导数的定义教案
导数的概念及其几何意义教案

导数的概念及其几何意义教案导数的概念及其几何意义一、导数的定义和基本概念1. 导数的定义导数是微积分学中一个非常重要的概念,它描述了函数在某一点附近的变化率。
在数学上,对于给定的函数f(x),它在某一点x0处的导数可以用极限的概念来定义,即:\[ f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) -f(x_0)}{\Delta x} \]其中,f'(x0)表示函数f(x)在点x0处的导数。
2. 导数的基本概念根据导数的定义可以知道,导数可以理解为函数图像在某一点的切线的斜率,也就是函数在该点的瞬时变化率。
导数的概念是微积分的基础,它在物理、经济、生物等领域有着广泛的应用。
二、导数的几何意义1. 切线和切线斜率在几何意义上,导数可以理解为函数图像在某一点的切线的斜率。
对于函数f(x),在点x0处的切线斜率即为该点处的导数值f'(x0)。
通过求导可以获得函数曲线在任意点的切线斜率,从而更好地理解函数图像在各个点的变化趋势。
2. 导数与函数图像的关系导数还可以帮助我们理解函数曲线的凹凸性、极值点以及拐点等性质。
对于函数f(x),如果在某一点的导数值为0,那么这个点可能是函数的极值点或者拐点。
通过导数,我们可以更直观地理解函数的整体形态和特性。
三、深入理解导数的意义1. 导数的局部性导数反映了函数在某一点附近的变化情况,是一种局部性的量。
通过导数,我们可以得知函数在某一点处的瞬时变化率,从而对函数的局部特性有更深入的理解。
2. 导数与积分的关系在微积分中,导数和积分是密切相关的。
导数描述了函数的瞬时变化率,而积分则描述了函数在一定区间内的累积效应。
导数和积分是微积分学中最重要的两个概念,它们相互补充,共同构成了微积分学的核心内容。
结语:导数作为微积分学中的重要概念,在数学和应用领域都有着广泛的意义。
通过深入理解导数的概念及其几何意义,我们可以更好地理解函数图像的变化规律,为后续的微积分学习打下扎实的基础。
大学导数的定义教案

课时:1课时教学目标:1. 理解导数的定义,掌握导数的概念。
2. 理解导数的几何意义和物理意义。
3. 能够运用导数的定义解决实际问题。
教学重点:1. 导数的定义。
2. 导数的几何意义和物理意义。
教学难点:1. 导数的定义的理解。
2. 导数的几何意义和物理意义的理解。
教学准备:1. 多媒体课件。
2. 导数定义相关的数学工具书。
教学过程:一、导入1. 回顾初中学过的函数概念,引导学生思考函数在某一点处的增减情况。
2. 引出导数的概念,提出本节课的学习目标。
二、新课讲解1. 导数的定义:- 导数是描述函数在某一点处变化快慢的量。
- 设函数y=f(x)在x0的某个邻域内有定义,当自变量x从x0变到x0+h(h≠0)时,函数值y从f(x0)变到f(x0+h)。
- 如果极限$\lim_{h \to 0} \frac{f(x0+h) - f(x0)}{h}$存在,则称此极限为函数y=f(x)在点x0的导数,记作f′(x0)或y′|_{x=x0}。
2. 导数的几何意义:- 函数在某一点处的导数表示该点切线的斜率。
- 切线斜率k=$\lim_{h \to 0} \frac{f(x0+h) - f(x0)}{h}$。
3. 导数的物理意义:- 函数在某一点处的导数表示该点处函数的变化率。
- 例如,位移函数s(t)表示物体在时间t内的位移,则导数s′(t)表示物体在时间t内的速度。
三、课堂练习1. 判断以下函数在指定点的导数是否存在:- 函数f(x)=x^2在x=1处的导数。
- 函数f(x)=sin(x)在x=0处的导数。
2. 求以下函数在指定点的导数:- 函数f(x)=2x+3在x=2处的导数。
- 函数f(x)=e^x在x=1处的导数。
四、课堂小结1. 总结本节课的学习内容,强调导数的定义、几何意义和物理意义。
2. 布置课后作业,巩固所学知识。
五、课后作业1. 完成课堂练习中的题目。
2. 查阅相关资料,了解导数的应用。
导数的概念教案及说明

导数的概念教案及说明一、教学目标1. 让学生理解导数的定义和几何意义。
2. 掌握导数的计算方法。
3. 能够应用导数解决实际问题,如速度、加速度等。
二、教学内容1. 导数的定义2. 导数的几何意义3. 导数的计算方法4. 导数在实际问题中的应用三、教学重点与难点1. 重点:导数的定义、几何意义和计算方法。
2. 难点:导数的计算方法和在实际问题中的应用。
四、教学方法1. 采用讲解、演示、练习、讨论相结合的方法。
2. 使用多媒体课件辅助教学。
五、教学过程1. 导入:回顾函数的斜率概念,引导学生思考函数在某一点的瞬时变化率。
2. 导数的定义:介绍导数的定义,强调极限的思想,引导学生理解导数的含义。
3. 导数的几何意义:通过图形演示,让学生直观地理解导数表示曲线在某一点的切线斜率。
4. 导数的计算方法:讲解导数的计算方法,包括基本导数公式、导数的四则运算等。
5. 应用导数解决实际问题:举例说明导数在实际问题中的应用,如速度、加速度等。
6. 练习:布置练习题,让学生巩固导数的概念和计算方法。
7. 总结:对本节课的内容进行总结,强调导数的重要性和应用价值。
8. 作业:布置作业,巩固所学内容。
六、教学反思在教学过程中,注意观察学生的反应,根据学生的实际情况调整教学节奏和难度。
针对学生的薄弱环节,加强讲解和练习。
七、教学评价通过课堂表现、作业和练习,评价学生对导数的理解和应用能力。
鼓励学生积极参与讨论,提高解决问题的能力。
八、课时安排本节课安排2课时,共计45分钟。
九、教学资源1. 多媒体课件2. 练习题3. 相关参考资料十、教学拓展1. 导数的进一步应用,如函数的单调性、极值等。
2. 导数在其他学科中的应用,如物理、化学等。
六、教学策略1. 案例分析:通过分析具体的函数实例,让学生理解导数的计算过程和应用场景。
2. 小组讨论:鼓励学生分组讨论导数问题,培养合作解决问题的能力。
3. 实际操作:让学生利用计算器求解导数,增强实践操作能力。
大学导数的概念教案

一、教学目标1. 知识目标:理解导数的概念,掌握导数的定义、性质和计算方法。
2. 能力目标:能够运用导数解决实际问题,提高数学思维能力。
3. 情感目标:培养学生严谨、求实的作风,激发对数学学习的兴趣。
二、教学内容1. 导数的定义2. 导数的性质3. 导数的计算方法4. 导数的应用三、教学过程(一)导入1. 引入问题:在物理学中,速度是描述物体运动快慢的物理量,那么如何描述物体在某一瞬间的运动快慢呢?2. 引出导数的概念:导数是描述函数在某一点处变化快慢的物理量。
(二)讲解导数的定义1. 定义:设函数y=f(x)在点x0的某邻域内有定义,如果极限lim[f(x) - f(x0)] / (x - x0)存在,则称函数y=f(x)在点x0可导,该极限值称为函数y=f(x)在点x0的导数,记作f'(x0)或dy/dx|x=x0。
2. 强调定义中的关键点:函数在某点的导数存在,意味着函数在该点附近的变化趋势可以由该点的导数来描述。
(三)讲解导数的性质1. 线性性质:若函数y=f(x)和y=g(x)在点x0可导,则函数y=f(x) + g(x)和y=kf(x)在点x0也可导,且(f+g)'(x0) = f'(x0) + g'(x0),(kf)'(x0) =kf'(x0)。
2. 可导性:若函数y=f(x)在点x0可导,则其反函数y=g(x)在点f(x0)也可导,且g'(f(x0)) = 1 / f'(x0)。
(四)讲解导数的计算方法1. 基本求导公式:常数的导数为0,幂函数的导数为x^n的n次方,指数函数的导数为e^x,对数函数的导数为1/x。
2. 导数的运算法则:和、差、积、商的导数法则。
(五)讲解导数的应用1. 求函数在某点的瞬时变化率。
2. 求函数在某点附近的切线方程。
3. 求函数的极值和拐点。
4. 解决实际问题。
(六)课堂小结1. 总结导数的概念、性质和计算方法。
导数的概念教案及说明

导数的概念教案及说明教学目标:1. 理解导数的定义和意义;2. 掌握导数的计算方法;3. 能够应用导数解决实际问题。
教学内容:第一章:导数的定义1.1 引入导数的概念1.2 导数的定义及其几何意义1.3 导数的计算法则第二章:导数的计算2.1 基本导数公式2.2 导数的四则运算2.3 高阶导数第三章:导数的应用3.1 函数的单调性3.2 函数的极值3.3 曲线的切线与法线第四章:导数与实际问题4.1 运动物体的瞬时速度与加速度4.2 函数的优化问题4.3 导数在经济学中的应用第五章:导数的进一步应用5.1 曲线的凹凸性与拐点5.2 函数的单调区间与最大值、最小值5.3 函数的渐近线教学步骤:1. 引入导数的概念:通过生活中的例子,如物体运动的瞬时速度,引出导数的定义。
2. 讲解导数的定义及其几何意义:解释导数的定义,并通过图形演示导数的几何意义。
3. 导数的计算法则:讲解基本导数公式,引导学生掌握导数的计算方法。
4. 导数的应用:通过实例讲解函数的单调性、极值等概念,并引导学生运用导数解决实际问题。
5. 总结与拓展:总结本章内容,提出进一步的学习要求和思考题。
教学评价:1. 课堂讲解:评价教师的讲解是否清晰、生动,能否引导学生理解和掌握导数的概念和计算方法。
2. 课堂练习:评价学生是否能够正确计算导数,并应用导数解决实际问题。
3. 课后作业:评价学生是否能够独立完成作业,并对导数的应用有深入的理解。
教学资源:1. 教案、PPT等教学资料;2. 数学软件或计算器;3. 实际问题案例。
教学建议:1. 注重引导学生从实际问题中抽象出导数的概念,提高学生的学习兴趣和积极性;2. 通过图形演示导数的几何意义,帮助学生直观理解导数的概念;3. 鼓励学生进行课堂练习和课后作业,及时巩固所学知识;4. 结合实际问题,引导学生运用导数解决实际问题,提高学生的应用能力。
第六章:导数与函数的单调性6.1 单调增函数与单调减函数6.2 利用导数判断函数的单调性6.3 单调性在实际问题中的应用第七章:函数的极值与导数7.1 极值的概念7.2 利用导数求函数的极值7.3 极值在实际问题中的应用第八章:曲线的切线与法线8.1 切线方程的求法8.2 法线方程的求法8.3 切线与法线在实际问题中的应用第九章:导数与函数的图像9.1 凹凸性的定义与判断9.2 拐点的定义与判断9.3 利用导数分析函数的图像特点第十章:导数在经济、物理等领域的应用10.1 导数在经济学中的应用10.2 导数在物理学中的应用10.3 导数在其他领域的应用案例分析教学步骤:6.1-6.3:通过具体例子讲解单调增函数与单调减函数的概念,引导学生利用导数判断函数的单调性,并应用于实际问题。
导数的概念教案及说明

导数的概念教案及说明一、教学目标1. 理解导数的定义和物理意义;2. 掌握导数的计算方法;3. 能够应用导数解决实际问题。
二、教学内容1. 导数的定义:引入极限的概念,讲解导数的定义及求导法则;2. 导数的计算:讲解基本函数的导数公式,四则运算法则,复合函数的链式法则;3. 导数的应用:讲解导数在实际问题中的应用,如运动物体的瞬时速度、加速度,函数的单调性、极值等。
三、教学重点与难点1. 导数的定义及求导法则;2. 导数的计算方法;3. 导数在实际问题中的应用。
四、教学方法1. 采用讲授法,讲解导数的定义、求导法则及应用;2. 利用例题,演示导数的计算过程;3. 引导学生运用导数解决实际问题。
五、教学过程1. 引入极限的概念,讲解导数的定义:导数表示函数在某一点的瞬时变化率,通过极限的概念来理解导数;2. 讲解基本函数的导数公式,四则运算法则,复合函数的链式法则:引导学生掌握导数的计算方法;3. 利用例题,演示导数的计算过程:让学生通过例题,加深对导数计算方法的理解;4. 讲解导数在实际问题中的应用:如运动物体的瞬时速度、加速度,函数的单调性、极值等,培养学生运用导数解决实际问题的能力;5. 课堂练习:布置相关练习题,巩固所学知识。
教学评价:通过课堂讲解、例题演示、练习题等方式,评价学生对导数的概念、计算方法及应用的掌握程度。
六、教学拓展1. 导数的几何意义:讲解导数表示曲线在某一点的切线斜率,引导学生理解导数的几何interpretation;2. 导数与函数的单调性:讲解导数与函数单调性的关系,引导学生理解如何利用导数判断函数的单调性;3. 导数与函数的极值:讲解导数与函数极值的关系,引导学生如何利用导数求函数的极值。
七、教学案例分析1. 分析实际问题,引导学生运用导数求解:如物体运动的速度、加速度问题,函数的单调性问题等;2. 分析复杂函数的导数求解过程:引导学生理解并掌握复杂函数导数的求解方法。
高等数学导数的概念教案

1. 让学生理解导数的概念,掌握导数的定义和性质。
2. 培养学生运用导数解决实际问题的能力。
3. 引导学生掌握求导数的基本方法。
二、教学内容1. 导数的定义2. 导数的性质3. 求导数的方法4. 导数在实际问题中的应用三、教学重点与难点1. 重点:导数的定义、性质和求导数的方法。
2. 难点:导数的直观理解和求复杂函数的导数。
四、教学过程1. 导入:通过生活中的实例,如速度、加速度等,引导学生思考导数的概念。
2. 讲解:讲解导数的定义,引导学生理解导数的几何意义。
3. 练习:让学生独立完成一些简单函数的导数计算,巩固导数的求法。
4. 应用:结合实际问题,让学生运用导数解决问题,体会导数的应用价值。
5. 总结:对本节课的内容进行总结,强调导数的重要性和求导数的方法。
五、课后作业1. 完成教材上的课后练习题。
2. 找一些实际问题,运用导数解决。
3. 复习本节课的内容,准备下一节课的学习。
1. 评价学生对导数概念的理解程度。
2. 评价学生掌握导数性质和求导数方法的情况。
3. 评价学生在实际问题中运用导数的熟练程度。
七、教学策略1. 采用生动的生活实例引入导数概念,提高学生的学习兴趣。
2. 通过多媒体手段展示导数的几何意义,增强学生的直观感受。
3. 设计具有梯度的练习题,让学生在实践中掌握求导数的方法。
4. 鼓励学生参与课堂讨论,提高学生的思维能力和解决问题的能力。
八、教学资源1. 教材:高等数学导数部分。
2. 多媒体课件:用于展示导数的几何意义和实例分析。
3. 练习题库:用于巩固所学知识和提高解题能力。
4. 网络资源:用于拓展学生视野,了解导数在实际应用中的广泛性。
九、教学反思在教学过程中,要及时关注学生的学习反馈,根据学生的实际情况调整教学节奏和难度。
针对学生的薄弱环节,要加强针对性训练,提高学生的理解能力和应用能力。
注重培养学生的数学思维,激发学生学习高等数学的兴趣。
十、教学拓展1. 导数在微积分学中的应用:极限、积分等。
导数的定义及可导条件教案

导数的定义及可导条件教案一、导数的定义1.导数的定义导数是函数在其中一点上的变化率,描述了函数在该点附近的变化情况。
对于函数y=f(x),在点x=a处的导数表示为f'(a)或(dy/dx),x=a,它的定义如下:f'(a) = lim(h→0) [f(a+h) - f(a)] / h其中,lim表示极限,h表示自变量x在点a处的增量。
2.几何意义导数表示了函数图像在其中一点上的切线的斜率,也就是函数曲线在该点附近的近似变化率。
如果函数在其中一点上的导数为正,说明函数在该点的图像向上运动;如果导数为负,则图像向下运动;若导数为零,则说明函数在该点处有极值。
3.物理意义导数也可以理解为物理学上的速度,例如,如果一个物体的位置随时间的变化满足函数y=f(t),那么物体在t=a时刻的速度就是f'(a)。
二、可导条件1.可导定义如果函数在其中一点附近的导数存在,那么函数在该点是可导的。
具体而言,对于函数y=f(x),如果该函数在点x=a处的导数存在,那么函数在点a可导。
2.可导的充分条件(1)函数在其中一点上可导的充分条件是:在该点附近函数图像连续;(2)在该点附近函数图像的两侧存在相同的单侧导数。
3.可导的必要条件函数在其中一点可导的必要条件是:在该点附近函数图像存在切线。
这意味着函数在该点附近不允许出现尖点、间断点、垂直切线、奇点等。
4.常见函数的可导性常见的函数可导的条件如下:(1)多项式函数、有理函数、指数函数、对数函数和三角函数在其定义域内都是可导的;(2)复合函数的可导性需要应用链式法则等求导法则来判断。
三、导数的计算方法1.基本导数公式常见函数的导数计算如下:(1)常数函数的导数为零;(2)幂函数的导数为其指数乘以x的指数减一次幂;(3)指数函数的导数为该指数乘以常数e的指数;(4)对数函数的导数为其自变量的导数的倒数;(5)三角函数的导数为其对应函数的导数。
2.导数运算法则(1)常数倍法则:导数与常数的乘积等于常数与导数的乘积;(2)和差法则:导数与和的导数等于导数的和;(3)乘积法则:导数的乘积等于第一个函数在x处的导数乘以第二个函数在x处的函数值再加上第一个函数在x处的函数值乘以第二个函数在x处的导数;(4)商法则:导数的商等于分子函数在x处的导数乘以分母函数在x处的函数值再减去分子函数在x处的函数值乘以分母函数在x处的导数,整除以分母函数在x处的函数值的平方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 导数的概念
教学目标:理解导数的概念,理解导数的几何意义,会求切线方程和法线方程。
教学重点:导数的定义。
教学难点:导数的定义。
教学方法:讲授法
教学用具:多媒体,黑板。
教学步骤:
一、导入新课:
首先提出芝诺的“飞矢不动”的怪论:他说一支射出去的箭在每一瞬间都有一个确定的位置,因而在每一瞬间都没有动。
既然每个瞬间都没有动,它怎么能够动呢?
并给出瞬间的正确含义。
1、瞬时速度
设一质点作直线运动,其运动规律为 ()s f t =,其中s 表示路程,t 表示时间。
求质点在0t t =时的瞬时速度v (0t )。
取邻近于0t 的时刻0,t t +∆那么质点在t ∆这一时间段上的平均速度为
s v t ∆=
∆=t
t f t t f ∆-∆+)()(00. 0()v t =0
lim →∆t t s
∆∆=0
lim →∆t t t f t t f ∆-∆+)()(00.
2、切线的斜率
设曲线y =)(x f 的图形如图所示, 点),(00y x M 为曲线上一定点, 过M 点作切线MT ,求切线的斜率。
切线MT 可以看作割线MN 当动点N 沿着此曲线无限接近于点M 时的极限位置。
既然割线的极限位置就是切线,我们就可以通过计算割线的斜率,然后取极限得到切线的斜率。
割线MN 的斜率为
x
y ∆∆=x x f x x f ∆-∆+)()(00.
下面来取极限。
当N 无限接近于点M 时,点N 与 点M 的横坐标之差0,x ∆→因此
k =0
lim
→∆x x y
∆∆=0
lim →∆x x x f x x f ∆-∆+)()(00.
上面这两个问题中,最后都归结为同一类型的的极限,即
当自变量的增量趋近于0时,函数增量与自变量增量比的极限。
这类极限如果存在,将极限值称为函数的导数。
二、新课教学
1、给出导数的定义 设函数y =)(x f 在点0x 的某邻域内有定义, 若极限
x x f x x f x y
x x ∆-∆+=∆∆→∆→∆)()(lim
lim
0000 存在, 则称函数y =)(x f 在点0x 处可导, 并称此极限值为函数y =)(x f 在点0x 处的导数. 记为 )(0'
x f , 0
'
x x y =或
.x x dy dx
=
2、因此,质点在时刻0t 的瞬时速度就是路程函数)(t f 在0t 处的导数; 曲线y =)(x f 在点),(00y x M 处的切线斜率就是)(x f 在0x 处的导数。
3、例 求做自由落体运动的物体在时刻0t 的瞬时速度0().v t (运动方程为12()2
h t gt =
) 解 0()v t =0lim →∆t 00()()h t t h t t +∆-∆=0lim →∆t 001122()22g t t gt t
+∆-∆
=1
2g 0lim →∆t 0022()t t t t +∆-∆=12g 0lim →∆t 202t t t t ∆+∆∆=12g 0
lim →∆t 0(2)t t +∆0gt =.
4、导数的几何意义:
曲线=y )(x f 在点00(,())x f x 处的切线方程为
-y )(0x f =('f )0x (x x -0).
曲线=y )(x f 在点00(,())x f x 处的法线方程为
-y )(0x f ='
01
()
f x - (x x -0).
例 求曲线=
y )1,1(处的切线方程和法线方程.
解 曲线=
y 在点)1,1(的切线斜率为
=k 1
'
=x y =0
lim
→∆x =∆-∆+x x 113
0lim →∆x x x
∆∆3
1=3
1
所以曲线=
y )1,1(的切线方程为
1-y =
3
1
()1-x 或 023=+-y x . 法线方程为
31-=-y (x )1- 或043=-+y x .
三、小结: 1、=)(0'
x f 000
()()
lim
x f x x f x x
∆→+∆-∆
2、物理意义:速度、加速度、物质比热、电流强度、线密度 几何意义:切线的斜率
四、板书设计:
第一节 导数的概念
一、引入: 1、()s f t =
0()v t =0
l i m
→∆t t
t f t t f ∆-∆+)
()(00.
2、y =)(x f
k =0
lim
→∆x x
x f x x f ∆-∆+)
()(00.
二、定义:
1、'
00000()()()lim
lim
x x f x x f x y
f x x x
∆→∆→+∆-∆==∆∆ 2、几何意义---切线的斜率。