高速铁路CPIII测量
高速铁路无砟轨道CPIII 控制网测量技术探讨

1概述随着我国铁路运输事业的不断发展,铁路列车运行速度越来越快,对轨道稳定性、平顺性和连续性的要求也发生了相应的改变。
无砟轨道是一种新型的施工工艺,具有技术含量高,施工效果好等优点,已经开始在国内铁路工程中引入。
由于该技术引入时间较短,还未形成成熟的理论体系,因此在施工过程中要对其精度进行科学测量,确保无砟轨道铺设精度满足施工设计要求。
本文将对高速铁路无砟轨道CPIII控制网测量技术进行分析探讨。
2无砟轨道CPIII控制网测量技术分析2.1高铁平面测量控制网各级别测量标准高速铁路平面测量控制网分为三个级别,分别为CPI、CPII和CPIII,为确保测量的规范性和系统性,所有级别的测量均采用国家坐标系统。
各级别平面控制网测量要求可见表1所示。
表1各级平面控制网测量标准级别测量方法测量等级点间距(m)应用CPI GPS C级≥1000为勘测、施工、运维提供坐标基准CPII GPS D级800-1000为勘测、线下工程施工提供控制基准导线四等400-600CPIII导线后方交会五等150-200为轨道铺设和运维提供控制基准备注:当CPII测量方法为GPS时,CPI点间距为4km;若CPII测量方法为导线测量时,则CPI点间距为4km一对相互通视的点。
2.2CPIII控制测量基础保障首先,CPIII控制点测量技术要求。
CPIII平面测量精度和高程精度的相对误差控制在1mm以内,其中平面精度点位误差要控制在5mm以内;全线平面坐标和高程坐标应统一,平面投影变形要满足无砟轨道要求(10mm/km)。
其次,CPIII控制网测量时机控制。
应在线下工程已经竣工并验收合格后开始CPIII控制网测量工作;测量时,工程变形达到稳定状态,满足铺设无砟轨道的要求,具体标准如下:工程路基沉降达到稳定状态、桥梁墩台沉降稳定、桥梁上拱和收缩稳定、隧道应变力达到稳定状态、工程其他支挡部件变形趋于稳定、各坐标数据可靠。
2.3测量方法分析2.3.1平面控制测量第一,测量方法分析。
高速铁路无砟轨道CPIII控制网测量技术分析

高速铁路无砟轨道CPIII控制网测量技术分析【摘要】我国的高速铁路建设事业步入了一个辉煌阶段,无论从技术还是规模,都走到了世界前列。
其中精密工程测量技术是高铁建设的一个重要技术。
只有建立一套完整的控制测量系统,才能保证测量控制满足高速铁路运行与建设的高精度要求。
【关键词】高速铁路;CPIII控制网;高精度测量一、无砟轨道控制网概述高速铁路铺设无砟轨道所采用的工程测量平面控制网,按照《客运专线铁路无砟轨道工程测量技术暂行规》,原则上分为三级。
第一级为基础平面控制网CPI,第二级为CPⅡ线路平面控制网,第三级是轨道控制网CPIII。
CPI是为了建设初期的勘测、施工及运营提供坐标基准;CPⅡ为勘测和施工提供控制基准;CPIII就是沿线路两侧布设的三维控制网,主要为无砟轨道的铺设和轨道运营维护提供控制基准。
CPIII在高铁工程测量中具有精度高、点位分布密集、测量周期长、工作量大、技术新等特点,被用做首要运营与铺设维护基准。
CPIII平面网的布设网形十分规则、对称,网中所有控制点分布均匀,空间误差非常小。
二、轨道控制网CPIII的测设条件轨道控制网CPIII测量应在线下工程竣工,沉降变形观测评估通过后测量,在对基础平面控制条件复测并且合格后,在CPI、CPⅡ的复合性良好,并且气象条件较好的情况下,CPIII才可以进行观测,观测时测程内不能有任何遮挡物,场内不得有人体可以感受到的任何震动,否则,误差会很大,造成最终结果的错误。
CPIII平面网测量网形十分规则的测量控制网。
所有CPIII控制网点在网中的交互强度很高而且相隔均匀、误差很小,本身基本没有差异点。
并且CPIII平面网观测时采用全站仪自由设站的方法,因此不存在仪器对中误差。
CPIII平面网采用特殊的强制固定装置,保证了目标点重复安装的精度,也最大程度消减了仪器安装时的对中误差。
三、CPIII平面控制网测量以沪杭铁路客运专线CPⅢ控制网复测为例,试分析CPIII控制网测量在客运专线建设中的实施方案。
高速铁路无砟轨道CPIII测量作业指导书

XX铁路客运专线无砟轨道CPIII测设技术编制;朱博2011年4月9日目录1. 前言 (3)2. 基本概念或术语 (3)3. 适用范围和特点 (4)4. CPⅢ控制网的主要技术指标 (5)5. CPIII测量标志与埋设 (9)6. CPIII测设前准备工作 (13)7. CPIII平面测量 (17)8 . CPIII高程测量 (18)9 CPIII控制网数据处理 (34)10. CPIII网数据评估 (59)11. CPIII网成果 (62)12. CPIII网数据超标原因分析 (63)13. 作业人员组成 (64)14. 功效分析 (65)15. 技术学习与培训 (65)16. CPIII网测量操作注意事项 (65)无砟轨道CPIII测设作业指导书1. 前言无砟轨道CPIII测设是在设计单位已完成CP0、CPI、CPII、二等水准基础控制网的测量工作后,并已经完成基本的线下工作后;为满足无砟轨道的铺设要求,进一步布设高精度、均匀布置的测量网络,即CPIII测量网络。
根据《高速铁路工程测量规范》,无砟轨道精密控制测量体系初步考虑按照三级布网控制,即:基础框架平面控制网CP0,基础平面控制网CPI、线路控制网CPⅡ、基桩控制网CPⅢ。
其中CP0、CPI、CPⅡ已由设计布网施测,施工单位完成复测。
基桩控制网(CPⅢ)是在CP0、CPⅠ、CPⅡ基础上建立沿线路两侧接触网立柱上布设的间隔50~60m的三维控制网,在线下工程施工完成后建立,为无砟轨道的底座板、轨道板、轨道铺设和运营维护提供控制基准2. 基本概念或术语1、基础框架平面控制网CP0:为满足线路平面控制测量起闭联测的要求,沿线路每50km左右建立的卫星定位测量控制网,作为全线勘测设计、施工、运营维护的坐标基准。
2、基础平面控制网CPⅠ:在基础框架平面控制网(CP0)或国家高等级平面控制网的基础上,沿线路走向布设,按GPS静态相对定位原理建立,为线路平面控制网起闭的基准。
高速铁路隧道内CPIII高程测量若干问题的探讨

如果搭接段由于点位破坏,导致重叠点较差超限,此时需要继续往前一区段再测不少于6对CPⅢ点,直到满足限差要求后作为区段重叠观测区域。满足条件后,后一区段CPⅢ网平差,应采用本区段联测的线路水准基点及重叠段前一区段2对以上连续的CPⅢ点高程成果进行约束平差。重叠区域CPⅢ点高程应统一采用后一区段CPⅢ网搭接处理好的平差结果,并在新提交成果中备1]中华人民共和国铁道部.《高速铁路工程测量规范》(TB10601-2009).北京:中国铁道出版社.
[2]朱小韦.LeicaDNA03数字水准仪在国家高等级水准网施测中的应用探讨[J].现代测绘,2015(6).
[3]徐杰.铁路隧道高程贯通测量若干问题探讨[J].铁道勘察,2018(4).
总之,高铁隧道内CPⅢ高程测量是一项非常精密而繁琐的工作,对于后期轨道的铺设、线路的养护,以及保证铁路的安全至关重要,对于测量过程中碰到的问题一定要很好的解决。本文就高速铁路隧道内CPIII高程测量中遇到的一系列问题,对应的处理措施进行了较全面的分析和总结,希望对相关的隧道CPIII高程测量工作有一定的借鉴及指导作用。
3 CPⅢ点位问题
(1)隧道内个别CPⅢ点位预埋件埋设时未能正确埋设,未与隧道侧壁垂直,出现水准测量杆旋进预埋件时,出现向下倾斜,此时将铟钢水准尺安放在水准测量杆球头上,将会出现尺子底部有可能立在杆身上,并不在球头上,测量结果错误。我们可以采用将尺子底部边缘立在杆球头上,不用尺子底部中间位置立在上面,看好气泡,竖好尺子就可以测出正确数值。
高速铁路CPIII平面控制测量误差分析及控制

高速铁路CPIII平面控制测量误差分析及控制摘要:基于高速铁路CPIII控制网测量实践,分析CPIII控制测量的误差来源,结合CPIII测量数据平差处理,探讨其精度控制.关键词:CPIII测量;误差分析;精度对于采用无砟轨道设计的高速铁路而言,CPIII控制网测量精度的高低直接决定着道路运行的时效性,舒适度及平稳度,因此对CPIII控制网测量的精度要求很高,而高速铁路CPIII控制网测设牵扯到的环节较多,任何一个环节出现微小的问题,都可能导致测量成果不合格,进而影响工程进度,在这种情况下,快速的确定误差的来源,提出有针对性的解决方案,不仅可以提高测量成果的精度和可靠性,而且可以减少不必要的返工,提高工作效率与效益,保证工程的按期完成。
1.CPIII测量误差来源一般测量精度受以下几方面误差因素影响:仪器误差,环境误差,测量误差,人为误差。
1.1仪器误差CPIII平面控制测量本身对仪器有严格要求,规范要求采用带有目标自动搜索及照准(ATR)功能的高精度全站仪:其精度必须满足:测角误差:±1″,测距误差:±1mm+2ppm,并且平面观测前必选对仪器进行检验和校正,仪器的任何一项检测不合格都将影响CPIII的测量精度。
全站仪在进行测距时必须进行距离加常数K,乘常数R的设置,特别注意此处,加常数K,乘常数R是经过仪器检测结果得出,而非仪器出厂时的标称精度A和B,决不能用仪器出厂时的标称精度A和B去改正观测成果。
1.2环境误差外界环境的影响是CPIII测量误差的主要来源:温度,气压,湿度,清晰度,大气旁折光等外界环境的变化都会引起测量误差,在一般的气象条件下,在1km的距离上,温度变化1度所产生的测距误差为0.95mm。
气压变化1mmHg所产生的距离误差为0.37mm,湿度变化1mmHg所产生的测距误差为0.05mm,湿度的影响很小,可以忽略不计,但当在高温,高湿的夏季作业时,就应该考虑湿度改正。
高速铁路无砟轨道CPIII控制网测量技术

< 交通 工程建设 > 01 2 1 年第 1 期
3 9
位系统进行C I C I P 、 PI 控制测量 , 而C I P属高速铁路高等 级控制 网, 是保证全线贯通的基础 , 最终使用C I控制 PⅡ
5 .隧道应力变化稳定 ; .3 2 5 . .4 2 其他支挡工程变形稳定。 5 已知点( P 、C I、水准点) . 3 具有较高的平顺度标 准,我国对时速大于20 m/ 以上铁路轨道平顺度均 0 k h 制定了较高的精度标准。对于无砟轨道 , 轨道施工完成 后基本不再具备调整的可能性 ,由于施工误差、线路运 营以及线下基础沉降等所引起的轨道变形只能依靠扣 件进行微量的调整是。客运专线扣件技术条件中规定扣 件的轨距调整量为 ±1 0 mm,高低调整量一4 2mm。 、+ 6 因此 ,对施工测量精度有着较有碴轨道更严格的要求。
备注 < k -  ̄4 m-对点 ≥10 00
80 0
~
进成果 的基础上,结合我国高铁建设的实际情况对无碴 轨道也进行 了大量的研究和工程实践 。 为了适应客运专线铁路高速行 车对平顺性 、舒适性
‘
各级平面控制网布网要求
测量 方法 GP S
GP S 导线
控 制 网级别 CI P
以上 , 设总 长度 达N 80 m 。 国在 吸 取 国外研 究先 铺 0 k 我
2 概述
由于过去传统的铁路运行速度较低 , 对轨道平顺性 的要求不高,在勘测 、施工中没有要求建立一套适应 于 勘测 、施工 、运营维护的完整的控制测量系统。以往 的 平面控制网测量等级分为一等 、二等、三等 、四等 、五 等 ,坐标系统可 以采用国家坐标系 , 也可以局部假定坐 标系。高速铁路平面测量控制网分为三级 , 分别为C I P、 C I、 PI C 为c nrl o t的缩写) 并将三网统一 PI C I (P o t i s I op n , 起来 ,统一采用国家坐标系统,这将更加规范化和系统 化。各级平面控制网的布网要求见下表1 。 表1
探讨高速铁路CPIII控制网测量方法及数据处理
探讨高速铁路CPIII控制网测量方法及数据处理目前,国内传统的铁路工程测量技术在测控精度方面远未达到这点要求。
全新的工程测量技术和测量方法将在这方面发挥至关重要的作用。
本文主要探讨在无砟轨道平面控制测量中的观测方法,引入GPIII 控制网,采用自由设站的方式进行观测。
以及在进行平面控制网数据处理时,通过程序设计进行数据处理时的关键技术探讨。
标签:CPIII;平面控制;数据处理;关键技术前言高速铁路客运列车的行驶速度一般在250~350km/h,就目前的铁路客运系统来说,这已是一个相当快的行进速度。
乘客的人身安全以及乘坐时的舒适度主要取决于高速铁路是否平顺、稳定。
因此,必须将高速铁路集合线性参数的精度误差控制在毫米级的范围内。
普通铁路的控制测量基本上都是以导线测量为主,具有外业观测量小、内业计算简单、网型比较灵活自由,受控制点点间距长度影响小的特点,但是其精度无法满足无砟轨道施工控制测量和轨道精调的要求。
在实际的无砟轨道铁路工程测量中,引入了GPIII 控制网,其平面观测主要采用自由设站的方式。
1、CPIII 平面控制网布设和测量方法采用自由设站测量方式是通过测量机器人自动照准目标来完成的,主要测量方法如下:(1)在相距60 米左右的一对接触网柱上建立一对永久标记点,就是我们所说的CPIII 控制点。
(2)对CPIII 控制点的测量在局部系统内按组进行,采用后方交会方法,最大的测量范围距离约150 米。
(3)每组两个方向各测量3×2 个CPIII 控制点(共计6 对12 个),其中3 对 6 个CPIII 控制点为重合测量点,从而使得每个CPIII 控制点被测量三次,如图1 所示。
(4)每组测量中如遇测站与CPI 或CPII 控制点通视,须与CPI 或CPII 控制点进行连接测量。
(5)当测站点与CPII 控制点间不能通视时,应考虑增加辅助点。
2 CPIII 平面控制网数据处理关键技术高速铁路CPIII 数据处理通过计算机程序设计完成。
高速铁路精密控制网(CPIII)测量
♦ 精度要求高。每个控制点与相邻5个控制点的相对 点位中误差均要求小于1mm;
♦ 控制的范围长。线路有多长,控制网的长度就有多 长;
♦ 是一个平面和高程位置共点的三维控制网。目前 CPⅢ三维网平面和高程是分开测量后合并形成共点 的三维网,但其使用时却是平面和高程同时使用;
♦ 采用测站间距120m的标准网形测量过程中 如某CPⅢ点由于障碍物被挡,可以考虑采 用由测站间距120m转测站间距60m的测量 网形,如下图所示。
Page: 20
CPIII平面控制网的测量网形(5)
♦ 在实际测量过程中,如果CPⅠ或者CPⅡ点离线路较 远,可以在线路外合适位置设置辅助点,在辅助点 上架设仪器,观测临近的CPⅢ点和CPⅠ或者CPⅡ 点。此时其测量网形示意图如下图所示。
CPIII高程控制网的测量网形(2)---德国方法 ♦ 德国中视法CPⅢ高程网观测采用往返观测
的方式进行,其往测水准路线如下图所示 。
Page: 37
德国CPIII高程控制网的测量方法
♦ 德国中视法CPⅢ高程网观测采用往返观测 的方式进行,其返测水准路线如下图所示。
♦ 测站和测点均强制对中,测点标志要求具有互换性 和重复安装性,X、Y、Z三维互换性和重复安装性 误差要求小于0.3mm;
Page: 27
CPIII平面控制网的特点(3)
♦ 图形规则对称,多余观测数多,可靠性强; ♦ 是一个标准的带状控制网,其纵向精度高、横
向精度略差。 ♦ 控制网的使用较传统方法有很大不同。首先是
CPIII网为智能型全站仪自由测站边角交会 的三维控制网,其点间距为纵向60m左右一 对控制点,点对的横向间距为10~20m, CPIII的精度要求很高,要求相邻点位的相 对中误差≤1mm。CPIII的网形、测量方法、 控制点数量、控制网的使用和精度要求,06 年前在我国都是闻所Pag未e: 14 闻的。
高速铁路轨道控制网(CPIII)测量施工工法(2)
高速铁路轨道控制网(CPIII)测量施工工法高速铁路轨道控制网(CPIII)测量施工工法一、前言随着高速铁路的快速发展,轨道控制技术逐渐成为关注的焦点。
高速铁路轨道控制网(CPIII)是一种集测量和施工于一体的先进技术,可以提高施工的准确性和效率。
本文将详细介绍CPIII测量施工工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析以及相关工程实例。
二、工法特点CPIII测量施工工法具有以下特点:精度高、工作效率高、设计合理、质量可控、施工周期短、可行性强等。
三、适应范围CPIII测量施工工法适用于各种高速铁路的轨道施工,包括新建线路、改建线路和维修线路等,并且适用于不同地形、不同路段、不同环境等多种施工条件。
四、工艺原理CPIII测量施工工法的工艺原理主要包括:测量控制网的建立、轨道线形设计与施工、轨道试验整形等。
具体而言,通过建立高精度的控制网,采取先进的测量技术和控制方法,实现轨道线形的合理设计和精确施工。
五、施工工艺CPIII测量施工工法的施工工艺分为多个阶段,包括控制网建立、轨道分解、轨枕设置、轨道连接、轨道整形等。
每个阶段都有具体的施工步骤和要求,通过统一的施工标准和流程,保证施工质量和效率。
六、劳动组织CPIII测量施工工法的劳动组织涉及多个工种,包括测量员、施工人员、机具操作人员等。
在施工过程中,需要合理安排劳动力的配置,确保施工的顺利进行。
七、机具设备CPIII测量施工工法需要使用一系列的机具设备,包括测量仪器、施工设备、机械工具等。
这些机具设备应具备适应工法要求的特点和性能,并且需要经过正确的使用和维护,以确保施工质量。
八、质量控制CPIII测量施工工法的质量控制主要包括:施工前的质量检查和验收、施工过程中的质量控制和检测、施工后的质量评估和总结等。
通过制定严格的质量控制标准和流程,确保施工过程中的质量达到设计要求。
九、安全措施CPIII测量施工工法的安全措施主要包括:施工人员的安全培训和教育、施工现场的安全管理和监督、施工过程中的安全防护和风险控制等。
高速铁路轨道控制网(CPIII)测量方案
XX高速铁路XXXX-X标段X工区CPⅢ控制网测量方案审批:校核:编制:XXXXXXXX高速铁路土建工程X标段项目经理部X工区X零XX年X月目录1编制依据 (3)2 工程概况 (3)2.1工程概况 (3)2.2地理环境 (4)2.3坐标高程系统 (4)2.4既有精测网情况 (4)2.5 CPⅢ轨道控制网测量主要内容 (5)3 CPⅢ网测量前准备工作 (6)3.1线下工程沉降和变形评估 (6)3.2 CPⅢ网测量工装准备 (6)3.3人员培训 (8)4 CPⅢ网测量标志选用和埋设 (8)4.1 CPⅢ网点测量标志选择 (8)5. CPⅢ点号编制原则 (10)6 CPⅡ控制网加密测量 (10)6.1.桥梁CPⅡ控制网加密测量 (10)6.2高程测量 (13)7 CPⅢ点的埋标与布设 (15)7.1CPⅢ标志 (15)7.2CPⅢ点和自由设站编号 (19)7.3CPⅢ点的布设 (21)8 CPⅢ网测量与数据处理 (22)8.1CPⅢ网网形 (23)8.2 CPⅢ网平面测量 (26)8.3CPⅢ网高程测量 (31)9数据整理归档 (36)10 CPⅢ网的复测与维护 (37)10.1CPⅢ网的复测 (37)10.2CPⅢ网的维护 (37)七工区CPⅢ控制网测量方案1编制依据《客运专线无砟轨道铁路工程测量暂行规定》(铁建设[2006]189号)《客运专线铁路无碴轨道铺设条件评估技术指南》(铁建设[2006]158号)《精密工程测量规范》(GB/T15314-94)《国家一、二等水准测量规范》(GB12897-2006)《全球定位系统(GPS)铁路测量规程》(TB10054-1997)《全球定位系统(GPS)测量规范》(GB/T18314-2001)铁道部2008[42]、2008 [80]、2008 [246]、2009[20]号文。
《京沪高速铁路CPIII网测量作业指导书》(试行版)2 工程概况2.1工程概况XX高速铁路土建工程XXXX-X标段X工区施工作业段起点为XXX桥,正线起点里程DKXXX+112.1,终点XX特大桥里程为DKXXX+229.73,全长10117.62m,路基全长4407.14米;桥梁5座,总长5320.49米;隧道1座390米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高速铁路CPIII测量
粤南勘察测绘大队张小涛高速铁路工程测量平面控制网应在框架控制网(CP O)基础上分三级布设,第一级为基础平面控制网(CP I),主要为勘测、施工、运营维护提供坐标基准;第二级为线路平面控制网(CPⅡ),主要为勘测和施工提供控制基准;第三级为轨道控制网(CPⅢ),主要为轨道铺设和运营维护提供控制基准。
高速铁路工程测量的平面坐标系应采用工程独立坐标系统,在对应的线路轨面设计高程面上坐标系统的投影长度变形值不宜大于10mm/Km.
高速铁路工程测量的高程系统应采用1985国家高程基准。
但是当个别地段无1985国家高程基准的水准点时,可引用其他高程系统或者独立高程起算。
但在全线高程测量贯通后,应消除断高,换算成1985国家高程基准。
一、各级平面控制网技术设计要求
二、高程控制网的技术要求
高速铁路CPⅢ高程控制网采用精密水准测量的方法。
当桥面和和地面高差大于3米,线路水准基点高程直接传递到桥面CPⅢ控制点有困难时,宜采用不量仪器高和棱镜高的中间设站光电测距三角高程测量法传递。
三、高速铁路CPⅢ平面测量方法和路线
3.1CPⅢ采用自由测站边角交会的方法,它是在线路中线附近架设全站仪,测量线路两侧多对轨道控制网CPⅢ点的方向和距离,并联测就近的CPI或CPII,以获取轨道控制网CPⅢ平面坐标的测量方法。
在线路中线附近架设全站仪,测量线路两侧多对轨道控制网CPⅢ点的方向和距离,以确定仪器中心点的平面和高程位置。
CPⅢ测量三维图
3.2相邻自由设站点相隔100-120米,在设站点上对前后各三对CPⅢ点(共12个
CPⅢ点)进行边角观测。
这样,每个CPⅢ控制点都有三个测站对其进行边角观测。
当附近有高级控制点时,需对其进行方向、边长联测,这时就有13个观测方向,一般观测3-4个测回。
一个测回就要测设26组数据,再加上归零两组数据,一个测回就要28组数据,不但每半个测回要满足2C值要求,一测回间较差也要满足要求,三个测回就是84组数据。
数据之多,多余观测条件之多,精度要求之高,人工测量根本没法完成,只有靠测量机器人全自动观测。
3.3 CPⅢ控制点距离布置一般为50~70m左右一对,CPⅢ控制点布设高度应与轨道面
高度保持一致的高度间距,一般比轨道面高30cm左右。
●1一般路基地段CPIII宜布置在接触网杆上
●桥梁地段一般布置在防护墙内测或顶端
●隧道地段一般布置在电缆槽顶面以上30—50厘米的边墙内衬上或靠轨道测电缆槽顶
面。
四、高速铁路CPⅢ高程测量方法和路线
CPⅢ控制点高程测量可按矩形环单程水准网或德国中视发(往返测水准网)构网观测。
CPⅢ水准网与(加密)线路水准基点联测时,应按精密水准测量要求进行往返观测。
(1)德国中视发(往返测水准网)
德国中视发CPⅢ高程网观测采用往返观测的方式进行,其往返测水准路线如下图2-3和图2-4所示。
图中实心红点表示水准仪测站点,空心圆黑点表示CPⅢ高程点,黑箭头表示后视,蓝箭头表示前视,绿箭头表示中视。
从图2-3可以看出,该方法往测时以轨道一侧(图中下方)的CPⅢ点为主线进行前后视水准测量,而另一侧(图中上方)的CPⅢ点则以中视的方式联测其高程。
返测时刚好相反,即以另一侧(图中上方)的CPⅢ水准点为主线进行前后视水准测量,而对侧(图中下方)的CPⅢ点也是以中视的方式联测其高程,返测示意如图2-4所示
图2-3
(2)单程矩形闭合环
外业测量时,各闭合环的4个高差应该由2 个测站完成,按照后-前-前-后或前-后-后-前的顺序测量。
矩形法观测的水准路线如上图所示,其中实心黑点表示水准仪测站点,空心圆表示CPⅢ高程点,空心箭头表示高差传递方向。
假设CPⅢ网的高程测量从左侧推向右侧,则在最左侧四个CPⅢ点中间设置测站,测量四个CPⅢ点间的四段高差,考虑到这四段高差所组成四边形闭合环的独立性,这四段高差至少应该设置两个测站完成测量(如在第一测站完成前三段高差的测量,第四段高差测量时应稍微挪动仪器或在原地改变仪器高后再测量);随后水准仪搬迁至紧邻的四个CPⅢ点中间,进行第二个四边形闭合环的高差测量,由于此闭合环中有一个测段的高差在第一个闭合环中已经观测,此时只须设置一个测站完成第二个四边形闭合环中三个测段高差的测量。
因为第二个四边形中的四个测段高差是由不同测站测量的,因此其闭合差是独立的。
其他四边形各测段高差测量的方法与第二个四边形相同,依此类推一直把所有四边形的测段高差观测完。
矩形法水准测量闭合环的情况如上图所示。
其中,箭头方向为高差传递方向。
每相邻两对CPⅢ点均构成独立的矩形闭合环,方便形成闭合差检核,可靠性高。
四、高速铁路CPⅢ测量数据处理
观测数据平差之前,必须对观测数据的质量进行检核。
目前,武广全线,福厦线、温福线、达成线、石太线太行山隧道无砟轨道段均采用中铁二院与西南交通大学合作开发的CPIII DAS软件;京津城际采用铁三院CPIII软件;郑西线则采用GL-survy进行平差计算。