基波与谐波
基波和谐波

什么是谐波?"谐波"一词起源于声学。
有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。
傅里叶等人提出的谐波分析方法至今仍被广泛应用。
电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。
当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。
1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。
到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。
70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。
世界各国都对谐波问题予以充分和关注。
国际上召开了多次有关谐波问题的学术会议,不少国家和国际学术组织都制定了限制电力系统谐波和用电设备谐波的标准和规定。
供电系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。
谐波频率与基波频率的比值(n=fn/f1)称为谐波次数。
电网中有时也存在非整数倍谐波,称为非谐波(Non-harmonics)或分数谐波。
谐波实际上是一种干扰量,使电网受到“污染”。
电工技术领域主要研究谐波的发生、传输、测量、危害及抑制,其频率范围一般为2≤n≤40一、1. 何为谐波?在电力系统中谐波产生的根本原因是由于非线性负载所致。
当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。
谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。
谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。
谐波可以I区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、1 4,6、8等为偶次谐波,如基波为50Hz时,2次谐波为lOOHz,3次谐波则是150Hz。
基波和谐波的关系

基波和谐波的关系嘿,朋友们!今天咱来聊聊基波和谐波这俩家伙的关系,这可有意思啦!咱先打个比方哈,基波就好比是一个团队里的核心人物,那是稳稳当当的主角呀!而谐波呢,就像是围绕着主角的那些配角们。
基波它自己就能撑起一片天,有着自己独特的作用和价值。
那谐波呢,虽然是配角,但也不是可有可无的呀!它们的存在让整个局面变得更加丰富多彩。
就好像一场精彩的演出,主角固然重要,可要是没有那些各具特色的配角来衬托,那也会显得很单调不是?你想想看,在我们的生活中不也是这样吗?有时候我们可能是那个基波,在自己的领域里闪闪发光,发挥着关键的作用。
但有时候我们也可能是那些谐波,在别人的光芒下,贡献着自己的一份力量,让整体更加完美。
谐波们虽然单个看起来可能不那么起眼,但它们组合起来的力量可不容小觑啊!就像一群小蚂蚁,单个没啥威胁,可要是团结起来,那力量可大了去了。
它们和基波相互配合,共同构建出一个更加复杂、更加美妙的世界。
再比如说音乐吧,基波就像是主旋律,让我们能一下子抓住歌曲的核心。
而谐波呢,就是那些让音乐更加丰富、更加有韵味的音符。
没有了谐波,音乐不就变得干巴巴的啦?我们的生活不也是一首曲子吗?基波是我们的主要目标和追求,而谐波就是那些让我们生活变得有趣、有滋有味的小细节。
它们一起奏响了我们人生的乐章,让我们的生活充满了起伏和变化。
而且啊,基波和谐波的关系还很稳定呢!它们可不是随便凑在一起的,而是有着内在的规律和联系。
这就像我们和朋友之间的关系,要相互理解、相互支持,才能长久地走下去呀。
你说,要是没有了谐波,只有基波,那世界得多么单调啊!就像只有一种颜色的画,多没意思呀。
反过来,要是只有谐波,没有基波这个主心骨,那不就乱套了嘛!所以啊,我们要珍惜基波和谐波的这种关系,让它们在我们的生活中发挥出最大的作用。
无论是在工作中还是生活里,我们都要善于发现和利用它们。
总之呢,基波和谐波的关系那是相当重要且奇妙的呀!它们相互依存、相互成就,共同创造了一个丰富多彩的世界。
基波和谐波

基波定义:将非正弦周期信号按傅里叶级数展开,频率与原信号频率相同的量。
复合波的最低频率分量。
在复杂的周期性振荡中,包含基波和谐波。
和该振荡最长周期相等的正弦波分量称为基波。
相应于这个周期的频率称为基本频率。
频率等于基本频率的整倍数的正弦波分量称为谐波。
谐波定义:其频率为基波的倍数的辅波或分量。
定义:从严格的意义来讲,谐波是指电流中所含有的频率为基波的整数倍的电量,一般是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量。
从广义上讲,由于交流电网有效分量为工频单一频率,因此任何与工频频率不同的成分都可以称之为谐波,这时“谐波”这个词的的意义已经变得与原意有些不符。
正是因为广义的谐波概念,才有了“分数谐波”、“间谐波”、“次谐波”等等说法。
产生的原因:由于正弦电压加压于非线性负载,基波电流发生畸变产生谐波。
主要非线性负载有UPS、开关电源、整流器、变频器、逆变器等。
谐波的分类:谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。
谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。
根据谐波频率的不同,可以分为:奇次谐波:额定频率为基波频率奇数倍的谐波,被称为“奇次谐波”,如3、5、7次谐波;偶次谐波:额定频率为基波频率偶数倍的谐波,被称为“偶次谐波”,如2、4、6、8次谐波。
一般地讲,奇次谐波引起的危害比偶次谐波更多更大。
在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。
对于三相整流负载,出现的谐波电流是6n±1次谐波,例如5、7、11、13、17、19等。
变频器主要产生5、7次谐波。
分量谐波:频率为基波非整数倍的分量称为间谐波,有时候也将低于基波的间谐波称为次谐波,次谐波可看成直流与工频之间的间谐波。
五、谐波的参数5.1、谐波电流:谐波电流是由设备或系统引入的非正弦特性电流。
周期信号频谱的特点

周期信号频谱的特点
1.频谱中存在基波和谐波:周期信号的频谱中不仅包含了基波分量,还包括了各个谐波分量。
基波分量对应信号的基本周期,而谐波分量则是基波频率的整数倍。
基波和谐波分量在周期信号频谱中呈现出一定的规律性,即谐波分量的幅值逐渐减小,但频率却逐渐增大。
2.频谱具有离散特性:周期信号频谱中的频率值是离散的,即频谱中只有一系列离散的频率分量。
这是因为周期信号具有固定的周期,其频谱中的各个频率值与基波频率和谐波频率有关。
3.频谱对称性:周期信号频谱在频率轴上具有对称性。
具体而言,当周期信号是实值信号时,其频谱是共轭对称的,即频谱图中的正频率部分与负频率部分关于频率轴对称。
当周期信号是复值信号时,其频谱是共轭对称的,即频谱图中的正频率部分与负频率部分关于频率轴对称。
4.频谱幅度递减:周期信号频谱中各个频率分量的幅度递减性质。
基波分量的幅度最大,而谐波分量的幅度逐渐减小。
如果周期信号中存在无穷多个谐波分量且每个谐波分量的幅度适当,则可以近似地表示任意的周期信号。
5.频谱包含整个频率范围:周期信号频谱中包含了整个频率范围,即从直流成分到无限大频率。
直流成分对应于基波分量,而高频成分对应于谐波分量。
因此,周期信号的频谱图是一个连续的、无缺口的频率分布。
总之,周期信号频谱的特点可以概括为:包含基波和谐波分量,具有离散特性,具有对称性,谐波分量幅度递减,频率范围包含整个频域。
通过对周期信号频谱的分析,可以了解信号的频率分布情况,从而更好地理解和处理周期信号。
基波和谐波

"谐波"一词起源于声学。
有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。
傅里叶等人提出的谐波分析方法至今仍被广泛应用。
电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。
当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。
1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。
到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。
70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。
世界各国都对谐波问题予以充分和关注。
国际上召开了多次有关谐波问题的学术会议,不少国家和国际学术组织都制定了限制电力系统谐波和用电设备谐波的标准和规定。
供电系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。
谐波频率与基波频率的比值(n=fn/f1)称为谐波次数。
电网中有时也存在非整数倍谐波,称为非谐波(Non-harmonics)或分数谐波。
谐波实际上是一种干扰量,使电网受到“污染”。
电工技术领域主要研究谐波的发生、传输、测量、危害及抑制,其频率范围一般为2≤n≤40一、1. 何为谐波?在电力系统中谐波产生的根本原因是由于非线性负载所致。
当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。
谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。
谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。
谐波可以I区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、1 4,6、8等为偶次谐波,如基波为50Hz时,2次谐波为lOOHz,3次谐波则是150Hz。
基波及谐波功率计算 matlab

一、概述基波及谐波功率计算是电力系统分析中的重要内容,它可以帮助工程师准确地评估电力系统中各种谐波对系统的影响,从而采取相应的措施进行调节和优化。
Matlab作为一种强大的计算工具,可以很好地辅助工程师进行基波和谐波功率计算。
本文将介绍如何使用Matlab进行基波和谐波功率计算的方法及其实现。
二、基波功率计算在电力系统中,基波功率是指系统中电压和电流的正弦成分所对应的有功和无功功率。
基波功率的计算方法通常是通过电压和电流的波形进行快速傅立叶变换(FFT),然后将得到的频谱分量与基波频率对应的幅值进行计算。
Matlab提供了丰富的信号处理工具箱,可以很方便地实现基波功率计算。
1. 采集电压和电流数据首先需要采集系统中的电压和电流数据,通常可以通过传感器采集或者从实际测量设备中读取。
2. 进行FFT变换将采集到的电压和电流波形进行FFT变换,可以得到频谱分量和对应的幅值。
3. 计算基波功率找到基波频率对应的幅值,并根据电压和电流的相位差计算出基波功率的实部和虚部,即得到系统中的基波有功和无功功率。
三、谐波功率计算除了基波功率外,系统中的谐波功率也是需要进行计算和分析的重要内容。
谐波功率是指系统中各种非整数倍频率成分所对应的有功和无功功率,它们通常会对系统的稳定性和设备的寿命造成影响。
Matlab 可以很好地辅助计算系统中的谐波功率,以下是具体的实现方法。
1. 滤除基波频率成分首先需要通过滤波器或者其他方法将采集到的电压和电流波形中的基波频率成分去除,只保留谐波成分。
2. 计算谐波功率对于每个谐波成分,进行FFT变换并计算其幅值,然后根据电压和电流的相位差计算出谐波的有功和无功功率。
3. 总谐波功率将各个谐波成分的功率求和,即可得到系统中的总谐波有功和无功功率。
四、Matlab实现Matlab提供了丰富的工具箱和函数,可以很方便地实现基波和谐波功率的计算。
用户可以通过编写脚本或者函数的方式来实现上述的计算过程,也可以直接调用Matlab提供的相关函数来进行计算。
基波与谐波相位关系-概述说明以及解释

基波与谐波相位关系-概述说明以及解释1.引言1.1 概述概述部分是引言的一部分,用于介绍本文的主题和目的。
在这篇文章中,我们将讨论基波和谐波之间的相位关系。
基波和谐波是在信号分析和电力系统中经常遇到的概念。
基波是一种频率最低的振动模式,而谐波则是具有相对较高频率的振动模式。
本文将从基础的定义和特点开始,介绍基波和谐波的含义以及它们在实际应用中的重要性。
然后,我们将深入探讨基波和谐波之间的相位关系。
相位关系描述了基波和谐波之间的时间延迟或相位差。
我们将讨论不同相位关系的解释和物理意义,并探索基波和谐波相位关系在不同领域中的实际应用。
在文章的结论部分,我们将对基波与谐波的相位关系进行总结,并讨论其在电力系统、音频信号处理、图像处理等领域的应用前景和展望。
最后,我们将得出结论,并提出一些未来可能的研究方向。
通过这篇文章,读者将能够全面了解基波和谐波之间的相位关系及其在实际应用中的重要性。
无论你是电力系统工程师、物理学家、音频工程师还是对信号处理感兴趣的学生,本文都将为你提供有关基波与谐波相位关系的深入知识和见解。
让我们开始探索基波和谐波之间神奇的相位关系吧!1.2 文章结构本文主要分为引言、正文和结论三个部分。
在引言部分,首先对基波与谐波相位关系的背景和意义进行概述。
接着介绍文章的结构,并说明本文旨在探讨基波和谐波的相位关系。
通过引言部分的阐述,读者可以对文章的主题和内容有一个初步的了解,为后续的正文部分打下基础。
正文部分是本文的核心部分,主要分为三个小节:基波的定义与特点、谐波的定义与特点以及基波与谐波的相位关系。
在第二节中,将详细介绍基波的定义和其在波动现象中的重要性,同时探讨基波的特点和相关理论知识。
第三节将对谐波进行定义和特点的阐述,以及谐波与基波的关系。
最后,在第四节中,将深入研究基波与谐波的相位关系,探讨它们之间的相位差和相位关系的物理意义。
结论部分对整个文章进行总结和归纳,总结基波与谐波的相位关系的主要结果和发现。
基波与谐波

基波复合波的最低频率分量。
在复杂的周期性振荡中,包含基波和谐波。
和该振荡最长周期相等的正弦波分量称为基波。
相应于这个周期的频率称为基本频率。
频率等于基本频率的整倍数的正弦波分量称为谐波。
谐波-一、简介1. 何为谐波?“谐波”一词起源于声学。
有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。
傅里叶等人提出的谐波分析方法至今仍被广泛应用。
电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。
当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。
1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。
到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。
70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。
世界各国都对谐波问题予以充分和关注。
国际上召开了多次有关谐波问题的学术会议,不少国家和国际学术组织都制定了限制电力系统谐波和用电设备谐波的标准和规定。
谐波研究的意义,道德是因为谐波的危害十分严重。
谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。
谐波可引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容器等设备烧毁。
谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱。
对于电力系统外部,谐波对通信设备和电子设备会产生严重干扰。
2. 谐波抑制为解决电力电子装置和其他谐波源的谐波污染问题,基本思路有两条:一条是装设谐波补偿装置来补偿谐波,这对各种谐波源都是适用的;另一条是对电力电子装置本身进行改造,使期不产生谐波,且功率因数可控制为1,这当然只适用于作为主要谐波源的电力电子装置。
装设谐波补偿装置的传统方法就是采用LC调谐滤波器。
这种方法既可补偿谐波,又可补偿无功功率,而且结构简单,一直被广泛使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基波与谐波
一、基本概念
基波和谐波是电力系统中常用的概念,它们在电路中起着重要的作用。
1. 基波
基波是电路中最低频率的成分,通常也是最重要的成分。
在交流电路中,基波的频率与电网的供电频率相同,例如中国大陆的电网供电频率为50Hz,那么基波频率就是50Hz。
2. 谐波
谐波是基波频率的整数倍的成分,是由于电力设备和电子设备中的非线性负载引起的。
在电力系统中,谐波会对整个电网的稳定性和安全运行造成很大的影响,因此要对谐波进行有效的控制。
二、基波与谐波之间的关系
基波是谐波的基础,谐波是基波的倍数。
基波是交流电路中的主要成分,其他谐波成分都是基波的倍数。
三、谐波的分类
根据谐波频率的不同,谐波可以分为不同的级别。
1. 一次谐波
一次谐波是指谐波频率为基波频率的整数倍,例如50Hz的基波频率上,第一个一次谐波就是100Hz。
2. 二次谐波
二次谐波是指谐波频率为基波频率的两倍,例如50Hz的基波频率上,第一个二次
谐波就是100Hz。
3. 三次谐波
三次谐波是指谐波频率为基波频率的三倍,例如50Hz的基波频率上,第一个三次
谐波就是150Hz。
4. 更高次谐波
谐波的次数可以一直延伸下去,例如四次谐波、五次谐波等,它们都是基波频率的整数倍。
四、谐波的影响与控制
谐波会引起电压和电流的畸变,进而导致功率因数下降、线损增加、设备寿命缩短等问题。
因此,对谐波的控制非常重要。
1. 检测与监测
为了有效控制谐波,首先需要对谐波进行检测与监测,了解电力系统中的谐波情况。
2. 滤波与补偿
一旦检测到谐波超过了安全范围,就需要对谐波进行滤波与补偿。
常用的方法包括使用谐波滤波器、谐波补偿装置等。
3. 谐波的源头控制
除了对谐波进行滤波与补偿外,还可以从源头上进行控制。
例如对谐波产生的电力设备进行优化、选择质量更好的电力设备等。
4. 标准与规范
为了有效控制谐波,各国都制定了相应的标准与规范,对电力设备进行限制与要求,以确保电力系统的安全运行。
五、总结
基波与谐波是电力系统中重要的概念,谐波对电力系统的稳定性和安全运行产生影响。
通过检测、滤波与补偿、源头控制以及遵守标准与规范,可以有效控制谐波的产生和传播,确保电力系统的正常运行。