2019-2020年高中数学 1.3 解三角形应用举例(2)教学案 新人教版必修5
2019-2020年高中数学5.1.2解三角形应用举例教案4文新人教版必修5

2019-2020年高中数学5.1.2解三角形应用举例教案4文新人教版必修5•教学目标知识与技能:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题,掌握三角形的面积公式的简单推导和应用过程与方法:本节课补充了三角形新的面积公式,巧妙设疑,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型。
另外本节课的证明题体现了前面所学知识的生动运用,教师要放手让学生摸索,使学生在具体的论证中灵活把握正弦定理和余弦定理的特点,能不拘一格,一题多解。
只要学生自行掌握了两定理的特点,就能很快开阔思维,有利地进一步突破难点。
情感态度与价值观:让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验•教学重点推导三角形的面积公式并解决简单的相关题目•教学难点利用正弦定理、余弦定理来求证简单的证明题•教学过程I .课题导入[创设情境]师:以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式。
在ABC中,边BC CA AB上的高分别记为h、h、h,那么它们如何用已知边和角表示?生: h=bsinC=csinBh=cs in A=as inCh=as in B=bs inaA师:根据以前学过的三角形面积公式S=ah,应用以上求出的高的公式如h=bsinC代入,可以推导出下面的三角形面积公式,S=absinC ,大家能推出其它的几个公式吗?生:同理可得,S=bcsi nA, S=acsi nB师:除了知道某条边和该边上的高可求出三角形的面积外,知道哪些条件也可求出三角形的面积呢?生:如能知道三角形的任意两边以及它们夹角的正弦即可求解n .讲授新课[范例讲解]例1、在ABC中,根据下列条件,求三角形的面积S (精确到0.1cm)(1)已知a=14.8cm,c=23.5cm,B=148.5;(2)已知B=62.7,C=65.8,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积。
高中数学 第一章 解三角形 1.2 解三角形应用举例教学设计 新人教A版必修5(2021年最新整理)

高中数学第一章解三角形1.2 解三角形应用举例教学设计新人教A版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章解三角形1.2 解三角形应用举例教学设计新人教A版必修5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章解三角形1.2 解三角形应用举例教学设计新人教A版必修5的全部内容。
解三角形应用举例教学目标一、知识与技能1、能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语,如:坡度、俯角、方向角、方位角等2、能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题3、能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题4、能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题5、掌握三角形的面积公式的简单推导和应用二、教学重点1、分析测量问题的实际情景,从而找到测量距离的方法;2结合实际测量工具,解决生活中的测量高度问题;3、能根据正弦定理、余弦定理的特点找到已知条件和所求角的关系;4、推导三角形的面积公式并解决简单的相关题目.三、教学难点1、实际问题向数学问题转化思路的确定,即根据题意建立数学模型,画出示意图;2、能观察较复杂的图形,从中找到解决问题的关键条件;3、灵活运用正弦定理和余弦定理解关于角度的问题;4、利用正弦定理、余弦定理来求证简单的证明题。
四、教学过程解决实际测量问题的过程一般要充分认真理解题意,正确作出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解.[例题剖析]【例1】如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55 m,∠BAC =51°,∠ACB =75°.求A 、B 两点的距离。
2019-2020年高中数学 第三章《三角恒等变换》教学设计 新人教A版必修4

2019-2020年高中数学第三章《三角恒等变换》教学设计新人教A版必修4【教学目标】进一步掌握三角恒等变换的方法,如何利用正、余弦、正切的和差公式与二倍角公式,对三角函数式进行化简、求值和证明:新授课阶段1. 11个三角恒等变换公式中,余弦的差角公式是其它公式的基础,由它出发,用-β代替β、±β代替β、α=β等换元法可以推导出其它公式.你能根据下图回顾推导过程吗?2.化简,要求使三角函数式成为最简:项数尽量少,名称尽量少,次数尽量底,分母尽量不含三角函数,根号内尽量不含三角函数,能求值的求出值来;3.求值,要注意象限角的范围、三角函数值的符号之间联系与影响,较难的问题需要根据上三角函数值进一步缩小角的范围.4.证明是利用恒等变换公式将等式的左边变同于右边,或右边变同于,或都将左右进行变换使其左右相等.5. 三角恒等变换过程与方法,实际上是对三角函数式中的角、名、形的变换,即(1)找差异:角、名、形的差别;(2)建立联系:角的和差关系、倍半关系等,名、形之间可以用哪个公式联系起来;(3)变公式:在实际变换过程中,往往需要将公式加以变形后运用或逆用公式,如升、降幂公式, cos α= cos βcos (α-β)- sin βsin (α-β),1= sin 2α+cos 2α,==tan (450+300)等.例1 知),2(,61)4sin()4sin(ππ∈α=α-πα+π,求sin4α的值. 解:∵61)4sin()4sin(=α-πα+π ∴31)4cos()4sin(2=α+πα+π∴ ∴cos2α = 又∵ ∴2α∈ (π, 2π)∴sin2α = 322)31(12cos 122-=--=α-- ∴sin4α = 2sin2αcos2α =例2 已知θ是三角形中的一个最小的内角,且12sin 2cos 2sin 2cos 2222+=θ-θ-θ+θa a a ,求a 的取值范围. 解:原式变形:1)2sin 2(cos )2sin 2(cos 2222+=θ-θ-θ-θa a即,显然 (若,则 0 = 2) ∴ 又∵,∴ 即: 解之得:例3 求证:)6(sin )3cos(cos sin 22α-π-α+πα+α的值是与α无关的定值. 证:)3cos(cos )]23cos(1[21)2cos 1(21α+πα+α-π--α-=原式)sin 3sin cos 3(cos cos ]2cos )23[cos(21απ-απα+α-α-π=211(cos cos 2sin sin 2cos 2)cos sin 23322ππαααααα=+-+-1111cos 22cos 2(1cos 2)24244ααααα=+-++-= ∴)6(sin )3cos(cos sin 22α-π-α+πα+α的值与α无关 例4 已知331cos 2sin 2cos(), , 45221tan πππααααα-++=≤<-求的值.解:由得解方程组223sin 225sin cos 1αααα-=⎪⎨⎪+=⎩得sin 10cos 10αα⎧=-⎪⎪⎨⎪=-⎪⎩或sin 10cos 10αα⎧=⎪⎪⎨⎪=⎪⎩sin 310cos 0 22cos 10αππααα⎧=-⎪⎪≤<∴≤∴⎨⎪=-⎪⎩ 21cos 2sin22sin 2sin cos 1tan 1tan ααααααα-++∴=--22(2(281010101775⨯+⨯==--例5 求值:02210sin 21)140cos 1140sin 3(⋅-.解:原式=0020*******sin 21140cos 140sin 140sin 140cos 3⋅- 16160sin 200sin 1680cos 80sin 200sin 810sin 2180sin 41200sin 80sin 410sin 21)40cos 40sin ()140sin 140cos 3)(140sin 140cos 3(0000002000200000=-=-=⋅⋅-=⋅-+-=例6 .已知函数1)4()cos x f x xπ-=. (Ⅰ)求的定义域;(Ⅱ)设的第四象限的角,且,求的值. 解:(Ⅰ)由 得,故在定义域为(Ⅱ)因为,且是第四象限的角, 所以故1)4()cos f πααα-=12(sin 22)22cos ααα--=.例7 已知sin (-x )=,0<x <,求的值.分析:角之间的关系:(-x )+(+x )=及-2x =2(-x ),利用余角间的三角函数的关系便可求之.解:∵(-x )+(+x )=,∴cos(+x )=sin (-x ).又cos2x =sin (-2x )=sin2(-x )=2sin (-x )cos (-x ), ∴=2cos(-x )=2×=.例8 求证:(sin cos 1)(sin cos 1)tan sin 22x x x x x x +--+=解:原式=22(sin 12sin 1)(sin 12sin 1)22sin 2x xx x x+---++ =22(2sin cos 2sin )(2sin cos 2sin )2222224sin cos cos 22x x x x x x x xx-+ =(cos sin )(cos sin )sin 22222cos cos 2x x x x x x x-+⋅ =x x x x x cos 2cos 2sin 2sin 2cos 22⋅-)(=x x x x cos 2cos 2sincos ⋅⋅=tan.例9 已知,,都是锐角,求 的值. 解:由得3sin 2α=1-2sin 2β=cos2β.由得sin2β=sin2α.∴cos(α+2β)=cos αcos2β-sin αsin2β =3cos αsin 2α-sin α·sin2α=0.∵α、β∈(0,),∴α+2β∈(0,). ∴α+2β=. 课堂小结三角恒等式的证明方法有:从等式一边推导变形到另一边,一般是化繁为简. 等式两边同时变形成同一个式子.将式子变形后再证明. 作业 见同步练习 拓展提升 1.若,则等于 (A ) (B ) (C ) (D )2.函数y=sin2x+sinx,x 的值域是( ) (A)[-,] (B) [] (C) [-,] (D)[]3.已知x ∈(-,0),cos x =,则tan2x 等于 ( ) A.B.-C.D.-4.已知tan=,则的值为( ) A .B .-C .D .-5..,则 . 6.已知,若,则. 若 , 则.7.若,则的值为_______.8.已知锐角三角形ABC 中,.51)sin(,53)sin(=-=+B A B A 求 的值.9. ()41,cos ,tan , cos .53αβααββ=-=-已知、为锐角求的值10.设函数()cos 2cos ()f x x x x x R =+∈的最大值为M ,最小正周期为T . (1) 求M ,T ;(2) 若有10个互不相等的正数满足M ,且(i=1,2,…10), 求…的值.参考答案 1.C2.B 提示:用二倍角公式及两角和与差的正弦或余弦公式3.D 4.A 提示:222sin 2sin cos1cos sin 222tan 1cos sin 22cos 2sin cos 222θθθθθθθθθθθ+-+==+++ 5.. 提示:由已知得,22sin 2cos 22sin cos cos sin αααααα+=+-2222222sin cos cos sin 2tan 1tan 7sin cos tan 15ααααααααα+-+-===-++ 6. 提示:2(sin cos )12sin cos θθθθ-=-= 当0,sin cos 4πθθθ⎛⎫∈< ⎪⎝⎭时,当,sin cos 42ππθθθ⎛⎫∈> ⎪⎝⎭时, 7. 提示:去分母后两边平方可得 8 解:,51)sin(,53)sin(=-=+B A B A .2tan tan 51sin cos ,52cos sin .51sin cos cos sin ,53sin cos cos sin =⇔⎪⎪⎩⎪⎪⎨⎧==⇔⎪⎪⎩⎪⎪⎨⎧=-=+∴B A B A B A B A B A B A B A 9 解:43,cos , sin .55ααα=∴=是锐角.,22 π<β-α<π-∴βα为锐角、又 ()可求出,31tan -=-βα ()(),1010sin ,10103cos -=-=-βαβα()cos cos βααβ∴=--⎡⎤⎣⎦()()cos cos sin sin ααβααβ=-+-10 解:(1)()cos 222sin(2)6f x x x x π=+=+(2):,22,62i x k k Z πππ+=+∈故即 ,又是互不相等的正数且(i=1,2,…10), 故 0,1,…9.所以…。
2019-2020学年高二数学《解三角形应用举例》教案(1)

2019-2020学年高二数学《解三角形应用举例》教案(1)高二 年级 数学 备课组 主备人 田全超课型 新授课 课时1 时间2011 年11月 7日分管领导李夫银验收结果合格第 12周 第 1课时 总第 34课时教学目标 能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语 重点、难点 根据题意建立数学模型,画出示意图教 学 过 程 教师活动学生活动【学情分析】 应用题以学生探究为主,注重启发诱导,上课要积极鼓励学生,提高学生学习兴趣。
注重解题过程详尽化,总结规律,逐步提高。
教会学生思考问题的方法,规范化训练要求严格化,引导好学生积极参与,循序渐进的提高。
通过题目及时探究结论与要求,教会学生运算技能,逐步培养学生学习能力,多角度分析解决问题,灵活求解问题。
一.复习引入复习:正弦定理、余弦定理及其变形形式, (1)正弦定理、三角形面积公式:R C cB b A a 2sin sin sin ===;B acC ab A bc S ABC sin 21sin 21sin 21===∆.(2)正弦定理的变形:①C R c B R b A R a sin 2,sin 2,sin 2===;②RcC R b B R a A 2sin ,2sin ,2sin ===; ③sin sin sin ::::A B C a b c =(3)余弦定理:bca cb A A bc c b a 2cos ,cos 2222222-+=-+=二、新课引入复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形?请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。
高中数学必修5《解三角形应用举例》教案

人教版必修5课题:《解三角形应用举例》教材:人教版教学目标:(1)学会使用测角仪和皮尺等测量工具,根据实际问题设计合适的方案来测量距离;(2)能够运用直角三角形的边与角的关系以及正弦、余弦定理等解三角形的知识,解决不可到达点的距离测量问题;(3)数学建模思想的体会与运用,知识与生活联系,解决生活中的实际问题,学以致用;(4)培养学生的小组合作交流与自主研究学习的能力;(5)指导学生学会评价分析与改进优化。
教学重点、难点:分析测量问题的实际情景,从而找到合适的测量距离的方法。
教学方法与手段:学生小组合作探究问题——设计解决问题的方案——交流学习——评价分析,采用问题启发教学、开放式交流讨论教学与师生合作研究等教学方式,使学生在探究式、开放式的教学思想与模式下学会学习、学会探究、学会与人合作、学会评价分析与改进优化,掌握运用课堂学科知识解决生活中的实际问题,做到学以致用。
教学内容设计:一、情境导入位于珠江新城的双子塔(西塔与东塔,西塔已竣工,东塔正在建)与海心塔是广州的标志性建筑,它们隔着珠江相望,并与中信广场形成广州的新中轴,其效果图如下图所示:探究活动一:假设你处于海心塔所在的海心沙岛上,如何测量海心塔与西塔的距离?(假设海心塔与西塔的底部在同一水平线上)测量工具为:测角仪与皮尺首先通过示图,了解测角仪的原理与作用测角仪常用于测量:(1)仰角与俯角(如图1);(2)方向角(如图2);(3)方位角(如图3)图1 图2 图3此问题在课前作为课后研究学习的资料让学生分小组合作研究,提出测量的设计方案。
二、学生设计方案交流从学生提交的测量设计方案中选取优秀的几个方案,让学生在课堂上作简短的介绍,让同学们交流学习。
三、分析与解决问题学生每介绍完一个设计的方案,教师要对该方案进行评价分析,指导设计组的学生进一步改进方案,并指导同学们从中学习方法、积累经验,进而总结思想方法。
交流方案一:(以张靖同学为组长来介绍)如图4,线段CA 表示西塔,线段DB 表示海心塔在海心塔的底部B 可测得CA 的仰角α,西塔CA 的高 度可通过电脑查得,记为h ,则由直角CAB ∆得海心塔与西塔的距离αtan h AB =教师指导学生评价分析方案一 图4 优点:(1)简单、明了,图简单、测量简单、计算简单; (2)采用直角三角形,熟悉、方便;(3)从主视图的角度分析问题,采用线段表示物体,符合示意图的要求; (4)懂得利用电脑查询西塔的高度,多样化解决问题。
人教A版高中数学必修5《一章 解三角形 1.2 应用举例 1.2 应用举例(通用)》优质课教案_8

解三角形的应用举例(一)设计一、课题:1.2解三角形的应用举例二、教材的地位与作用:本节课是学习了正弦定理、余弦定理及三角形中的几何计算之后的一节实际应用课,可以说是为正弦定理、余弦定理的应用而设计的,因此本节课的学习具有理论联系实际的重要作用。
在本节课的教学中,用方程的思想作支撑,以具体问题具体分析作指导,引领学生认识问题、分析问题并最终解决问题。
三、学情分析:通过正弦定理、余弦定理的学习,学生对解斜三角形已经有了直观地认识,能够从图形中找到解三角形的方法。
但学生对正弦定理和余弦定理适用条件缺乏清晰的概念。
因此,本节课遵循学生由具体到抽象,由感性到理性的认知规律,引导学生通过自己的数学实践活动,从实际问题提取数学模型,经历发展和创造过程,进一步拓展学生的数学活动空间,发展学生“做数学”“用数学”的意识,激发学生的学习兴趣。
四、教学目标:基于新课程标准的要求及对教材内容的具体分析,我制定了本节课的教学目标:知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语。
过程与方法:首先通过巧妙的答疑,顺利地引导新课,为以后的几节课做良好铺垫。
其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——回归实际”的教学过程,帮助学生掌握解法,能够类比解决实际问题。
情感态度价值观:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力。
五、教学重、难点:教学重点:实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解;教学难点:根据题意建立数学模型,画出示意图;六、教法、学法设计:教法设计:基于我的学情分析,我创设发生在学生身边的问题情境,激发学生学习本节知识的兴趣,从抽象的测量距离问题入手,到进一步解决具体的测量问题。
以启发引导式教学为主;遵循从理论到实际的认识世界的一般思路,先利用生活中实际问题激发学生的学习兴趣,然后让学生操作实践、合作交流、自主探究,最后总结提升。
2019-2020学年高考数学一轮复习-第2讲-平面向量、解三角形教学案
2019-2020学年高考数学一轮复习 第2讲 平面向量、解三角形教学案【学习目标】(1)正弦定理、余弦定理及其应用(B 级)(2)处理与三角形有关的三角综合问题,除正确运用好正弦定理、余弦定理、面积公式及己知的三角函数关系式外,对隐含的很多条件,如三角函数的定义、三角形的内角和、诱导公式、勾股定理,向量有关知识等等,都要综合考虑,这样才能有效的解决问题【知识要点】1.已知两个非零向量a 与b ,它们的夹角是θ,则有a =⋅b __________,其中夹角θ的取值范围是________,规定=⋅a 0___ _;向量的数量积的结果是一个_____ _ 2.平面向量数量积的坐标表示: 已知),,(),,(2211y x b y x a ==则=⋅b a _____ ________;记a 与b 的夹角为θ,则=θcos _____________ __=||a ___ __ ____3.向量的平行的充要条件:设),(11y x a =,),(22y x b =,且0≠a ,则⇔b a // ⇔4.两非零向量垂直的充要条件:设),,(),,(2211y x b y x a ==则⇔⊥b a _____ __5.正弦定理: .6.余弦定理:第一形式:=2a ,第二形式: =A cos7.三角形的面积公式【自主学习】1. (必修4 P90习题19改编)已知向量a =(6,-3),b =(2,x +1),若a ⊥b ,则实数x = .2. (必修4 P80例5改编)已知向量a =(1,0),b =(2,1),则当k = 时,向量k a -b 与a +3b 平行.3. (必修5 P10习题4改编)在△ABC 中,已知b a a +=sin sin -sin B B A , 且2sin Asin B=2sin 2C ,则△ABC 的形状为4. (必修5 P16习题1(3)改编)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a =7,b =43,c =13,则△ABC 最小的内角为 .【课堂探究】例1 (2015·江苏卷)在△ABC 中,已知AB=2,AC=3,角A=60°.(1) 求BC 的长;(2) 求sin 2C 的值.例2 在△ABC中,角A,B,C所对的边分别为a,b,c.已知sin2sin-sinCA C=222222----b a cc a b.(1) 求角B的大小;(2) 设T=sin2A+sin2B+sin2C,求T的取值范围.例3 (2015·陕西卷)在△ABC中,已知角A,B,C所对的边分别为a,b,c,向量m=(a,3b)与n=(cos A,sin B)平行.(1) 求角A的大小;(2) 若a7b=2,求△ABC的面积.【针对训练】1. (2015·安徽卷)在△ABC中,已知6A=75°,B=45°,则AC= .2. (2015·南京调研)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a+2c=2b,sin B=2sin C,则cos A= .3. (2014·常州期末)在△ABC中,角A,B,C的对边分别为a,b,c,若tanA=7tanB,22 -a bc=3,则c= . 【巩固提升】1. 已知向量a,b满足|a|=1,|b|=2,|a-b|=2,则|a+b|=2. (2015·苏锡常镇宿一调)如图,在平行四边形ABCD中,E为DC的中点,AE与BD交于点M,AB=2,AD=1,且MA·MB=-16,则AB·AD= .3. (2015·福建卷)在△ABC中,若AC=3,A=45°,C=75°,则BC= .4.(2015·镇江期末)已知△ABC的面积为S,且AB·AC=2S.(1) 求sin A的值;(2) 若|AB|=3,|AB-AC|=23,求sin B的值.5. (2015·苏北四市)已知向量a=(1,2sin θ),b=πsin13θ⎛⎫⎛⎫+⎪⎪⎝⎭⎝⎭,,θ∈R.(1) 若a⊥b,求tan θ的值;(2) 若a∥b,且θ∈π2⎛⎫⎪⎝⎭,,求θ的值.。
高中数学解三角形教案
高中数学解三角形教案
一、教学目标:
1. 了解三角形的定义和性质;
2. 掌握解三角形的方法;
3. 能够运用解三角形的知识解决实际问题。
二、教学重点:
1. 三角形的定义和性质;
2. 解三角形的方法。
三、教学内容:
1. 三角形的定义和性质
2. 解三角形的方法
3. 实例分析
四、教学步骤:
1. 师生互动导入:通过实际例子引入三角形的定义和性质,例如让学生观察周围的物体,
找到其中的三角形并进行分类,引导学生讨论三角形的定义和性质。
2. 教学讲解:讲解三角形的定义和性质,包括三角形的内角和为180度、三边之和大于第三边等性质,引导学生理解三角形的基本概念。
3. 解三角形的方法:介绍解三角形的方法,包括余角、角平分线、作图等方法,讲解每种
方法的应用场景和步骤。
4. 实例分析:通过实际例子进行分析和讨论,引导学生运用解三角形的方法解决实际问题,加深对知识的理解和应用能力。
五、教学评价:
教师可通过课堂练习、作业和小测验等方式进行教学评价,检验学生对三角形的理解和解
题能力。
六、拓展延伸:
师生可通过课外探究、实验等方式拓展三角形的相关知识,激发学生的学习兴趣,提高学
生的综合能力。
七、教学反思:
教师应及时总结本节课的教学效果,结合学生的表现和反馈,不断优化教学方法,提高教学质量。
2019-2020年高中数学5.1.2解三角形应用举例教案4文新人教版必修5
2019-2020年高中数学5.1.2解三角形应用举例教案4文新人教版必修5●教学目标知识与技能:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用过程与方法:本节课补充了三角形新的面积公式,巧妙设疑,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型。
另外本节课的证明题体现了前面所学知识的生动运用,教师要放手让学生摸索,使学生在具体的论证中灵活把握正弦定理和余弦定理的特点,能不拘一格,一题多解。
只要学生自行掌握了两定理的特点,就能很快开阔思维,有利地进一步突破难点。
情感态度与价值观:让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验●教学重点推导三角形的面积公式并解决简单的相关题目●教学难点利用正弦定理、余弦定理来求证简单的证明题●教学过程Ⅰ.课题导入[创设情境]师:以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式。
在ABC中,边BC、CA、AB上的高分别记为h、h、h,那么它们如何用已知边和角表示?生:h=bsinC=csinBh=csinA=asinCh=asinB=bsinaA师:根据以前学过的三角形面积公式S=ah,应用以上求出的高的公式如h=bsinC代入,可以推导出下面的三角形面积公式,S=absinC,大家能推出其它的几个公式吗?生:同理可得,S=bcsinA, S=acsinB师:除了知道某条边和该边上的高可求出三角形的面积外,知道哪些条件也可求出三角形的面积呢?生:如能知道三角形的任意两边以及它们夹角的正弦即可求解Ⅱ.讲授新课[范例讲解]例1、在ABC中,根据下列条件,求三角形的面积S(精确到0.1cm)(1)已知a=14.8cm,c=23.5cm,B=148.5;(2)已知B=62.7,C=65.8,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积。
2019-2020年高中数学 第一章 解三角形全套教案 新人教A版必修5
2019-2020年高中数学第一章解三角形全套教案新人教A版必修5●教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
●教学重点正弦定理的探索和证明及其基本应用。
●教学难点已知两边和其中一边的对角解三角形时判断解的个数。
●教学过程Ⅰ.课题导入如图1.1-1,固定ABC的边CB及B,使边AC绕着顶点C转动。
A思考:C的大小与它的对边AB的长度之间有怎样的数量关系?显然,边AB的长度随着其对角C的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? C BⅡ.讲授新课[探索研究](图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在RtABC中,设BC=a,AC=b,AB=c,根据锐角三角函数中正弦函数的定义,有,,又, A 则 b c从而在直角三角形ABC中, C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=,则,C同理可得, b a从而 A c B(图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
(证法二):过点A作,C由向量的加法可得则 A B∴()(00j AB A j CBcos900cos90-=+∴,即同理,过点C 作,可得从而类似可推出,当ABC 是钝角三角形时,以上关系式仍然成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高中数学 1.3 解三角形应用举例(2)教学案新人教版必修
5
一、教学目标
1.能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题
2培养学生提出问题、正确分析问题、独立解决问题的能力,并在教学过程中激发学生的探索精神.
二、教学重点、难点
1.重点:能根据正弦定理、余弦定理的特点找到已知条件和所求角的关系
2.难点:灵活运用正弦定理和余弦定理解关于角度的问题
三、教学设计
(一)预习指导
预习教材注意思考以下问题:如何应用正余弦定理解决测量中的实际问题?
(二)新课导学
1.课题导入
2.学习新知
★【范例讲解】
例1、如图,一艘海轮从A出发,沿北偏东75的方向航行67.5 n mile后到达海岛B,然后从B出发,沿北偏东32的方向航行54.0 n mile后达到海岛C.如果下次航行直接从A 出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1,距离精确到0.01n mile)
例2、在某点B处测得建筑物AE的顶端A的仰角为,沿BE方向前进30m,至点C处测得顶端A的仰角为2,再继续前进10m至D点,测得顶端A的仰角为4,求的大小和建筑物
AE的高.
例3、某巡逻艇在A处发现北偏东45相距9海里的C处有一艘走私船,正沿南偏东75的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?
3.课堂练习
4.课堂小结
解三角形的应用题时,通常会遇到两种情况:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之.(2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解.
(三)作业
四、课后反思
2019-2020年高中数学 1.3 诱导公式(一)教案新人教A版必修4
教学目标
(一)知识与技能目标
⑴理解正弦、余弦的诱导公式.
⑵培养学生化归、转化的能力.
(二)过程与能力目标
(1)能运用公式一、二、三的推导公式四、五.
(2)掌握诱导公式并运用之进行三角函数式的求值、化简以及简单三角恒等式的证明.(三)情感与态度目标
通过公式四、五的探究,培养学生思维的严密性与科学性等思维品质以及孜孜以求的探索精神等良好的个性品质. 教学重点
掌握诱导公式四、五的推导,能观察分析公式的特点,明确公式用途,熟练驾驭公式. 教学难点
运用诱导公式对三角函数式的求值、化简以及简单三角恒等式的证明. 教学过程 一、复习: 诱导公式(一)
tan )360tan(cos )360(cos sin )360sin(ααα
ααα=+︒=+︒=+︒k k k
诱导公式(二)
tan )180tan(cos )180cos( sin )180sin(ααα
ααα=+︒-=+︒-=+︒
诱导公式(三)
tan )tan(cos )cos( sin )sin(ααα
ααα-=-=--=-
诱导公式(四)
tan )180tan(cos )180cos( sin )180sin(ααα
ααα-=-︒-=-︒=-︒
对于五组诱导公式的理解 : ①可以是任意角;公式中的α ②这四组诱导公式可以概括为:
符号。
看成锐角时原函数值的前面加上一个把三角函数值,的同名的三角函数值,等于它ααπαπααπ ,,
, ),Z (2-+-∈+k k
总结为一句话:函数名不变,符号看象限 练习1:P27面作业1、2、3、4。
2:P25面的例2:化简 二、新课讲授:
1、诱导公式(五)
sin )2cos( cos )2sin(
ααπ
ααπ
=-=-
2、诱导公式(六)
sin )2cos( cos )2sin(
ααπ
ααπ
-=+=+
总结为一句话:函数正变余,符号看象限
例1.将下列三角函数转化为锐角三角函数:
).317sin()4( ,519cos )3( ,3631sin )2( ,53tan
)1(πππ-︒ 练习3:求下列函数值:
).580tan )4( ,670sin )3( ),431sin()2( ,665cos
)1(︒︒-ππ
例2.证明:(1) (2)
例3.化简:.
)
29sin()sin()3sin()cos()
211cos()2cos()cos()2sin(απ
πααπαπαπ
απαπαπ+-----++-
的值。
求:已知例)sin(2)4cos()
3sin()2cos( ,
3)tan( .4απααπαπαπ-+-+--=+
解:.3tan ,3)tan(=∴=+ααπ
.
7343
32tan 4tan 32sin 4cos 3sin 2cos
=-⨯+-=-+-=-+-=αααααα原式
小结:
①三角函数的简化过程图:
②三角函数的简化过程口诀:
负化正,正化小,化到锐角就行了. 练习4:教材P28页7. 三.课堂小结
①熟记诱导公式五、六;
②公式一至四记忆口诀:函数名不变,正负看象限;
③运用诱导公式可以将任意角三角函数转化为锐角三角函数. 四.课后作业: ①阅读教材;
②《习案》作业七.。