个等式(用含n 的式子表示) ;三、解答题(本题共56分)解答题应写出文字说明,验算步骤或证明过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年八年级(上)期末数学试卷一、选择题(每小题3分,共24分)1.﹣64的立方根是()A.﹣4 B.8 C.﹣4和4 D.﹣8和82.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>33.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC 于点E,连接BE,则∠CBE的度数为()A.70°B.80°C.40°D.30°4.如果a、b、c是一个直角三角形的三边,则a:b:c等于()A.1:2:4 B.1:3:5 C.3:4:7 D.5:12:135.如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使BC=CD,再作出BF的垂线DE,使点A、C、E在同一条直线上(如图所示),可以说明△ABC≌△EDC,得AB=DE,因此测得DE的长就是AB的长,判定△ABC ≌△EDC,最恰当的理由是()A.边角边B.角边角C.边边边D.边边角6.如图,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4 B.3 C.D.27.小明统计了他家今年11月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过15min的频率为()A.0.1 B.0.4 C.0.5 D.0.88.如图所示,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=()A.4 B.8 C.12 D.32二、填空题(每小题3分,共18分)9.因式分解:am+an+ap=.10.a3•a5=.11.计算:25的平方根是.12.若代数式﹣有意义,则x的值为.13.如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为.14.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于.三、计算题(每小题24分,共24分)15.(1)3a•(a﹣4)(2)(x3y+2x2y2)÷xy.(3)(﹣)•.(4)因式分解x3﹣4x.四、解答题:(每小题8分,共32分)16.先化简,再求值(x+y)2﹣2x(x+y),其中x=3,y=2.17.已知:a+b=,a2﹣b2=,求a﹣b的值.18.如图,BD、CE是△ABC的高,且AE=AD,求证:AB=AC.19.如图,延长▱ABCD的边AD到F,使DF=DC,延长CB到点E,使BE=BA,分别连结点A、E和C、F.求证:AE=CF.五、解答题(23题10分,24题12分,共22分)20.某校为了了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取了本校部分学生进行问卷调查(必选且只选一类节目),将调查结果进行整理后,绘制了如下不完整的条形统计图和扇形统计图,其中喜爱体育节目的学生人数比喜爱戏曲节目的学生人数的3倍还多1人.请根据所给信息解答下列问题:(1)求本次抽取的学生人数.(2)补全条形图,在扇形统计图中的横线上填上正确的数值,并直接写出“体育”对应的扇形圆心角的度数.(3)该校有3000名学生,求该校喜爱娱乐节目的学生大约有多少人?21.如图,在Rt△ABC中,∠B=90°,AB=7cm,AC=25cm.点P从点A沿AB方向以1cm/s的速度运动至点B,点Q从点B沿BC方向以6cm/s的速度运动至点C,P、Q两点同时出发.(1)求BC的长.(2)若运动2s时,求P、Q两点之间的距离.(3)P、Q两点运动几秒,AP=CQ.2016-2017学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.﹣64的立方根是()A.﹣4 B.8 C.﹣4和4 D.﹣8和8【考点】立方根.【分析】根据立方根的定义即可求出答案.【解答】解:∵(﹣4)3=﹣64∴﹣64的立方根为﹣4,故选(A)2.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>3【考点】二次根式有意义的条件.【分析】根据二次根式的意义,被开方数大于或等于0.【解答】解:根据二次根式的意义,得3﹣m≥0,解得m≤3.故选A.3.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC 于点E,连接BE,则∠CBE的度数为()A.70°B.80°C.40°D.30°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.【解答】解:∵等腰△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC﹣∠ABE=30°.故选:D.4.如果a、b、c是一个直角三角形的三边,则a:b:c等于()A.1:2:4 B.1:3:5 C.3:4:7 D.5:12:13【考点】勾股定理.【分析】将四个选项的数字按照勾股定理进行计算,符合a2+b2=c2的即为正确答案.【解答】解:A、∵12+22≠42,∴1:2:4不是直角三角形的三条边;故本选项错误;B、∵12+32≠42,∴1:3:5不是直角三角形的三条边;故本选项错误;C、∵32+42≠72,∴3:4:7不是直角三角形的三条边;故本选项错误;D、∵52+122=132,∴1:2:4是直角三角形的三条边;故本选项正确.故选D.5.如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使BC=CD,再作出BF的垂线DE,使点A、C、E在同一条直线上(如图所示),可以说明△ABC≌△EDC,得AB=DE,因此测得DE的长就是AB的长,判定△ABC ≌△EDC,最恰当的理由是()A.边角边B.角边角C.边边边D.边边角【考点】全等三角形的应用.【分析】根据全等三角形的判定进行判断,注意看题目中提供了哪些证明全等的要素,要根据已知选择判断方法.【解答】解:因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选:B.6.如图,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4 B.3 C.D.2【考点】平行四边形的性质;等腰三角形的判定与性质.【分析】根据平行四边形性质得出AB=DC,AD∥BC,推出∠DEC=∠BCE,求出∠DEC=∠DCE,推出DE=DC=AB,得出AD=2DE即可.【解答】解:∵四边形ABCD是平行四边形,∴AB=DC,AD∥BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=2AB=2CD,CD=DE,∴AD=2DE,∴AE=DE=3,∴DC=AB=DE=3,故选B.7.小明统计了他家今年11月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过15min的频率为()A.0.1 B.0.4 C.0.5 D.0.8【考点】频数(率)分布表.【分析】首先求得统计的通话总次数以及不超过15min的次数,利用概率公式即可直接求解.【解答】解:统计的通话总次数是19+16+5+10=50(次),不超过15min的次数是19+16+5=40(次),则通话时间不超过15min的频率为=0.8.故选D.8.如图所示,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=()A.4 B.8 C.12 D.32【考点】勾股定理.【分析】由正方形的面积公式可知S1=BC2,S2=AC2,S3=AB2,在Rt△ABC中,由勾股定理得AC2+BC2=AB2,即S1+S2=S3,由此可求S3.【解答】解:∵S1=4,∴BC2=4,∵S2=12,∴AC2=8,∴在Rt△ABC中,BC2+AC2=AB2=4+8=12,∴S3=AB2=12.故选:C.二、填空题(每小题3分,共18分)9.因式分解:am+an+ap=a(m+n+p).【考点】因式分解﹣提公因式法.【分析】直接找出公因式a,进而分解因式得出答案.【解答】解:原式=a(m+n+p).故答案为:a(m+n+p).10.a3•a5=a8.【考点】同底数幂的乘法.【分析】根据同底数幂的乘法底数不变指数相加,可得答案.【解答】解:原式=a3+5=a8,故答案为:a8.11.计算:25的平方根是±5.【考点】平方根.【分析】根据平方根的定义,结合(±5)2=25即可得出答案.【解答】解:∵(±5)2=25∴25的平方根±5.故答案为:±5.12.若代数式﹣有意义,则x的值为2.【考点】二次根式有意义的条件.【分析】直接利用二次根式有意义的条件得出答案.【解答】解:∵代数式﹣有意义,∴x﹣2≥0,2﹣x≥0,解得:x=2.故答案为:2.13.如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为15.【考点】角平分线的性质.【分析】要求△ABD的面积,现有AB=10可作为三角形的底,只需求出该底上的高即可,需作DE⊥AB于E.根据角平分线的性质求得DE的长,即可求解.【解答】解:作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3.∴△ABD的面积为×3×10=15.故答案是:15.14.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于13.【考点】勾股定理.【分析】首先根据勾股定理求得AB的长,再根据勾股定理求得AD的长.【解答】解:在直角三角形ABC中,AC=4,BC=3,根据勾股定理,得AB=5.在直角三角形ABD中,BD=12,根据勾股定理,得AD=13.三、计算题(每小题24分,共24分)15.(1)3a•(a﹣4)(2)(x3y+2x2y2)÷xy.(3)(﹣)•.(4)因式分解x3﹣4x.【考点】二次根式的混合运算;提公因式法与公式法的综合运用.【分析】(1)直接利用单项式乘以多项式运算法则求出答案;(2)直接利用多项式除以单项式运算法则求出答案;(3)直接化简二次根式,进而利用有理数混合运算法则求出答案;(4)首先提取公因式x,进而利用平方差公式分解因式即可.【解答】解:(1)3a•(a﹣4)=3a2﹣12a;(2))(x3y+2x2y2)÷xy=x2+2xy;(3)(﹣)•=(×4﹣×3)×2=0;(4)因式分解x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).四、解答题:(每小题8分,共32分)16.先化简,再求值(x+y)2﹣2x(x+y),其中x=3,y=2.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x2+2xy+y2﹣2x2﹣2xy=﹣x2+y2,当x=3,y=2时,原式=﹣9+4=﹣5.17.已知:a+b=,a2﹣b2=,求a﹣b的值.【考点】平方差公式.【分析】第二个等式左边利用平方差公式变形,将第一个等式代入计算即可求出a﹣b的值.【解答】解:∵a+b=,a2﹣b2=(a+b)(a﹣b)=,∴a﹣b=.18.如图,BD、CE是△ABC的高,且AE=AD,求证:AB=AC.【考点】全等三角形的判定与性质.【分析】直接利用已知得出∠ADB=∠AEC,进而利用全等三角形的判定与性质得出答案.【解答】证明:∵BD、CE是△ABC的高,∴∠ADB=∠AEC=90°,在△ABD和△ACE中,∵,∴△ABD≌△ACE(ASA),∴AB=AC.19.如图,延长▱ABCD的边AD到F,使DF=DC,延长CB到点E,使BE=BA,分别连结点A、E和C、F.求证:AE=CF.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】根据平行四边形的性质可得AD=BC,AD∥BC,再证出BE=DF,得出AF=EC,进而可得四边形AECF是平行四边形,从而可得AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴AF∥EC,∵DF=DC,BE=BA,∴BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.五、解答题(23题10分,24题12分,共22分)20.某校为了了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取了本校部分学生进行问卷调查(必选且只选一类节目),将调查结果进行整理后,绘制了如下不完整的条形统计图和扇形统计图,其中喜爱体育节目的学生人数比喜爱戏曲节目的学生人数的3倍还多1人.请根据所给信息解答下列问题:(1)求本次抽取的学生人数.(2)补全条形图,在扇形统计图中的横线上填上正确的数值,并直接写出“体育”对应的扇形圆心角的度数.(3)该校有3000名学生,求该校喜爱娱乐节目的学生大约有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)先求出喜爱体育节目的学生人数,再将喜爱五类电视节目的人数相加,即可得出本次抽取的学生人数;(2)由(1)中求出的喜爱体育节目的学生人数可补全条形图;用喜爱C类电视节目的人数除以总人数,可得喜爱C类电视节目的百分比,从而将扇形图补全;用360°乘以“体育”对应的百分比,可得“体育”对应的扇形圆心角的度数;(3)利用样本估计总体的思想,用3000乘以样本中喜爱娱乐节目的百分比即可得出该校3000名学生中喜爱娱乐节目的学生人数.【解答】解:(1)由条形图可知,喜爱戏曲节目的学生有3人,∵喜爱体育节目的学生人数比喜爱戏曲节目的学生人数的3倍还多1人,∴喜爱体育节目的学生有:3×3+1=10人,∴本次抽取的学生有:4+10+15+18+3=50人;(2)喜爱C类电视节目的百分比为:×100%=30%,“体育”对应的扇形圆心角的度数为:360°×=72°.补全统计图如下:(3)∵喜爱娱乐节目的百分比为:×100%=36%,∴该校3000名学生中喜爱娱乐节目的学生有:3000×36%=1080人.21.如图,在Rt△ABC中,∠B=90°,AB=7cm,AC=25cm.点P从点A沿AB方向以1cm/s的速度运动至点B,点Q从点B沿BC方向以6cm/s的速度运动至点C,P、Q两点同时出发.(1)求BC的长.(2)若运动2s时,求P、Q两点之间的距离.(3)P、Q两点运动几秒,AP=CQ.【考点】勾股定理.【分析】(1)在直角△ABC中,根据勾股定理来求BC的长度;(2)在直角△BPQ中,根据勾股定理来求PQ的长度;(3)由路程=时间×速度求出AP,BQ,再根据等量关系:AP=CQ列出方程求解即可.【解答】解:(1)∵在Rt△ABC中,∠B=90°,AB=7cm,AC=25cm,∴BC==24cm.(2)如图,连结PQ,BP=7﹣2=5,BQ=6×2=12,在直角△BPQ中,由勾股定理得到:PQ==13(cm);(3)设t秒后,AP=CQ.则t=24﹣6t,解得t=.答:P、Q两点运动秒,AP=CQ.。