小学数学分数裂项(20210723004735)
六年级奥数-分数裂项

本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。
很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。
本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。
分数裂项一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
二、“裂和”型运算:知识点拨教学目标分数裂项计算常见的裂和型运算主要有以下两种形式:(1)11a b a ba b a b a b b a+=+=+⨯⨯⨯(2)2222a b a b a ba b a b a b b a+=+=+⨯⨯⨯裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
分数裂项变形

裂和型运算与裂差型运算的对比: 裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两 抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
练习: 1 1 1 L
1
135 35 7 5 79
2001 2003 2005
【巩固】 4 4 ......
4
4
135 35 7
。
18
54
108
180
270
11 2 1 3 1 4 1 L 20 1
例 4: 2 6 12 20
420
【巩固】计算: 1 1 2 2 4 2 6 15 35 77
____。
1 1 1 1
1
例 5: 1 2 3 4 2 3 4 5 3 4 5 6
6 7 8 9 7 8 9 10
【巩固】 3 3 ......
3
1 23 4 23 45
17 1819 20
5 7 L 19
.
例 6: 1 2 3 2 3 4
8 9 10
【巩固】计算:1155( 5 7 L 17 19 )
234 345
8 9 10 9 10 11
练习: 5 6 6 7 7 8 8 9 9 10
(2)分母上均为几个自然数的乘积形式,并且满足相邻 2 个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。
二、“裂和”型运算:
常见的裂和型运算主要有以下两种形式:
(1) a b a b 1 1 (2) a2 b2 a2 b2 a b
ab ab ab b a
ab ab ab b a
分数裂项
一、“裂差”型运算
将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为
小学奥数教程-分数裂项计算 (含答案)

教师版
page 2 of 17
【考点】分数裂项
【难度】2 星
【题型】计算
【解析】 1 + 1 + 1 + + 1 = 1 × (1 − 1 + 1 − 1 + … + 1 − 1 )= 50
1×3 3×5 5× 7
99 ×101 2 3 3 5
99 101 101
【答案】 50 101
【巩固】 计算:
【考点】分数裂项
【难度】3 星
【题型】计算
【解析】原式 =1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + 1 = 1 2 5 5 7 7 11 11 16 16 22 22 29 29 2
【答案】 1 2
【例 4】 计算: (1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 ) ×128 = 8 24 48 80 120 168 224 288
【答案】12
【巩固】 251 + 251 + 251 + + 251 + 251
4 × 8 8 ×12 12 ×16
2000 × 2004 2004 × 2008
【考点】分数裂项
【难度】2 星
【题型】计算
【关键词】台湾,小学数学竞赛,初赛
【解析】 原式
=251 16
×
1 1×
2
+
2
1 ×
裂差型裂项的三大关键特征:
(1)分子全部相同,最简单形式为都是 1 的,复杂形式可为都是 x(x 为任意自然数)的,但是只要将 x 提取出来即可转化为分子都是 1 的运算。
(小学奥数)分数裂项

本講知識點屬於計算大板塊內容,其實分數裂項很大程度上是發現規律、利用公式的過程,可以分為觀察、改造、運用公式等過程。
很多時候裂項的方式不易找到,需要進行適當的變形,或者先進行一部分運算,使其變得更加簡單明瞭。
本講是整個奧數知識體系中的一個精華部分,列項與通項歸納是密不可分的,所以先找通項是裂項的前提,是能力的體現,對學生要求較高。
分數裂項一、“裂差”型運算將算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法.裂項分為分數裂項和整數裂項,常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。
遇到裂項的計算題時,要仔細的觀察每項的分子和分母,找出每項分子分母之間具有的相同的關係,找出共有部分,裂項的題目無需複雜的計算,一般都是中間部分消去的過程,這樣的話,找到相鄰兩項的相似部分,讓它們消去才是最根本的。
(1)對於分母可以寫作兩個因數乘積的分數,即1a b⨯形式的,這裏我們把較小的數寫在前面,即a b <,那麼有1111()a b b a a b=-⨯- 知識點撥教學目標分數裂項計算(2)對於分母上為3個或4個連續自然數乘積形式的分數,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我們有:1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+裂差型裂項的三大關鍵特徵:(1)分子全部相同,最簡單形式為都是1的,複雜形式可為都是x(x 為任意自然數)的,但是只要將x 提取出來即可轉化為分子都是1的運算。
(2)分母上均為幾個自然數的乘積形式,並且滿足相鄰2個分母上的因數“首尾相接”(3)分母上幾個因數間的差是一個定值。
二、“裂和”型運算:常見的裂和型運算主要有以下兩種形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型運算與裂差型運算的對比:裂差型運算的核心環節是“兩兩抵消達到簡化的目的”,裂和型運算的題目不僅有“兩兩抵消”型的,同時還有轉化為“分數湊整”型的,以達到簡化目的。
分数裂项课件

CONTENTS
目录
• 分数裂项简介 • 分数裂项的技巧 • 分数裂项的实例解析 • 分数裂项的练习题及解析 • 分数裂项的总结与展望
CHAPTER
01
分数裂项简介
分数裂项的定义
01
分数裂项是一种数学技巧,用于 将一个分数拆分成两个或多个分 数的和或差,以便于计算或简化 表达式的形式。
绩。
分数裂项在数学竞赛和高考中具 有广泛应用,是数学学习的重要
内容之一。
分数裂项的未来发展方向
随着数学教育的不断发展和改革,分数裂项技巧的教学方法和手段也需要不断更新 和完善。
未来可以探索更多分数裂项在实际问题中的应用,例如在物理、化学等其他学科中 的应用。
可以通过开展跨学科的研究,将分数裂项与其他数学技巧和方法进行结合,以更好 地解决各种复杂的数学问题。
解析:这道题是分数裂项的基础题, 通过将两个分数相乘,得到一个新的
分数。
答案:$frac{1}{4}$
题目:计算 $frac{3}{4} times frac{4}{3}$
解析:这道题同样是分数裂项的基础 题,通过将两个分数相乘,得到一个 新的分数。
答案:$1$
进阶练习题
题目
计算 $frac{1}{2} times frac{3}{5} + frac{2}{3} times frac{4}{7}$
分数裂项在日常生活中的应用
分数裂项不仅仅在数学题目中有应用,在日常生活中也有广泛的应用。
例如,在购物时经常会遇到折扣和优惠券的问题,这时可以通过分数裂项来计算 最优的购买方案。例如,对于折扣$frac{3}{10}$,可以将其拆分为$frac{1}{3} + frac{2}{10}$,分别代表直接折扣和满额折扣,从而帮助消费者更好地理解优惠 方案。
小学数学(分数裂项)

分数裂项本课将学习通过巧妙的计算将题目变简(一)分数裂差:1丶直接裂差:形如ba b a a b a b b a a b 11--=⨯⨯=⨯-此时,不难发现,当分母为两个数的乘积,分子正好为这两个数的差值时,可以将这个数裂为两个数作差(后面简称裂差).2丶间接裂差:形如)(ba abc b a a b a b c b a c b a c 111-⨯-=⨯-⨯-=-⨯=⨯此时,不难发现,当此时分子并不为分母两数差值时,也可以裂项,不过此时会多了一个系数a b c-3丶多数裂差:形如ba b a c b a a c b a c c b a a c ⨯⨯=⨯⨯⨯⨯=⨯⨯-1-1-此时,不难发现,当此时分母不为两数乘积时,也可裂和,两数裂成1个1个的作差,三数裂成两个两个的作差,同理多数,且此时差值由大减小决定(二)分数裂和:4丶裂和:形如ba b a a b a b b a a b 11+=⨯+⨯=⨯+当分母为两个数的乘积,分子正好为这两个数的和,这类型的数,可以直接裂和(三)平方差公式:()()22b a b a b a -=-+(四)思路剖析:5丶首先得明白这类型题的一个考察形式,目的就是让我们分数间相互抵消,或者相互凑整.6丶口诀:①:连加连减必裂差②:加减混合必裂和③:连乘必定会约分例题一:(1)3130130291131211211111101⨯+⨯++⨯+⨯+⨯ (2)5614213012011216121++++++例题二:10098398963863643423⨯+⨯++⨯+⨯+⨯ 例题三:1009799981079874654132⨯⨯++⨯⨯+⨯⨯+⨯⨯ 例题四:12200720083420092010200620072008200820092010200720082009201020082010⨯⨯⨯⨯⨯⨯⨯⨯++⨯⨯⨯⨯+⨯⨯+例题五:10099981543143213211⨯⨯++⨯⨯+⨯⨯+⨯⨯ 例题六:101100991543974329832199⨯⨯++⨯⨯+⨯⨯+⨯⨯ 例题七:10432994328432332211⨯⨯⨯⨯+⨯⨯⨯⨯++⨯⨯+⨯+ 例题八:)()(999819776135493251011-515019831992101011⨯++⨯+⨯+⨯⨯⨯++⨯+⨯+⨯自我巩固巩固一:871761651541431321211⨯+⨯+⨯+⨯+⨯+⨯+⨯巩固二:56174216301520141213612211++++++巩固三:101982141121182852⨯++⨯+⨯+⨯ 巩固四:22122166161151174743422211+⨯+⨯+⨯+⨯+⨯+⨯巩固五:103211432113211211++++++++++++++ 巩固六:2019201943433232212122222222⨯+++⨯++⨯++⨯+ 巩固七:12959697459899100959697989910096979910097100⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯++⨯⨯⨯⨯+⨯⨯+ 巩固八:)()()()(10219211043213214)321()21(3++⨯++++++++⨯+++++⨯+拓展练习拓展一:1311241192097167512538314⨯-⨯+⨯-⨯+⨯-⨯拓展二:11010990897271565542413029201912116521+++++++++拓展三:)()()(())()(())((20171141131121120171411311211413112113121121++++++++++++++ 拓展四:120171201712015120151717151513132222222222-++-+++-++-++-+拓展五:(21191727532531219172752532311114382⨯⨯++⨯⨯+⨯⨯-⨯++⨯+⨯+⨯ 拓展六:10981943273215⨯⨯++⨯⨯+⨯⨯ 拓展七:272624231986517643154211⨯⨯⨯++⨯⨯⨯+⨯⨯⨯+⨯⨯⨯。
分数裂项六种题型

分数裂项六种题型一、整数裂项整数裂项是一种常见的数学问题,通过将整数拆分成两个整数之和或之差,从而简化计算或证明某些数学关系式。
以下是一些常见的整数裂项例子:1.将整数拆分成两个相邻整数之和或之差,例如:5=2+3,10=3+7。
2.将整数拆分成两个绝对值相等的数之和或之差,例如:10=3+(-3),20=7+(-7)。
二、分数裂项分数裂项是将分数拆分成两个或多个分数的和或差,以便于计算或证明某些数学关系式。
以下是一些常见的分数裂项例子:1.将分数拆分成两个同分母的分数的和或差,例如:1/2=1/(4)+1/(4),2/3=1/(3)+1/(3)。
2.将分数拆分成两个异分母的分数的和或差,例如:2/5=3/(15)+(-4)/(15),4/7=3/(21)+4/(21)。
三、混合数裂项混合数裂项是指将整数、分数等不同类型的数拆分成两个或多个数之和或差。
以下是一些常见的混合数裂项例子:1.将混合数拆分成一个整数和一个分数的和或差,例如:3/2=2+(1/2),5=3+(2/2)。
2.将混合数拆分成两个分数之和或差,例如:4/3=1/(2)+3/(4),7/6=1/(3)+1/(2)。
四、裂项相消法裂项相消法是一种常见的数学方法,用于简化分数的计算。
其基本思想是将一个分数拆分成两个或多个分数的和或差,以便于约简分数。
以下是一个裂项相消法的例子:求和:1/2+1/6+1/12+1/20+...的值。
解答:原式=(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+...通过约简,我们得到原式=1-1/n(当n趋于无穷大时)。
五、分式裂项相消法分式裂项相消法是一种将分式拆分成多个分式的和或差,然后约简的方法。
以下是一个分式裂项相消法的例子:求分式:(a^2-b^2)/(a^2+b^2)的值。
解答:原式=(a^2-b^2)/(a^2+b^2)=(a-b)(a+b)/(a^2+b^2)=(a-b)/(a+b)+(a+b) /(a-b)。
六年级奥数-分数裂项

本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。
很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。
本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。
分数裂项一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
二、“裂和”型运算:知识点拨教学目标分数裂项计算常见的裂和型运算主要有以下两种形式:(1)11a b a ba b a b a b b a+=+=+⨯⨯⨯(2)2222a b a b a ba b a b a b b a+=+=+⨯⨯⨯裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数裂差考试要求( 1)灵巧运用分数裂差计算惯例型分数裂差乞降( 2)能经过变型进行复杂型分数裂差计算乞降知识构造一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这类拆项计算称为裂项法 .裂项分为分数裂项和整数裂项,常有的裂项方法是将数字分拆成两个或多个数字单位的和或差。
碰到裂项的计算题时,要认真的察看每项的分子和分母,找出每项分子分母之间拥有的同样的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相像部分,让它们消去才是最根本的。
1、关于分母能够写作两个因数乘积的分数,即 1 形式的,这里我们把较小的数写在前面,即 a b ,ba那么有 1b 1 (11 )a b a a b2、关于分母上为 3 个或 4 个自然数乘积形式的分数,我们有:1 1 [ 1 1 ]n (n k ) ( n 2k) 2k n (n k ) ( n k)( n 2k )1(n 1 [ 12k ) (n1 ]n (n k ) ( n 2k) 3k) 3k n (n k) ( n k) ( n 2k ) (n 3k)3、关于分子不是 1k 1 1 的状况我们有:k) n n kn(nh h 1 1n n k k n n k2k1 1n n k n 2k n n k n k n 2k3k1 1n n k n 2k n 3k n n k n 2k n k n 2k n 3kh h1 1n n k n 2k2k n n k n k n 2kh h1 1n n k n 2k n 3k3k n n k n 2k n k n 2k n 3k21 1 12n2n 1 2n 1 12n 1 2n 12二、裂差型裂项的三大重点特点:( 1)分子所有同样,最简单形式为都是 1 的,复杂形式可为都是 x(x 为随意自然数 ) 的,可是只需将x 提拿出来即可转变为分子都是1 的运算。
( 2)分母上均为几个自然数的乘积形式,而且知足相邻 2 个分母上的因数“首尾相接”( 3)分母上几个因数间的差是一个定值。
重难点( 1)分子不是 1 的分数的裂差变型;( 2)分母为多个自然数相乘的裂差变型。
例题精讲一、用裂项法求1型分数乞降n(n1)剖析:1 型( n 为自然数)n(n 1)由于11= n n 1【例 1】 填空:n1 n 1( n 为自然数),因此有裂项公式:11 1n(n 1) n(n 1) n(n 1) n( n 1) n n 1(1)1- 1=( 2) 12 (3)11( 4) 2 13 212 3( 5)1 (6)11 (7)99 1(8)1159 6059 6010099100【考点】分数裂项【难度】 ☆ 【题型】填空【分析】( 1)原式 = 1 ;( 2)原式 =11 ;( 3)原式 =2 1 ;(4)原式 = 11 ;( 5)原式 = 1 1 ;1 21 2 32 3 59 60 ( 6)原式 =1 ;(7)原式 = 11 ;( 8)原式 = 1 。
59 6099 100 99 100【答案】( 1)1;(2)11 ;(3) 1 3 ;(4)11 ;( 5) 1 1 ;( 6) 59 1 ;(7) 11 ;1 21 22 23 59 6060 99 1001 (8)。
99 100【稳固】 1 1 1 1 1 。
2 23 34 45 5 61【考点】分数裂项【难度】☆☆【题型】填空【分析】原式1 1 1 1 1 1 1 1 51 2 2 3 5 6 1 6 6【答案】5。
6【例 2】计算: 1 1 (1)10 11 11 12 6059【考点】分数裂项【难度】☆☆【题型】解答【分析】原式1 1(1 1 1 1 1 1 1 ( )11) ...... (60)60 12 10 11 12 59 101【答案】。
【稳固】计算:1 1 1 1 11985 1986 1986 1987 1995 1996 1996 1997 1997【考点】分数裂项【难度】☆☆【题型】解答【分析】原式1 1 1 1 1 1 1 1 1 11985 1986 1986 1987 1995 1996 1996 1997 1997 1985 1【答案】。
1985【例 3】计算:11 2 2 4 ____。
2 6 15 35 77【考点】分数裂项【难度】☆☆【题型】填空【分析】原式1 32 53 7 5 11 72 6 15 35 771 1 1 1 1 1 1 1 12 23 3 5 5 7 7 1111111011【答案】10。
11【稳固】11 1 1 1 1 1 1 _______。
6 12 20 3042 5672 90【考点】分数裂项【难度】 ☆☆【题型】填空【分析】原式 =11 1 11 1 1 16 12 20 3042 56 72 90111111112 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1011= 2 102 =5【答案】25【例 4】 计算:11 1 1 1 1 1 11 = 。
26 1220 30 42 56 7290【考点】分数裂项【难度】 ☆☆ ☆【题型】解答【分析】原式1 ( 13 1 1 5 5 11 7 7 1 8 1 9 1 )2 234 4 6 6 8 9 101 1 1 1 1112 (3 3 49)2101 11)2 ( 1021101【答案】。
1 11411【稳固】计算: 123202026 12420【考点】分数裂项【难度】☆☆☆【题型】解答【分析】原式12 3 20 1 1 1 1 12 6 122042021011111 12 23 34 45 2021210 11 1 1 1 1 1 12 2 33 420 21210 112120 21021【答案】 21020。
21【例 5】 计算: 20081200912010 12011 11854108 180 【考点】分数裂项【难度】 ☆☆ ☆【分析】原式20082009 2010 20112012163 2010 51 1 1 1 1 1 1 91 2 235 6510050545【答案】 10050。
2012 1 =。
270【题型】填空111169 9 12 12 15 15 18【稳固】计算:15 11 19 29 97019899 .2 6 12 2030 97029900【考点】分数裂项【难度】 ☆☆ ☆【题型】填空 【分析】原式1 1 11 11112 6 129900991111 2 2 399 10099 11 1 1 1 12 2 39910099 11100198 100【答案】 98 1 。
1001 二、用裂项法求型分数乞降n( n k)1剖析:n(n k)型。
( n,k 均为自然数)11 11 由于 1(11 ) 1 [ n kn]1 ,因此n(n k) k ()nn kk nn kk n(n k ) n(n k)n(n k)【例 6】 11 11 3 3 5 5 799 1011【考点】分数裂项【难度】 ☆☆【题型】填空【分析】1 3 1 5 199 1 1 (1 1 1 1 11) 50 1 3 5 7 101 2 3 3 599 101 101【答案】 50 。
101【稳固】 计算:11 1 11 113 15 356399 143 195【考点】分数裂项【难度】 ☆☆【题型】解答 【分析】原式11 11 1 111 3 3 5 5 77 9 9 11 11 13 13 15 1 1 1 1 1 1 1 1 12 13 2 35213 151 1 12 1 157157【答案】。
【例 7】 计算: 251 11 13 3 55 723 251 【考点】分数裂项【难度】 ☆☆【题型】填空【分析】原式1 11 1 1 11 251 1 25 24 12253 3 523 25 21225225【答案】 12。
【稳固】 计算: ( 1 11 1 1 11 1 ) 128 8 24 48 80 120 168224 288【考点】分数裂项【难度】 ☆☆【题型】填空【分析】原式 ( 14 4 1 18 16 1 ) 1282 6 6181 ( 1 1 1 1 11) 1282 2 4 4 616 18( 1 1)64 2 184 28 9【答案】 28 4。
9k 三、用裂项法求型分数乞降n( n k)k剖析:n(n k)型( n,k 均为自然数)由于 11 = n kn =k,因此k = 1 1 n n k n(n k) n( n k) n(n k) n(n k)n n k【例8】求23 252 7 ...... 97 2 的和 13 5 99【考点】分数裂项【难度】 ☆☆ 【题型】解答【分析】原式(1 1 )1 1 1 1 1 13 () ()...... ()3 55 797 99119998 99【答案】98 。
99【稳固】222210 9 9 85 4 4 3【考点】分数裂项【难度】 ☆☆【题型】填空【分析】原式 21 1 1 11 1 1 1 1 1 79 10 8 94 5 3 4210153 7【答案】。
【例 9】 计算: 3334 4776 791【考点】分数裂项【难度】 ☆☆【题型】解答【分析】原式 =11 1 11 1 1 4 477679= 1179787【答案】78。
79【稳固】33335 5 8 8 1132 352【考点】分数裂项【难度】 ☆☆【题型】解答【分析】原式 = 1 11 1 11 1 12 55 8 81132 35=1 12 35=3370【答案】33。
704 4 44【例 10】77 165202121【考点】分数裂项【难度】 ☆☆【题型】解答【分析】原式 =44 447 7 11 11 15 43 4731 1 1 1111 1 =7 711 11154347311=3 4744=141【答案】44。
141【稳固】 (22 22 ) 463 15 35575【考点】分数裂项【难度】 ☆☆【题型】解答【分析】原式 =2 2 22 46 33 5 5 723 1251 1 1 1 1 1 1 1=3 3 5 572346125= 11 46254 = 4425【答案】 444。
25讲堂检测1、 计算:1 11 12 23 3 449 501【考点】分数裂项【难度】 ☆☆【题型】解答【分析】原式= 1-1+ 1 - 1+ +1- 1=4922 3495050【答案】49。
502、 计算:1 1 1 11 1 164824 48 80120168 224【考点】分数裂项【难度】 ☆☆【题型】解答【分析】原式1 11 1 1 1 1648 24 48 80 120 168 224= 1111 1 11648 3 8 6 810 8 15 8 21 8 281 8=111 1 1 1 1 1 6483 6 10 15 21 28=8 2 2 222 2 22 6122030 42 56=822222 221 22 33 44 5 5 6 6 7 7 8=8 211111111 22 3 3 4 4 5 5 6 6 7 78=161 1 1 1 1 1 1 1 1 1 1 1 1 122 33 44 55 66 77 8=16118=14【答案】 14。