1-1集合的基本概念和运算-板块1.题库学生版
集合的概念及运算总复习-2022年学习资料

四、有限廉合的子廉个数公式-1.设有限集合A中有n个元素,则A的子-集个数有:2个,其中真子集的个-数为2 .1个,非空子集个数为2m.1个-非空真子集个数为2n.2个-2.对任意两个有限集合A、B有-cardA B=cardA+cardB-cardAnB
初狱牛刀-1若-则a2002+b2003=1-2已知集合M={-1,1,2}-集合N=yy=x2,x∈M} 则M∩N是B-A{1,2,4}-B{1}-C{1,4-D-Φ
集合的概念及运算-要点·疑点·考点-·课前热身-▣能力·思维·方法-·延伸·拓展-▣误解分析
要点·疑点·考点-集合的基本概念及表示方法-1.集合与元素-一般地,某些指定的对象集在一-起就成为一个集合 也简称集,通常-用大写字母A、B、C„表示.集合中的-每一对象叫做集合的一个元素,通常-用小写字母a、b、 、„表示
设全集U={3,9,a2+2a-1},-P=3,a+7},CP={7}-则a的值为-A.2B.-4C.2或 4D.-2或4-【解析】7∈U且7庄P-.a2+2a-1=7.a=2或-4-经检验,应取a=2-选A-当a 一4时,a+7=3与集合中元素-的互异性矛盾〉
集合之间的运算性质-1.交集的运算性质-A∩B=B∩A,A∩B-车A∩B匹A∩A-=A,A∩Φ =Φ ,ABA B=A-2.并集的运算性质-AUB=BUA,AUB2A,AUB-B,-AUA=A,AUΦ =A,A二B分AU =B-3.补集的运算的性质-CuCA=A,CuΦ =U,A∩CuA=Φ ,-AUCUA=U-CuA∩B=CAU B-CAUB=CuA∩CB
2.集合的分类-集合按元素多少可分为:-有限集(元素个数是有限个),-无限集(元素个数是无限个),-空集( 含任何元素)。-也可按元素的属性分-如:数集(元素是数)-点集(元素是点)等。
集合的基本概念和性质知识点及练习

集合的基本概念和性质【基本知识点】一集合与元素1.集合是由元素组成的集合通常用大写字母A、B、C,…表示,元素常用小写字母a、b、c,…表示。
2.集合中元素的属性(1)确定性:一个元素要么属于这个集合,要么不属于这个集合,绝无模棱两可的情况。
(2)互异性:集合中的元素是互不相同的个体,相同的元素只能出现一次。
(3)无序性:集合中的元素在描述时没有固定的先后顺序。
3.元素与集合的关系(1)元素a是集合A中的元素,记做a∈A,读作“a属于集合A”;(2)元素a不是集合A中的元素,记做a∉A,读作“a不属于集合A”。
4.集合相等如果构成两个集合的元素一样,就称这两个集合相等,与元素的排列顺序无关。
二集合的分类1.有限集:集合中元素的个数是可数的,只含有一个元素的集合叫单元素集合;2.无限集:集合中元素的个数是不可数的;3.空集:不含有任何元素的集合,记做∅.三集合的表示方法1.常用数集(1)自然数集:又称为非负整数集,记做N;(2)正整数集:自然数集内排除0的集合,记做N+或N※;(3)整数集:全体整数的集合,记做Z(4)有理数集:全体有理数的集合,记做Q(5)实数集:全体实数的集合,记做R3.集合的表示方法(1)自然语言法:用文字叙述的形式描述集合。
如小于等于8的偶数构成的集合。
(2)列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法,一般适用于元素个数不多的有限集,简单、明了,能够一目了然地知道集合中的元素是什么。
注意事项:①元素间用逗号隔开;②元素不能重复;③元素之间不用考虑先后顺序;④元素较多且有规律的集合的表示:{0,1,2,3,…,100}表示不大于100的自然数构成的集合。
(3)描述法:用集合所含元素的共同特征表示集合的方法,一般形式是{x∈I | p(x)}.注意事项:①写清楚该集合中元素的代号;②说明该集合中元素的性质;③不能出现未被说明的字母;④多层描述时,应当准确使用“且”、“或”;⑤所有描述的内容都要写在集合符号内;⑥语句力求简明、准确。
1-1集合的基本概念和运算-板块3.题库学生版

板块三:集合的基本运算(一)知识内容1.相关概念:⑴并集:一般地,由所有属于集合或属于集合的元素组成的集合,称为集合与的并集,记作(读作“并”),即或.⑵交集:一般地,由属于集合且属于集合的所有元素组成的集合,称为与的交集,记作(读作“交”),即且.⑶全集:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作.补集:对于一个集合,由全集中不属于集合的所有元素组成的集合称为集合相对于全集的补集,记作,即且.(二)典例分析【例1】已知全集,,,求:,,,,【例2】若集合,则有()A. B. C. D.【例3】已知全集,,表示.【例4】已知集合,若,求实数a的值.【例5】设集合,,求.【例6】若集合,,且,则的值为()A. B. C.或 D.或或【例7】下列表述中错误的是()A.若,则 B.若,则C. D.【例8】若且,则.【例9】若为全集,下面三个命题中真命题的个数是()⑴若,则⑵若,则⑶若,则A.个 B.个 C.个 D.个【例10】设集合,则集合()A. B. C. D.【例11】已知全集是,,求,【例12】设全集,,,求.【例13】已知,,则.【例14】若,则= .【例15】设集合,则【例16】已知,,则等于()A. B. C. D.【例17】若集合,则有.A. B. C. D.【例18】集合,,满足,,求实数的值.【例19】已知,,,则等于()A. B. C. D.【例20】设,,若,求.【例21】设,集合,;若,求的值.【例22】设全集,集合,,那么等于________________.【例23】设全集且为质数.若,且,求集合.结合集合的运算性质:⑴交换律:;⑵结合律:;;⑶分配律:;;⑷吸收律:;⑸对偶律:(德·摩根定律).【例24】若,求.【例25】已知全集中有15个元素,集合中有3个元素,中有5个元素,中有4个元素.则集合中元素的个数()A.3 B.4 C.5 D.6【例26】名同学参加跳远和铅球测验,跳远和铅球测验成绩分别为及格人和人,项测验成绩均不及格的有人,项测验成绩都及格的人数是()A. B. C. D.【例27】某班有学生人,其中体育爱好者人,音乐爱好者人,还有人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为人.【例28】已知,,则中最小的正整数是 _________.【例29】设,集合,,.若中至少有一个不是空集,求实数的取值范围.【例30】若集合,,且.求实数的取值范围.<教师备案>1.对于集合需要注意:①集合本身是一个不加定义的概念;空集虽空,但空有所为;②元素的三个特性:确定性:集合中的元素是确定的,不能模棱两可互异性:集合中的元素是互不相同的,相同的元素在集合中只能算作一个无序性:集合中的元素是无次序关系的.数学中一些常用的数集及其记法:全体非负整数组成的集合称为非负整数集(或自然数集),记作;所有正整数组成的集合称为正整数集,记作或;全体整数组成的集合称为整数集,记作;全体有理数组成的集合称为有理数集,记作;全体实数组成的集合称为实数集,记作.2.拓展讲解:⑴由于,记集合的元素个数为Card(),则如果推广到三个有限集,则有⑵利用以上的结论还可解决与自然数相关的计数问题,比如:从到的所有自然数中,能被整除但不能被整除的自然数有多少个?记{~中能被整除的自然数},{~中能被整除的自然数},则{~中能被整除且又能被整除的自然数},={~中只能被整除不能被整除的自然数},={~中不能被整除但能被整除的自然数}.经计算发现:,,;∴.因此.即到的所有自然数中,能被整除但不能被整除的自然数有个.。
1-1集合的基本概念和运算-板块1.题库教师版

内容基本要求 集合的含义会使用符号“∈”或“∉”表示元素与集合之间的关系; 集合的表示 能选择自然语言、图形语言、集合语言描述不同的具体问题; 理解集合的特征性质,会用集合的特征性质描述一些集合,如常用数集,方程或不等式的解集等集合间的基本关系 理解集合之间包含与相等的含义,及子集的概念.在具体情景中,了解空集和全集的含义;理解两个集合的交集和并集的含义,会求两个简单集合的交集与并集.理解在给定集合中一个子集的补集的含义,会求给定子集的补集集合的基本运算掌握有关的术语和符号,会用它们表达集合之间的关系和运算.能使用维恩图表达集合之间的关系和运算.(一)知识内容 举例:⑴ 120-的所有合数 ⑵ 北京在户人口例题精讲高考要求知识框架 集合的基本概念和运算⑶ 学而思学员 ⑷ 所有的正方形这些小例中有哪些共同特征?1.集合的相关定义⑴ 集合的含义:一般地把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集).构成集合的每个对象叫做这个集合的元素(或成员).⑵ 元素用小写字母,,,a b c 表示;集合用大写字母,,,A B C 表示.⑶ 不含任何元素的集合叫做空集,记作∅.2.元素与集合间关系:属于∈;不属于∉.3.集合表示法⑴ 列举法:把集合的所有元素都列举出来或列出几个元素作为代表,其它元素用省略号表示,并写在大括号“{ }”内的表示集合的方法.例如:{1,2,3,4,5},{1,2,3,4,5,}⑵描述法:用集合所含元素的共同特征表示集合的方法称为描述法,形如{x |描述特点}例如:大于3的所有整数表示为:{Z |3}x x ∈>方程2250x x --=的所有实数根表示为:{R x ∈|2250x x --=}(二)典例分析:【例1】用“∈”或“∉”填空:⑴ 若2{|340}A x x x =--=,则1-___A ;4-___A ;⑵ 0___∅;⑶ 0___{0}.【例2】用符号“∈”或“∉”填空⑴0______N , 5______N ,16______N⑵1______,π_______,e ______2-R Q Q Q ð(e 是个无理数) ⑶2323-++________{}|6,,x x a b a b =+∈∈Q Q【例3】用列举法表示下列集合⑴ 方程2260x x +-=的根;⑵ 不大于8且大于3的所有整数;⑶ 函数32y x =+与1y x=的交点组成的集合. 板块一:集合的概念与表示【例4】已知集合8|6A x x ⎧⎫=∈∈⎨⎬-⎭⎩N N ,试用列举法表示集合A .【例5】下列命题正确的有( )⑴很小的实数可以构成集合; ⑵集合{}2|1y y x =-与集合(){}2,|1x y y x =-是同一个集合; ⑶3611,,,,0.5242-这些数组成的集合有5个元素; ⑷集合(){},|0,,x y xy x y ∈R ≤是指第二和第四象限内的点集.A .0个B .1个C .2个D .3个【例6】用列举法表示集合:10,1M m m m ⎧⎫=∈∈=⎨⎬+⎩⎭Z Z 【例7】直角坐标平面除去两点(1,1)A 、(2,2)B -可用集合表示为( )A .{}(,)|1,1,2,2x y x y x y ≠≠≠≠B .1(,)|1x x y y ⎧≠⎧⎪⎨⎨≠⎪⎩⎩或22x y ⎫≠⎧⎪⎨⎬≠⎪⎩⎭C .1(,)|1x x y y ⎧≠⎧⎪⎨⎨≠⎪⎩⎩且22x y ⎫≠⎧⎪⎨⎬≠-⎪⎩⎭D .{}2222(,)|[(1)(1)][(2)(2)]0x y x y x y -+--++≠ 【例8】下面有四个命题:⑴集合N 中最小的数是1;⑵若a -不属于N ,则a 属于N ; ⑶若,a b ∈∈N N ,则a b +的最小值为2; ⑷212x x +=的解可表示为{}1,1; 其中正确命题的个数为( )A .0个B .1个C .2个D .3个【例9】方程组2219x y x y +=⎧⎨-=⎩的解集是( ) A .()5,4 B .()5,4- C .(){}5,4- D .(){}5,4-.【例10】已知2()(R,R)f x x ax b a b =++∈∈,{|(),R}A x x f x x ==∈,A=-时,用列举法表示集合B.==∈.当{1,3}B x x f f x x{|[()],R}。
集合主要知识点总结

集合主要知识点总结一、集合的基本概念1.1 集合的定义集合是由若干个元素组成的整体,这些元素可以是任意的事物或对象。
集合用大括号{}表示,其中的元素用逗号分隔。
例如,集合A = {1, 2, 3, 4, 5},表示集合A由1,2,3,4,5这五个元素组成。
1.2 集合的性质- 集合中的元素是无序的,即集合中的元素没有先后顺序。
- 集合中的元素是互不相同的,即集合中的元素不重复。
- 集合可以是有限集合,也可以是无限集合。
二、集合的运算2.1 并集定义:设A和B是两个集合,它们的并集记为A∪B,表示A和B中所有的元素组成的集合。
记法:A∪B = {x | x∈A或x∈B}例如,A = {1, 2, 3},B = {3, 4, 5},则A∪B = {1, 2, 3, 4, 5}。
2.2 交集定义:设A和B是两个集合,它们的交集记为A∩B,表示A和B中公共的元素组成的集合。
记法:A∩B = {x | x∈A且x∈B}例如,A = {1, 2, 3},B = {3, 4, 5},则A∩B = {3}。
2.3 补集定义:设A是一个集合,它的补集记为A',表示全集中除A之外的所有元素组成的集合。
记法:A' = {x | x∈全集且x∉A}例如,A = {1, 2, 3},全集为{1, 2, 3, 4, 5},则A' = {4, 5}。
2.4 差集定义:设A和B是两个集合,它们的差集记为A-B,表示A中去掉与B中相同的元素后的集合。
记法:A-B = {x | x∈A且x∉B}例如,A = {1, 2, 3},B = {3, 4, 5},则A-B = {1, 2}。
三、集合的关系3.1 子集定义:设A和B是两个集合,如果A中的所有元素都属于B,那么A是B的子集。
记法:A⊆B例如,A = {1, 2, 3},B = {1, 2, 3, 4, 5},则A是B的子集。
3.2 相等集合定义:设A和B是两个集合,如果A是B的子集,且B是A的子集,那么A等于B。
1-1集合的基本概念和运算-板块2.题库学生版

(一) 知识内容1.子集:对于两个集合,A B ,如果集合A 中的任意一个元素都是集合B 的元素,我们就说集合A 为集合B 的子集,记作A B ⊆(或B A ⊇),读作 “A 包含于B ”(或“B 包含A ”).规定:∅是任意集合的子集.2.真子集:如果集合A B ⊆,但存在元素x B ∈,但x A ∉,我们称集合A 是集合B 的真子集, 记作A B Ü(或B A Ý).∅是任意非空集合的真子集.3.相等:如果集合A 是集合B 的子集(A B ⊆),且集合B 是集合A 的子集(B A ⊇),此时,集合A 与集合中的元素是一样的,我们说集合A 与集合B 相等,记作A =B .(二)典例分析【例1】用适当的符号填空⑴ {1}___2{|320}x x x -+=⑵ {1,2}___2{|320}x x x -+=⑶ {|2,}x x k k =∈N ___{|6,}x x ττ=∈N⑷ ∅___2{R |20}x x ∈+=【例2】用适当的符号填空:⑴ ___{0}∅⑵ 2___{(1,2)}⑶ 0___2{|250}x x x -+=⑷ {3,5}____2{|8150}x x x -+=⑸ {3,5}___N⑹ {|21,}___{|41,}x x n n x x k k =+∈=±∈Z Z⑺ {(2,3)}___{(3,2)}【例3】若集合{|1}X x x =>-,下列关系式中成立的为( )A .0X ⊆B .{}0X ∈C .X ∅∈D .{}0X ⊆【例4】用适当的符号填空⑴{}()(){}3______|2,1,2____,|1x x x y y x =+≤⑵{}25_______|23x x +≤+,⑶{}31|,_______|0x x x x x x x ⎧⎫=∈-=⎨⎬⎩⎭R 板块二:集合间的基本关系【例5】下列说法中,正确的是( )A .任何一个集合必有两个子集;B .若,A B =∅ 则,A B 中至少有一个为∅C .任何集合必有一个真子集;D .若S 为全集,且,A B S = 则A B S ==【例6】已知集合2{,,2},{,,}A a a d a d B a aq aq =++=,其中0a ≠,且A B =,则q 等于___.【例7】求集合{,}a b 的子集的个数,真子集的个数,非空真子集的个数,并推导出{1,2,3,4,5,,100}的子集和真子集的个数.【例8】若全集{}0,1,2,3U =且{}2U A =ð,则集合A 的真子集共有. A .3个B .5个C .7个D .8个 【例9】{,,}a b c A {,,,,,}a b c d e f ,求满足条件的A 的个数.【例10】若集合{}|6,A x x x =∈N ≤,{|B x x =是非质数},C A B = ,则C 的非空子集的个数为 .【例11】求满足条件{1,2}A ⊆{1,2,3,4,5}的集合A 的个数【例12】设{|13},{|}A x x B x x a =-<<=>,若A B ,则a 的取值范围是______ 【例13】已知{25}A x x =-≤≤,{121}B x m x m =+≤≤-,B A ⊆,求m 的取值范围.【例14】求集合{1,2,3,,100}M = 的所有子集的元素之和的和(规定空集的元素和为零).帮助学生分析此题时,可按以下步骤:① 集合M 的所有子集的情况 ② 所有子集的元素之和 ③ 元素之和的和 ④ 空集的元素和为零 此题可适当拓展:如果{1,2,3,,}M n = (+N n ∈),则M 的子集共有2n 个.所有子集的元素和之和为221(1)2(12...)22(1)22n n n n n n n n -+⨯⨯+++=⋅=⋅+(可作为公式熟记),可由此让学生注意到补集的情形.。
集合的基本概念与运算方法
集合的基本概念与运算方法在数学中,集合是由一组独立的元素组成的。
理解集合的基本概念和运算方法对于解决各种数学问题至关重要。
本文将介绍集合的基本概念以及常用的运算方法。
一、集合的基本概念1. 集合的定义:集合通常用大写字母表示,集合内的元素用逗号分隔,并放在大括号中。
例如,集合A可以表示为:A = {1, 2, 3, 4}。
2. 元素:一个集合由若干个元素组成,元素是集合的基本单位。
例如,集合A中的元素1、2、3、4便是集合A的元素。
3. 子集:若一个集合A的所有元素都属于另一个集合B,则称集合A为集合B的子集。
用符号表示为A ⊆ B。
例如,集合A = {1, 2}是集合B = {1, 2, 3}的子集。
4. 相等集合:若两个集合A和B拥有相同的元素,则称集合A和集合B相等。
用符号表示为A = B。
二、集合的运算方法1. 并集:若A和B为两个集合,他们的并集就是包含两个集合中所有元素的集合。
用符号表示为A ∪ B。
例如,集合A = {1, 2}和集合B = {2, 3}的并集为A ∪ B = {1, 2, 3}。
2. 交集:若A和B为两个集合,他们的交集就是属于A且属于B的所有元素的集合。
用符号表示为A ∩ B。
例如,集合A = {1, 2}和集合B = {2, 3}的交集为A ∩ B = {2}。
3. 补集:设U为全集,若A为一个集合,则相对于全集U,A的补集为U中不属于A的所有元素组成的集合。
用符号表示为A'。
例如,集合A = {1, 2, 3, 4}相对于全集U = {1, 2, 3, 4, 5, 6}的补集为A' = {5, 6}。
4. 差集:若A和B为两个集合,他们的差集就是属于A但不属于B的所有元素的集合。
用符号表示为A - B。
例如,集合A = {1, 2, 3, 4}和集合B = {2, 3}的差集为A - B = {1, 4}。
5. 互斥集:若两个集合A和B的交集为空集,则称它们为互斥集。
集合的基本概念和运算
集合的基本概念和运算集合是数学中的一个基本概念,它是由一些确定的、互不相同的对象构成的整体。
集合的概念在数学中有着广泛的应用,并且在解决实际问题时也发挥着重要的作用。
本文将介绍集合的基本概念以及集合的运算。
一、集合的基本概念集合是由一些确定的对象组成的整体,这些对象称为集合的元素。
用大写字母A、B、C等表示集合,用小写字母a、b、c等表示集合的元素。
如果一个元素a属于一个集合A,我们可以写作a∈A。
相反地,如果一个元素b不属于一个集合B,我们可以写作b∉B。
集合的元素可以是任何类型的对象,比如数字、字母、符号或者其他集合。
例如,自然数的集合可以表示为N={0,1,2,3,...},其中0、1、2、3等都是集合N的元素。
二、集合的表示方法集合有多种表示方法,其中最常见的是列举法和描述法。
1. 列举法:通过列举集合的元素来表示一个集合。
例如,集合A={1,2,3}表示由整数1、2、3组成的集合A。
2. 描述法:通过描述集合元素的特征来表示一个集合。
例如,集合B={x|x是大于0且小于10的整数}表示在0和10之间的整数构成的集合B。
值得注意的是,集合中的元素是没有顺序的,且集合中的元素是互不相同的。
这意味着{1,2,3}和{3,2,1}表示的是相同的集合。
三、集合的运算集合的运算有并集、交集、差集和补集等。
1. 并集:如果A和B是两个集合,它们的并集表示为A∪B,包含了属于集合A或者属于集合B的所有元素。
例如,集合A={1,2,3}和集合B={3,4,5}的并集为A∪B={1,2,3,4,5}。
2. 交集:如果A和B是两个集合,它们的交集表示为A∩B,包含了同时属于集合A和集合B的所有元素。
例如,集合A={1,2,3}和集合B={3,4,5}的交集为A∩B={3}。
3. 差集:如果A和B是两个集合,它们的差集表示为A-B,包含了属于集合A但不属于集合B的所有元素。
例如,集合A={1,2,3}和集合B={3,4,5}的差集为A-B={1,2}。
1.1集合的概念与运算.pptx
间 的
子 集
集合 A 中任意一个元素均为集合 B 中的元素
基
本 为集合 B 中的元素,且集合 B 中至少有一个元素不是集合 A 中的元素
示关系 文字语言
空集 空集是任何集合的子集,是任何非空集合的真子集
符号语 言 A=B A⊆ B
A⫋ B
第1讲 集合的概念与运算
A∪B=B∪A A∪A=A A∪⌀=⌀∪A=A 如果 A⊆ B,则 A∪B=B
A∪∁UA=U A∩∁UA=⌀ ∁U(∁UA)=A
第1讲 集合的概念与运算 要点梳理 考点自测
考纲解读 主主干干梳梳理理 考点层析
12345
1.已知集合 A={x∈N|- 3≤x≤ 3},则必有( )
A.-1∈A
B.0∈A
第1讲 集合的概念与运算
考纲解读 主干梳理
考点层析
考向1
考向2
考向2
考向4 易错辨析点拨
考向 1 集合的基本概念
【例 1】 (1)已知集合 A={0,1,2},则集合 B={x-y|x∈A,y∈A}中元素的个数 是( )
A.1
B.3
C.5
D.9
(2)已知集合 A={m+2,2m2+m},若 3∈A,则 m 的值为
B=( )
A.[-2,-1]
B.[-1,2)
C.[-1,1]
D.[1,2)
解析:由已知,可得 A={x|x≥3 或 x≤-1},则 A∩B={x|-2≤x≤-1}=[-2,-1].故选
A.
答案:A
第1讲 集合的概念与运算 要点梳理 考点自测
考纲解读 主主干干梳梳理理 考点层析
12345
3.设集合 A={x|1≤x≤2},B={x|x≥a},若 A⊆ B,则 a 的取值范围是( )
集合的基本概念与运算
集合的基本概念与运算集合是数学中的一个基本概念,可以理解为具有共同特征的事物的总体。
集合中的元素是指构成集合的个体或对象。
在集合中,元素的顺序并不重要,也不会重复出现。
本文将介绍集合的基本概念、集合运算的种类以及相关的性质。
一、集合的基本概念集合通常用大写字母表示,例如A、B、C等。
集合中的元素用小写字母表示,例如a、b、c等。
如果一个元素x属于集合A,我们用x∈A表示;如果一个元素y不属于集合A,我们用y∉A表示。
一个集合中的元素可以是任何事物,可以是数,可以是字母,也可以是其他集合。
集合的大小可以通过计算集合中元素的个数来确定。
如果集合A中有n个元素,我们用|A|表示集合A的大小,即|A|=n。
二、集合的表示方法1. 列举法:将集合中的元素逐个列举出来并用花括号{}括起来。
例如,集合A={1, 2, 3, 4}表示集合A包含了元素1、2、3、4。
2. 描述法:用一个条件来描述集合中的元素。
例如,集合B={x | x 是整数,0≤x≤10}表示集合B包含了满足0≤x≤10的所有整数。
三、集合的运算集合的运算包括并集、交集、差集和补集四种。
1. 并集:记为A∪B,表示包含了属于A或属于B的元素的集合。
即A∪B={x | x∈A或x∈B}。
例如,若A={1, 2, 3},B={3, 4, 5},则A∪B={1, 2, 3, 4, 5}。
2. 交集:记为A∩B,表示包含了既属于A又属于B的元素的集合。
即A∩B={x | x∈A且x∈B}。
例如,若A={1, 2, 3},B={3, 4, 5},则A∩B={3}。
3. 差集:记为A-B,表示包含了属于A但不属于B的元素的集合。
即A-B={x | x∈A且x∉B}。
例如,若A={1, 2, 3},B={3, 4, 5},则A-B={1, 2}。
4. 补集:对于给定的全集U,集合A的补集记为A',表示包含了属于U但不属于A的元素的集合。
即A'={x | x∈U且x∉A}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内容
基本要求 集合的含义
会使用符号“∈”或“∉”表示元素与集合之间的关系; 集合的表示 能选择自然语言、图形语言、集合语言描述不同的具体问题; 理解集合的特征性质,会用集合的特征性质描述一些集合,如常
用数集,方程或不等式的解集等
集合间的基本关系 理解集合之间包含与相等的含义,及子集的概念.在具体情景中,
了解空集和全集的含义;
理解两个集合的交集和并集的含义,会求两个简单集合的交集与
并集.理解在给定集合中一个子集的补集的含义,会求给定子集
的补集
集合的基本运算
掌握有关的术语和符号,会用它们表达集合之间的关系和运算.能使用维恩图表达集合之间的关系和运算.
(一)知识内容 举例:⑴ 120-的所有合数 ⑵ 北京在户人口
⑶ 学而思学员 ⑷ 所有的正方形
这些小例中有哪些共同特征?
1.集合的相关定义
例题精讲
高考要求
知识框架 集合的基本概念和运算
⑴ 集合的含义:一般地把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集).构成集合的每个对象叫做这个集合的元素(或成员).
⑵ 元素用小写字母,,,a b c 表示;集合用大写字母,,,A B C 表示.
⑶ 不含任何元素的集合叫做空集,记作∅.
2.元素与集合间关系:属于∈;不属于∉.
3.集合表示法
⑴ 列举法:把集合的所有元素都列举出来或列出几个元素作为代表,其它元素用省略号表示,并写在大括号“{ }”内的表示集合的方法.
例如:
{1,2,3,4,5},{1,2,3,4,5,}
⑵描述法:用集合所含元素的共同特征表示集合的方法称为描述法,形如{x |描述特点}
例如:大于3的所有整数表示为:{Z |3}x x ∈>
方程2250x x --=的所有实数根表示为:{R x ∈|2250x x --=}
(二)典例分析:
【例1】用“∈”或“∉”填空:
⑴ 若2{|340}A x x x =--=,则1-___A ;4-___A ;
⑵ 0___∅;
⑶ 0___{0}.
【例2】用符号“∈”或“∉”填空
⑴0______N , 5______N ,16______N
⑵1______,π_______,e ______2
-R Q Q Q ð(e 是个无理数) ⑶2323-++________{}
|6,,x x a b a b =+∈∈Q Q
【例3】用列举法表示下列集合
⑴ 方程2260x x +-=的根;
⑵ 不大于8且大于3的所有整数;
⑶ 函数32y x =+与1y x
=的交点组成的集合.
板块一:集合的概念与表示
【例4】已知集合8|6A x x ⎧⎫=∈∈⎨⎬-⎭⎩N N ,试用列举法表示集合A .
【例5】下列命题正确的有( )
⑴很小的实数可以构成集合; ⑵集合{}2|1y y x =-与集合(){}2,|1x y y x =-是同一个集合; ⑶3611,,,,0.5242
-这些数组成的集合有5个元素; ⑷集合(){},|0,,x y xy x y ∈R ≤是指第二和第四象限内的点集.
A .0个
B .1个
C .2个
D .3个
【例6】用列举法表示集合:10,1M m m m ⎧⎫=∈∈=⎨⎬+⎩⎭Z Z 【例7】直角坐标平面除去两点(1,1)A 、(2,2)B -可用集合表示为( )
A .{}(,)|1,1,2,2x y x y x y ≠≠≠≠
B .1(,)|1x x y y ⎧≠⎧⎪⎨⎨≠⎪⎩⎩或22x y ⎫≠⎧⎪⎨⎬≠⎪⎩⎭
C .1(,)|1x x y y ⎧≠⎧⎪⎨⎨≠⎪⎩⎩且22x y ⎫≠⎧⎪⎨⎬≠-⎪⎩⎭
D .{}2222(,)|[(1)(1)][(2)(2)]0x y x y x y -+--++≠ 【例8】下面有四个命题:
⑴集合N 中最小的数是1;
⑵若a -不属于N ,则a 属于N ; ⑶若,a b ∈∈N N ,则a b +的最小值为2; ⑷212x x +=的解可表示为{}1,1; 其中正确命题的个数为( )
A .0个
B .1个
C .2个
D .3个
【例9】方程组2219x y x y +=⎧⎨-=⎩
的解集是( ) A .()5,4 B .()5,4- C .(){}5,4- D .(){}5,4-.
【例10】已知2()(R,R)f x x ax b a b =++∈∈,{|(),R}A x x f x x ==∈,
{|[()],R}B x x f f x x ==∈.当{1,3}A =-时,用列举法表示集合B .。