高考数学中的数列问题解析
高三数学《数列》高考分析

日期
2020.3.11
科目
数学
中心发言人
赵艳萍
课题
《数列》高考分析
参加教师
高三全体数学教师
考向分析
1.数列是高考的必考内容,从2011年---2019年的高考试题来看,理科每年的题量和分值一般都是两个小题共10分,或一个大题共12分,其中2013年是两选一填共15分,2019年是一选一填和概率压轴题里的一问,约14分;文科2011年、2013年、2019年两个小题一个大题共17分,2012年和2015年是一选一填共10分,其他年份是一道解答题共12分。
2.解答题的命题特点分析
等差(比)数列的基本运算:a1,an,Sn,n,d(q)这五个量中已知其中的三个量,求另外两个量.已知数列的递推关系式以及某些项,求数列的通项公式.已知等差(比)数列的某些项或前几项的和,求其通项公式.等差(比)数列的判断与证明以及等差数列前n项和的最值问题等。结合模考中的数列大题是劣构问题,可提醒学生选择有益于形成解决方案的信息和技能。
二、例题分析
1.选择题和填空题的命题特点分析
选择、填空题常考题型主要涉及等差、等比数列的通项公式与前项和公式,知三求二,借助方程组求解基本量,有时也会用到“整体求解”的技巧;有些客观题如能灵活运用数列的性质求解则可以大大简化运算。
例题:
此处设置了5个小题,都是近两年高考试题改编题。建议强调通性通法,设基本量解方程或方程组,如果已知等差中有几项和是常数的计算问题,一般是性质与求和公式结合使用,体现整体代入的思想。
(1).从试题命制角度看,重视对基础知识、基本技能和基本数学思想方法的考查。
(2).从课程标准角度看,要求学生“探索并掌握等差数列、等比数列的通项公式与前n项和的公式,能在具体问题情境中,发现数列的等差关系或等比关系,并能用有关知识解决相应的问题”。
高三数学数列求和试题答案及解析

高三数学数列求和试题答案及解析1.设数列的前项积为,且(n∈N*).(1)求,并证明:;(2)设,求数列的前项和.【答案】(1),祥见解析;(2).【解析】(1)n取1,2,3求出,再利用与的关系将已知等式用表示即可证明;(2)由(1)问的结论利用等差数列的通项公式先求出的通项,再由通项利用裂项相消法求.试题解析:(1)由题意可得:,所以 5分(2)数列为等差数列,,, 10分【考点】1.数列的通项公式;2.数列的前n项和.2.已知函数且an =f(n)+f(n+1),则a1+a2+a3+…+a100等于()A.0 B.100 C.-100 D.10200【答案】B【解析】由题意,a1+a2+a3+…+a100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100,选B.3.已知等差数列的前项和为,且、成等比数列.(1)求、的值;(2)若数列满足,求数列的前项和.【答案】(1),;(2).【解析】(1)解法1是先令求出的表达式,然后令,得到计算出在的表达式,利用为等差数列得到满足通式,从而求出的值,然后利用条件、成等比数列列方程求出的值,从而求出、的值;解法2是在数列是等差数列的前提下,设其公差为,利用公式以及对应系数相等的特点得到、和、之间的等量关系,然后利用条件、成等比数列列方程求出的值,从而求出、的值;(2)解法1是在(1)的前提下求出数列的通项公式,然后利用错位相减法求数列的和;解法2是利用导数以及函数和的导数运算法则,将数列的前项和视为函数列的前项和在处的导数值,从而求出. 试题解析:(1)解法1:当时,, 当时,.是等差数列, ,得. 又,,,、、成等比数列, ,即,解得.解法2:设等差数列的公差为,则., ,,.,,.、、成等比数列,,即,解得.;(2)解法1:由(1)得.,.,①,② ①②得..解法2:由(1)得.,.,① 由,两边对取导数得,.令,得..【考点】1.定义法求通项;2.错位相减法求和;3.逐项求导4. 数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( ). A .3 690 B .3 660 C .1 845 D .1 830【答案】D【解析】∵a n +1+(-1)n a n =2n -1, 当n =2k 时,a 2k +1+a 2k =4k -1, 当n =2k -1时,a 2k -a 2k -1=4k -3,从而a2k+1+a2k-1=2,a2k+3+a2k+1=2,因此a2k+3=a2k-1,∴a1=a5=a9=…=a61,于是S60=a1+a2+a3+…+a60=(a2+a3)+(a4+a5)+…+(a60+a61)=3+7+11+…+(2×60-1)==1 830.5.如图,是一问题的程序框图,则输出的结果是 .【答案】【解析】根据流程图可知它的作用是求的值,由等差数列的前项和公式可知,.【考点】1.程序框图及其应用;2.等差数列的前项和6.阅读如图程序框图,若输入的,则输出的结果是()A.B.C.D.【答案】A【解析】,,不成立,执行第一次循环,,;不成立,执行第二次循环,,;不成立,执行第三次循环,,;;不成立,执行第一百次循环,,;成立,输出,故选A.【考点】1.数列求和;2.算法与程序框图7.数列中,已知且,则前项和为,则的值为__________.【答案】【解析】因为,所以公差,由得,所以.【考点】1、等差数列的定义;2、等差数列的前项和公式.8.已知数列满足,.(1)求数列的通项公式;(2)令,数列{bn }的前n项和为Tn,试比较Tn与的大小,并予以证明.【答案】(1);(2)详见解析.【解析】(1)由于数列的递推式的结构为,在求数列的通项的时候可以利用累加法来求数列的通项公式;(2)先求出数列的通项公式,根据其通项结构选择错位相减法求出数列的前项和,在比较与的大小时,一般利用作差法,通过差的正负确定与的大小,在确定差的正负时,可以利用数学归纳法结合二项式定理进行放缩来达到证明不等式的目的.试题解析:(1)当时,.又也适合上式,所以.(2)由(1)得,所以.因为①,所以②.由①-②得,,所以.因为,所以确定与的大小关系等价于比较与的大小.当时,;当时,;当时,;当时,;……,可猜想当时,.证明如下:当时,.综上所述,当或时,;当时,.【考点】累加法、错位相减法、二项式定理9.已知数列的通项公式为,那么满足的整数()A.有3个B.有2个C.有1个D.不存在【答案】B【解析】时,,所以,此时从到共项,从到共项,或,有2个值【考点】数列求和点评:本题中数列求和要依据通项公式特点分两种情况,分别讨论所求各项所属的范围及应代入的公式,第二种情况找到各项中正负项分界的位置是难点10.已知数列满足,则的前n项和_____【答案】【解析】根据题意,由于故可知的前n项和,故答案为【考点】数列的递推关系点评:主要是考查了数列的递推关系的运用,来求解数列的通项公式以及数列的和的运用,属于中档题。
三年高考(2015-2017)高考数学试题解析13数列小题理

专题13数列小题1。
【2017课标1,理4】记nS 为等差数列{}na 的前项和.若4524a a +=,648S =,则{}na 的公差为A .1B .2C .4D .8 【答案】C 【解析】试题分析:设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S ad a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C.秒杀解析:因为166346()3()482a a S a a +==+=,即3416aa +=,则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C 。
【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}na 为等差数列,若m np q +=+,则mnpqa a a a +=+。
2。
【2017课标3,理9】等差数列{}na 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}na 前6项的和为A .24-B .3-C .3D .8 【答案】A 【解析】故选A 。
【考点】等差数列求和公式;等差数列基本量的计算【名师点睛】(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.3。
【2017课标II,理3】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【答案】B【解析】试题分析:设塔的顶层共有灯x盏,则各层的灯数构成一个首项为x,公比为2的等比数列,结合等比数列的求和公式有:()712381 12x⨯-=-,解得3x=,即塔的顶层共有灯3盏,故选B。
高考数学复习考点题型专题讲解10 数列的递推关系与通项

高考数学复习考点题型专题讲解专题10 数列的递推关系与通项1.求数列的通项公式是高考的重点内容,等差、等比数列可直接利用其通项公式求解,但有些数列是以递推关系给出的,需要构造新数列转为等差或等比数列,再利用公式求解.2.利用数列的递推关系求数列的通项,常见的方法有:(1)累加法,(2)累乘法,(3)构造法(包括辅助数列法,取倒数法,取对数法等).类型一利用a n与S n的关系求通项1.已知S n求a n的步骤(1)先利用a1=S1求出a1.(2)用n-1替换S n中的n得到一个新的关系,利用a n=S n-S n-1(n≥2)便可求出当n≥2时a n的表达式.(3)对n=1时的结果进行检验,看是否符合n≥2时a n的表达式,若符合,则数列的通项公式合写;若不符合,则应该分n=1与n≥2两段来写.2.S n与a n关系问题的求解思路(1)利用a n=S n-S n-1(n≥2)转化为只含S n,S n-1的关系式,再求解.(2)利用S n-S n-1=a n(n≥2)转化为只含a n,a n-1的关系式,再求解.例1 (1)已知数列{a n}为正项数列,且4S1a1+2+4S2a2+2+…+4S nan+2=S n,求数列{a n}的通项公式;(2)已知数列{a n}的各项均为正数,且S n=12⎝⎛⎭⎪⎫an+1an,求数列{a n}的通项公式.解(1)由题知4S1a1+2+4S2a2+2+…+4S nan+2=S n,①则4S1a1+2+4S2a2+2+…+4S n-1an-1+2=S n-1(n≥2,n∈N*),②由①-②可得4S nan+2=a n,即4S n=a2n+2a n,n≥2,n∈N*,在已知等式中令n=1,得4S1a1+2=S1,则4S1=a1(a1+2),③满足上式,所以4S n=a2n+2a n,④则4S n-1=a2n-1+2a n-1(n≥2),⑤④-⑤可得4a n=a2n+2a n-a2n-1-2a n-1⇔2(a n+a n-1)=a2n-a2n-1. 因为a2n-a2n-1=(a n+a n-1)(a n-a n-1),a n>0,所以a n-a n-1=2,所以{a n}为公差是2的等差数列,由③可解得a1=2,所以a n=2+(n-1)×2=2n(n∈N*).(2)由S n=12⎝⎛⎭⎪⎫an+1an,得当n ≥2时,S n =12⎝ ⎛⎭⎪⎫S n -S n -1+1S n -S n -1,所以2S n =S n -S n -1+1S n -S n -1,即S n +S n -1=1S n -S n -1,所以S 2n -S 2n -1=1,所以{S 2n }为公差是1的等差数列,所以S 2n =S 21+(n -1).在S n =12⎝ ⎛⎭⎪⎫a n +1a n 中,令n =1可得S 1=12⎝ ⎛⎭⎪⎫a 1+1a 1,解得a 1=1,所以S 2n =n ,所以S n =n ,所以a n =⎩⎨⎧S n -S n -1,n ≥2,S 1,n =1=⎩⎨⎧n -n -1,n ≥2,1,n =1,所以a n =n -n -1(n ∈N *).训练1 已知正项数列{a n +2n -1}的前n 项和为S n ,且4S n =a 2n +(2n +2)a n +4n -1+2n -3.求数列{a n }的通项公式.解 由题知4S n =a 2n +(2n +2)a n +4n -1+2n -3=(a n +2n -1)2+2(a n +2n -1)-3, 令b n =a n +2n -1, 则4S n =b 2n +2b n -3,①当n ≥2时,4S n -1=b 2n -1+2b n -1-3,②由①-②,得4b n =b 2n -b 2n -1+2b n -2b n -1, 整理得(b n -b n -1-2)(b n +b n -1)=0. 因为b n >0,所以b n -b n -1=2(n ≥2). 又4S 1=b 21+2b 1-3, 即b 21-2b 1-3=0,解得b 1=3或b 1=-1(舍去),所以数列{b n }是以3为首项,2为公差的等差数列, 则b n =2n +1,所以a n =b n -2n -1=2n +1-2n -1(n ∈N *). 类型二 构造辅助数列求通项(1)形如a n =pa n -1+q (p ≠1,q ≠0)的形式,通常可构造出等比数列a n +q p -1=p ⎝⎛⎭⎪⎫a n -1+q p -1,进而求出通项公式. (2)形如a n =pa n -1+q n ,此类问题可先处理q n ,两边同时除以q n ,得a nq n =pa n -1q n+1,进而构造成a n q n =p q ·a n -1q n -1+1,设b n =a n q n ,从而变成b n =pqb n -1+1,从而将问题转化为第(1)个问题.(3)形如qa n -1-pa n =a n a n -1,可以考虑两边同时除以a n a n -1,转化为q a n -pa n -1=1的形式,进而可设b n =1a n,递推公式变为qb n -pb n -1=1,从而转变为上面第(1)个问题.(4)形如a n =ma n -1k (a n -1+b )(其中n ≥2,mkb ≠0)取倒数,得到1a n =k m ·⎝ ⎛⎭⎪⎫1+b a n -1⇔1a n=kb m ·1a n -1+km,转化为(1)中的类型. (5)形如a n =pa r n -1(n ≥2,a n ,p >0)两边取常用对数,得lg a n =r lg a n -1+lg p ,转化为(1)中的类型. 考向1 构造法求通项例2 (1)在数列{a n }中,a 1=12,a n =2a n +1-⎝ ⎛⎭⎪⎫12n(n ∈N *),求数列{a n }的通项公式;(2)设数列{a n }的前n 项和为S n ,且a 1=1,S n +1-2S n =1,n ∈N *,求数列{a n }的通项公式. 解 (1)由a n =2a n +1-⎝ ⎛⎭⎪⎫12n,得2n a n =2n +1a n +1-1,所以数列{2n a n }是首项和公差均为1的等差数列, 于是2n a n =1+(n -1)×1=n , 所以a n =n2n (n ∈N *).(2)因为S n +1-2S n =1, 所以S n +1+1=2(S n +1),n ∈N *. 因为a 1=S 1=1, 所以可推出S n +1>0,故S n +1+1S n +1=2, 即{S n +1}为等比数列. 因为S 1+1=2,公比为2, 所以S n +1=2n , 即S n =2n -1.因为S n -1=2n -1-1(n ≥2),所以当n ≥2时,a n =S n -S n -1=2n -1, 又a 1=1也满足此式, 所以a n =2n -1(n ∈N *). 考向2 取倒数法求通项 例3 已知数列{a n }满足a n +1=a n a n +3,a 1=2,求数列{a n }的通项公式.解 对a n +1=a na n +3两边取倒数,可得1a n +1=3a n+1,由1a n +1+12=3⎝ ⎛⎭⎪⎫1a n +12. ∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +12是首项为1,公比为3的等比数列,∴1a n +12=3n -1, 则a n =22·3n -1-1(n ∈N *). 考向3 取对数法求通项例4 设正项数列{a n }满足a 1=1,a n =2a 2n -1(n ≥2).求数列{a n }的通项公式. 解 对a n =2a 2n -1两边取对数得log 2a n =1+2log 2a n -1, ∴log 2a n +1=2(log 2a n -1+1), 设b n =log 2a n +1,则{b n }是以2为公比,1为首项的等比数列,所以b n =2n -1, 即log 2a n +1=2n -1, 故a n =22n -1-1(n ∈N *).训练2 (1)若数列{a n }中,a 1=3,且a n +1=a 2n ,则a n =________. (2)已知数列{a n }中,a 1=1,a n =a n -12a n -1+1,则a n =________.答案 (1)32n -1(n ∈N *) (2)12n -1(n ∈N *) 解析 (1)易知a n >0,由a n +1=a 2n 得lg a n +1=2lg a n , 故{lg a n }是以lg 3为首项,以2为公比的等比数列, 则lg a n =lg a 1·2n -1=lg 32n -1, 即a n =32n -1(n ∈N *). (2)由a n =a n -12a n -1+1,取倒数得1a n =2+1a n -1,故⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是以2为公差,1为首项的等差数列,所以1a n=1+2(n -1)=2n -1,即a n =12n -1(n ∈N *).(3)在数列{a n }中,a 1=1,a n +1=12a n +1,求数列{a n }的通项公式.解 因为a n +1=12a n +1,所以a n +1-2=12(a n -2),所以数列{a n -2}是以-1为首项,12为公比的等比数列,所以a n -2=-1×⎝ ⎛⎭⎪⎫12n -1,所以a n =2-⎝ ⎛⎭⎪⎫12n -1,n ∈N *.一、基本技能练1.(2022·湖北新高考协作体联考)已知数列{a n }的首项a 1=2,其前n 项和为S n ,若S n +1=2S n +1,则a 7=________. 答案 96解析 因为S n +1=2S n +1, 所以S n =2S n -1+1(n ≥2), 两式相减得a n +1=2a n (n ≥2),又因为a 1=2,S 2=a 1+a 2=2a 1+1,得a 2=3, 所以数列{a n }从第二项开始成等比数列, 因此其通项公式为a n =⎩⎨⎧2,n =1,3·2n -2,n ≥2, 所以a 7=3×25=96.2.已知数列{a n }的前n 项和为S n ,a 1=1,S n =n 2a n (n ∈N *),则数列{a n }的通项公式为________. 答案a n =2n (n +1)(n ∈N *)解析 由S n =n 2a n 可得, 当n ≥2时,S n -1=(n -1)2a n -1, 则a n =S n -S n -1=n 2a n -(n -1)2a n -1,即(n2-1)a n=(n-1)2a n-1,故anan-1=n-1n+1,所以a n=anan-1·an-1an-2·an-2an-3·…·a3a2·a2a1·a1=n-1n+1·n-2n·n-3n-1·…·24×13×1=2n(n+1).当n=1时,a1=1满足a n=2n(n+1).故数列{a n}的通项公式为a n=2n(n+1),n∈N*.3.已知正项数列{a n}满足a1=2,a n+1=a n,则a n=________.答案221-n(n∈N*)解析将a n+1=a n两边取以2为底的对数得log2a n+1=12log2an,∴数列{log2an}是以1为首项,12为公比的等比数列,故log2an=1×⎝⎛⎭⎪⎫12n-1=21-n,即a n=221-n(n∈N*).4.数列{a n}的首项a1=2,且a n+1=3a n+2(n∈N*),令b n=log3(a n+1),则b n=________. 答案n(n∈N*)解析由a n+1=3a n+2(n∈N*)可知a n+1+1=3(a n+1),又a1=2,知a n+1≠0,所以数列{a n+1}是以3为首项,3为公比的等比数列,因此a n+1=3·3n-1=3n,故b n =log 3(a n +1)=n .5.(2022·南京调研)在数列{b n }中,b 1=-1,b n +1=b n 3b n +2,n ∈N *,则通项公式b n =________.答案 12n -3(n ∈N *)解析 由b n +1=b n 3b n +2,且b 1=-1.易知b n ≠0,得1b n +1=2b n+3.因此1b n +1+3=2⎝ ⎛⎭⎪⎫1b n +3,1b 1+3=2, 故⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n +3是以2为首项,2为公比的等比数列,于是1b n+3=2·2n -1,可得b n =12n-3,n ∈N *. 6.在数列{a n }中,a 1=1,a n =2a n -1+ln 3(n ≥2),则数列{a n }的通项a n =________. 答案 (1+ln 3)·2n -1-ln 3(n ∈N *)解析 由a n =2a n -1+ln 3得a n +ln 3=2(a n -1+ln 3), 则{a n +ln 3}是以1+ln 3为首项,2为公比的等比数列, 所以a n +ln 3=(1+ln 3)·2n -1, 因此a n =(1+ln 3)·2n -1-ln 3(n ∈N *).7.已知数列{a n }满足:a 1=1,a 2=3,a n +2=a n +1+2a n .某同学已经证明了数列 {a n +1-2a n }和数列{a n +1+a n }都是等比数列,则数列{a n }的通项公式是a n =________. 答案 2n +1-(-1)n -13(n ∈N *)解析因为a n+2=a n+1+2a n,所以当n=1时,a3=a2+2a1=5.令b n=a n+1-2a n,则{b n}为等比数列. 又b1=a2-2a1=1,b2=a3-2a2=-1,所以等比数列{b n}的公比q=b2b1=-1,所以b n=(-1)n-1,即a n+1-2a n=(-1)n-1.①令c n=a n+1+a n,则{c n}为等比数列,c1=a2+a1=4,c2=a3+a2=8,所以等比数列{c n}的公比q1=c2c1=2,所以c n=4×2n-1=2n+1,即a n+1+a n=2n+1.②联立①②,解得a n=2n+1-(-1)n-13.8.(2022·青岛二模)已知数列{a n},{b n}满足a1=12,a n+b n=1,b n+1=bn1-a2n,则b2 023=________.答案2 023 2 024解析因为a n+b n=1,b n+1=bn1-a2n,所以1-a n+1=1-a n(1-a n)(1+a n),a n +1=1-11+a n =a n1+a n ,所以1a n +1=1a n+1,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是等差数列,其公差为1,首项为1a 1=2,所以1a n=2+(n -1)×1=n +1,所以a n =1n +1, 所以b n =n n +1,所以b 2 023=2 0232 024.9.已知数列{a n }的前n 项和S n 满足2S n -na n =3n (n ∈N *),且S 3=15,则S 10=________. 答案 120解析 当n =1时,2S 1-a 1=3, 解得a 1=3. 又2S n -na n =3n ,①当n ≥2时,2S n -1-(n -1)a n -1=3(n -1),② 所以①-②得(n -1)a n -1-(n -2)a n =3,③ 当n ≥3时,(n -2)a n -2-(n -3)a n -1=3,④ 所以④-③得(n -1)·a n -1-(n -2)a n =(n -2)a n -2-(n -3)a n -1, 可得2a n -1=a n +a n -2,所以数列{a n }为等差数列,设其公差为d .因为a 1=3,S 3=3a 1+3d =9+3d =15, 解得d =2, 故S 10=10×3+10×92×2=120. 10.已知数列{a n }满足a n +1=2a n -n +1(n ∈N *),a 1=3,则数列{a n }的通项公式为________.答案a n =2n +n (n ∈N *) 解析∵a n +1=2a n -n +1, ∴a n +1-(n +1)=2(a n -n ), ∴a n +1-(n +1)a n -n=2,∴数列{a n -n }是以a 1-1=2为首项,2为公比的等比数列, ∴a n -n =2·2n -1=2n , ∴a n =2n +n (n ∈N *).11.数列{a n }满足a n +1=3a n +2n +1,a 1=-1,则数列{a n }的前n 项和S n =________. 答案3n +12-2n +2+52(n ∈N *)解析∵a n +1=3a n +2n +1, ∴a n +12n +1=32·a n2n+1, ∴a n +12n +1+2=32⎝ ⎛⎭⎪⎫a n 2n +2, ∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n +2是以a 12+2=32为首项,32为公比的等比数列,∴a n 2n +2=32×⎝ ⎛⎭⎪⎫32n -1=⎝ ⎛⎭⎪⎫32n,∴a n =3n -2n +1,∴S n =(31+32+…+3n )-(22+23+…+2n +1)=3-3n +11-3-4-2n +21-2=3n +12-2n +2+52(n ∈N *).12.已知在数列{a n }中,a 1=1,a 2=2,a n +1=2a n +3a n -1,则{a n }的通项公式为________. 答案a n =3n -(-1)n4(n ∈N *)解析∵a n +1=2a n +3a n -1, ∴a n +1+a n =3(a n +a n -1),∴{a n +1+a n }是以a 2+a 1=3为首项,3为公比的等比数列, ∴a n +1+a n =3×3n -1=3n .① 又a n +1-3a n =-(a n -3a n -1),∴{a n +1-3a n }是以a 2-3a 1=-1为首项,-1为公比的等比数列, ∴a n +1-3a n =(-1)×(-1)n -1=(-1)n ,② 由①-②得4a n =3n -(-1)n , ∴a n =3n -(-1)n4(n ∈N *).二、创新拓展练13.(2022·金丽衢12校联考)已知数列{a n }满足a 1=1,且T n =a 1a 2…a n ,若T n +1=a n T na 2n +1,n ∈N *,则( )A.a 50∈⎝ ⎛⎭⎪⎫112,111B.a 50∈⎝ ⎛⎭⎪⎫111,110C.a 10∈⎝ ⎛⎭⎪⎫18,17D.a 10∈⎝ ⎛⎭⎪⎫16,15答案 B解析 因为T n =a 1a 2…a n , 所以a n +1=T n +1T n. 因为T n +1=a n T na 2n +1, 所以a n +1=a n a 2n +1,所以1a n +1=a n +1a n.因为a 1=1>0,所以1a n +1>1a n >0,a 2=12, 所以0<a n +1<a n ≤1, 所以1a 2n +1=a 2n +1a 2n+2,所以a 2n +2=1a 2n +1-1a 2n ∈⎝ ⎛⎦⎥⎤2,94,n ≥2.由累加法可得1a 210-1a 22∈(16,18),所以1a 10∈(20,22),所以a 10∈⎝ ⎛⎭⎪⎫2222,510,同理可得a 50∈⎝⎛⎭⎪⎫1121,110=⎝ ⎛⎭⎪⎫111,110,故选B. 14.(多选)(2022·武汉调研)已知数列{a n }满足a 1=1,a n +1=a n 2+3a n(n ∈N *),则下列结论正确的是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +3为等比数列 B.{a n }的通项公式为a n =12n +1-3C.{a n }为递增数列D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和T n =2n +2-3n -4答案 ABD 解析 因为1a n +1=2+3a na n =2a n+3, 所以1a n +1+3=2⎝ ⎛⎭⎪⎫1a n +3, 又1a 1+3=4≠0,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +3是以4为首项,2为公比的等比数列,所以1a n+3=4×2n -1,则a n =12n +1-3, 所以{a n }为递减数列,⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和T n =(22-3)+(23-3)+…+(2n +1-3)=22+23+…+2n +1-3n =4(1-2n )1-2-3n =2n +2-3n -4,故ABD 正确.15.(多选)南宋数学家杨辉所著的《详解九章算法·商功》中出现了如图所示的形状,后人称为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球,……,设各层球数构成一个数列{a n },则( )A.a 4=12B.a n +1=a n +n +1C.a 100=5 050D.2a n +1=a n ·a n +2答案 BC解析 由题意知,a 1=1,a 2=3,a 3=6,…,a n =a n -1+n , 故a n =n (n +1)2,∴a 4=4×(4+1)2=10,故A 错误;a n +1=a n +n +1,故B 正确; a 100=100×(100+1)2=5 050,故C 正确;2a n +1=(n +1)(n +2),a n ·a n +2=n (n +1)(n +2)(n +3)4,显然2a n +1≠a n ·a n +2,故D 错误.16.(多选)已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依次类推,第n 项记为a n ,数列{a n }的前n 项和为S n ,则( ) A.a 60=16 B.S 18=128 C.a k 2+k 2=2k -1D.S k 2+k 2=2k -k -1答案 AC解析 由题意可将数列分组: 第一组为20, 第二组为20,21, 第三组为20,21,22, ……,则前k 组一共有1+2+…+k =k (1+k )2个数.第k 组第k 个数为2k -1, 故a k 2+k 2=2k -1,所以C 正确.因为10×(10+1)2=55,所以a 55=29,又11×(11+1)2=66,则a 60为第11组第5个数,第11组为20,21,22,23,24,25,26,27,28,29,210, 故a 60=24=16,所以A 正确.每一组数的和为20+21+…+2k -1=2k -12-1=2k -1,故前k 组数之和为21+22+ (2)-k =2(2k -1)2-1-k =2k +1-2-k ,S k 2+k 2=2k +1-k -2,所以D 错误.S 15=26-5-2=57,S 18=S 15+20+21+22 =26-5-2+7=64,所以B 错误.故选AC. 17.已知数列{a n }满足a 1=3,a n +1=7a n -2a n +4,则该数列的通项公式a n =________. 答案4·6n -1-5n -12·6n -1-5n -1(n ∈N *)解析 由a n +1-1a n +1-2=7a n -2a n +4-17a n -2a n +4-2=7a n -2-(a n +4)7a n -2-2(a n +4)=65·a n -1a n -2,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n -1a n -2是首项为a 1-1a 1-2=2,公比为65的等比数列,所以a n -1a n -2=2×⎝ ⎛⎭⎪⎫65n -1,解得a n =12×⎝ ⎛⎭⎪⎫65n -1-1+2=4·6n -1-5n -12·6n -1-5n -1,n ∈N *.18.(2022·徐州考前卷)设各项均为正数的数列{a n }的前n 项和为S n ,写出一个满足S n =⎝ ⎛⎭⎪⎫2-12n -1a n 的通项公式:a n =________.答案 2n (答案不唯一)解析 当a n =2n时,S n =2(1-2n )1-2=2n +1-2,⎝ ⎛⎭⎪⎫2-12n -1a n =⎝⎛⎭⎪⎫2-22n 2n=2n +1-2=S n ,∴a n =2n 满足条件.。
高考数学数列求和错位相减裂项相消(解析版)全

数列求和-错位相减、裂项相消◆错位相减法错位相减法是求解由等差数列a n 和等比数列b n 对应项之积组成的数列c n (即c n =a n b n )的前n 项和的方法.这种方法运算量较大,要重视解题过程的训练.在讲等比数列的时候, 我们推导过等比数列的求和公式,其过程正是利用错位相减的原理, 等比数列的通项b n 其实可以看成等差数列通项a n a n =1 与等比数列通项b n 的积.公式秒杀:S n =(A ⋅n +B )q n -B (错位相减都可化简为这种形式,对于求解参数A 与B ,可以采用将前1项和与前2项和代入式中,建立二元一次方程求解.此方法可以快速求解出结果或者作为检验对错的依据.)【经典例题1】设数列a n 的前n 项和为S n ,若a 1=1,S n =a n +1-1.(1)求数列a n 的通项公式;(2)设b n =na n +1,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1n ∈N ∗ ; (2)T n =2-n +22n.【解析】(1)因为a 1=1,S n =a n +1-1.所以S 1=a 2-1,解得a 2=2.当n ≥2时,S n -1=a n -1,所以a n =S n -S n -1=a n +1-a n ,所以2a n =a n +1,即a n +1a n=2.因为a 2a 1=2也满足上式,所以a n 是首项为1,公比为2的等比数列,所以a n =2n -1n ∈N ∗ .(2)由(1)知a n +1=2n ,所以b n =n2n ,所以T n =1×12+2×12 2+3×12 3+⋯+n ×12 n⋯①12T n =1×12 2+2×12 3+⋯+(n -1)×12 n +n ×12n +1⋯②①-②得12T n =12+12 2+12 3+⋯+12 n -n ×12 n +1=121-12 n1-12-n ×12 n +1=1-1+n 2 12 n ,所以T n =2-n +22n.【经典例题2】已知等差数列a n 的前n 项和为S n ,数列b n 为等比数列,且a 1=b 1=1,S 3=3b 2=12.(1)求数列a n ,b n 的通项公式;(2)若c n =a n b n +1,求数列c n 的前n 项和T n .【答案】(1)a n =3n -2,b n =4n -1(2)T n =4+n -1 4n +1【解析】(1)设等差数列a n 的公差为d ,等比数列b n 的公比为q ,由题意得:3a 1+3d =12,解得:d =3,所以a n =1+3n -1 =3n -2,由3b 2=12得:b 2=4,所以q =a2a 1=4,所以b n =4n -1(2)c n =a n b n +1=3n -2 ⋅4n ,则T n =4+4×42+7×43+⋯+3n -2 4n ①,4T n =42+4×43+7×44+⋯+3n -2 4n +1②,两式相减得:-3T n =4+3×42+3×43+3×44+⋯+3×4n -3n -2 4n +1=4+3×16-4n +11-4-3n -2 4n +1=-12+3-3n 4n +1,所以T n =4+n -1 4n +1【经典例题3】已知各项均为正数的等比数列a n 的前n 项和为S n ,且S 2=6,S 3=14.(1)求数列a n 的通项公式;(2)若b n =2n -1a n,求数列b n 的前n 项和T n .【答案】(1)a n =2n n ∈N * (2)T n =3-2n +32n 【解析】(1)设等比数列a n 的公比为q ,当q =1时,S n =na 1,所以S 2=2a 1=6,S 3=3a 1=14,无解.当q ≠1时,S n =a 11-q n 1-q ,所以S 2=a 11-q 21-q =6,S 3=a 11-q 31-q=14.解得a 1=2,q =2或a 1=18,q =-23(舍).所以a n =2×2n -1=2n n ∈N * .(2)b n =2n -1a n =2n -12n .所以T n =12+322+523+⋯+2n -32n -1+2n -12n ①,则12T n=122+323+524+⋯+2n -32n+2n -12n +1②,①-②得,12T n =12+222+223+224+⋯+22n -2n -12n +1=12+2122+123+124+⋯+12n -2n -12n +1=12+2×141-12n -1 1-12-2n -12n +1=32-2n +32n +1.所以T n =3-2n +32n.【练习1】已知数列a n 满足a 1=1,a n +1=2a n +1n ∈N ∗ .(1)求数列a n 的通项公式;(2)求数列n a n +1 的前n 项和S n .【答案】(1)a n =2n -1(2)S n =n -1 ⋅2n +1+2【解析】(1)由a n +1=2a n +1得:a n +1+1=2a n +1 ,又a 1+1=2,∴数列a n +1 是以2为首项,2为公比的等比数列,∴a n +1=2n ,∴a n =2n -1.(2)由(1)得:n a n +1 =n ⋅2n ;∴S n =1×21+2×22+3×23+⋅⋅⋅+n -1 ⋅2n -1+n ⋅2n ,2S n =1×22+2×23+3×24+⋅⋅⋅+n -1 ⋅2n +n ⋅2n +1,∴-S n =2+22+23++2n-n ⋅2n +1=21-2n1-2-n ⋅2n +1=1-n ⋅2n +1-2,∴S n =n -1 ⋅2n +1+2.【练习2】已知数列a n 的前n 项和为S n ,且S n =2a n -1.(1)求a n 的通项公式;(2)设b n =na n ,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1(2)T n =(n -1)⋅2n +1【解析】(1)令n =1得S 1=a 1=2a 1-1,∴a 1=1,当n ≥2时,S n -1=2a n -1-1,则a n =S n -S n -1=2a n -2a n -1,整理得a n =2a n -1,∴an a n -1=2,∴数列a n 是首项为1,公比为2的等比数列,∴a n =2n -1;(2)由(1)得b n =na n =n ⋅2n -1,则T n =1⋅20+2⋅21+3⋅22+⋅⋅⋅+n ⋅2n -1,2T n =1⋅21+2⋅22+3⋅23+⋅⋅⋅+n ⋅2n ,两式相减得-T n =20+21+22+23+⋅⋅⋅+2n -1-n ⋅2n =1-2n1-2-n ⋅2n ,化简得T n =1-2n +n ⋅2n =(n -1)⋅2n +1.【练习3】已知数列a n 的前n 项和为S n ,且3S n =4a n -2.(1)求a n 的通项公式;(2)设b n =a n +1⋅log 2a n ,求数列b n 的前n 项和T n .【答案】(1)a n =22n -1(2)T n =409+6n -59×22n +3【解析】(1)当n =1时,3S 1=4a 1-2=3a 1,解得a 1=2.当n ≥2时,3a n =3S n -3S n -1=4a n -2-4a n -1-2 ,整理得a n =4a n -1,所以a n 是以2为首项,4为公比的等比数列,故a n =2×4n -1=22n -1.(2)由(1)可知,b n =a n +1⋅log 2a n =2n -1 ×22n +1,则T n =1×23+3×25+⋯+2n -1 ×22n +1,4T n =1×25+3×27+⋯+2n -1 ×22n +3,则-3T n =23+26+28+⋯+22n +2-2n -1 ×22n +3=23+26-22n +41-4-2n -1 ×22n +3=-403-6n -53×22n +3.故T n =409+6n -59×22n +3.【练习4】已知数列a n 满足a 1=1,a n +1=2n +1a na n +2n(n ∈N +).(1)求证数列2n a n 为等差数列;(2)设b n =n n +1 a n ,求数列b n 的前n 项和S n .【答案】(1)证明见解析 (2)S n =n -1 ⋅2n +1+2【解析】(1)由已知可得a n +12n +1=a n a n +2n ,即2n +1a n +1=2n a n +1,即2n +1a n +1-2n a n =1,∴2n a n 是等差数列.(2)由(1)知,2n a n =2a 1+n -1 ×1=n +1,∴a n =2nn +1,∴b n =n ⋅2nS n =1⋅2+2⋅22+3⋅23+⋅⋅⋅+n ⋅2n2S n =1⋅22+2⋅23+⋅⋅⋅+n -1 ⋅2n +n ⋅2n +1相减得,-S n=2+22+23+⋅⋅⋅+2n-n⋅2n+1=21-2n1-2-n⋅2n+1=2n+1-2-n⋅2n+1∴S n=n-1⋅2n+1+2◆裂项相消法把数列的通项拆成相邻两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.在消项时要注意前面保留第几项,最后也要保留相对应的倒数几项.例如消项时保留第一项和第3项,相应的也要保留最后一项和倒数第三项.常见的裂项形式:(1)1n(n+k)=1k1n-1n+k;(2)1(2n-1)(2n+1)=1212n-1-12n+1;(3)1n+k+n=1k(n+k-n);(4)2n+1n2(n+1)2=1n2-1(n+1)2;(5)2n2n-12n+1-1=12n-1-12n+1-1;(6)2n(4n-1)n(n+1)=2n+1n+1-2nn;(7)n+1(2n-1)(2n+1)2n =1(2n-1)2n+1-1(2n+1)2n+2;(8)(-1)n(n+1)(2n+1)(2n+3)=14(-1)n2n+1-(-1)n+12n+3(9)(-1)nn-n-1=(-1)n(n+n-1)=(-1)n n-(-1)n-1n-1(10)1n(n+1)(n+2)=121n(n+1)-1(n+1)(n+2).(11)n⋅n!=n+1!-n!(12)kk+1!=1k!-1k+1!【经典例题1】已知正项数列a n中,a1=1,a2n+1-a2n=1,则数列1a n+1+a n的前99项和为( )A.4950B.10C.9D.14950【答案】C【解析】因为a2n+1-a2n=1且a21=1,所以,数列a2n是以1为首项,1为公差的等差数列,所以,a2n=1+n-1=n,因为数列a n为正项数列,则a n=n,则1a n+1+a n=1n+1+n=n+1-nn+1+nn+1-n=-n+n+1,所以,数列1a n+1+a n的前99项和为-1+2-2+3-⋯-99+100=10-1=9.故选:C.【经典例题2】数列a n 的通项公式为a n =2n +1n 2n +12n ∈N *,该数列的前8项和为__________.【答案】8081【解析】因为a n =2n +1n 2n +12=1n 2-1(n +1)2,所以S 8=1-122+122-132 +⋯+182-192 =1-181=8081.故答案为:8081.【经典例题3】已知数列a n 的前n 项和为S n =n 2,若b n =1a n a n +1,则数列{b n }的前n 项和为________.【答案】n 2n +1【解析】当n =1时,a 1=S 1=12=1,当n ≥2时,a n =S n -S n -1=n 2-n -1 2=2n -1,且当n =1时,2n -1=1=a 1,故数列a n 的通项公式为a n =2n -1,b n =1a n a n +1=1(2n -1)(2n +1)=1212n -1-12n +1 ,则数列{b n }的前n 项和为:121-13 +13-15 +15-17 +⋯+12n -1-12n +1 =121-12n +1 =n 2n +1.故答案为:n2n +1【练习1】数列12n +1+2n -1的前2022项和为( )A.4043-12B.4045-12C.4043-1D.4045-1【答案】B 【解析】解:12n +1+2n -1=2n +1-2n -12n +1+2n -1 2n +1-2n -1=2n +1-2n -12记12n +1+2n -1 的前n 项和为T n ,则T 2022=123-1+5-3+7-5+⋯+4045-4043=124045-1 ;故选:B 【练习2】数列a n 的各项均为正数,S n 为其前n 项和,对于任意的n ∈N *,总有a n ,S n ,a 2n 成等差数列,又记b n =1a 2n +1⋅a 2n +3,数列b n 的前n 项和T n =______.【答案】n6n +9【解析】由对于任意的n ∈N *,总有a n ,S n ,a 2n 成等差数列可得:2S n =a 2n +a n ,当n ≥2时可得2S n -1=a 2n -1+a n -1,所以2a n =2S n -2S n -1=a 2n +a n -a 2n -1-a n -1,所以a 2n -a n -a 2n -1-a n -1=0,所以(a n +a n -1)(a n -a n -1-1)=0,由数列a n 的各项均为正数,所以a n -a n -1=1,又n =1时a 2n -a n =0,所以a 1=1,所以a n =n ,b n =1a 2n +1⋅a 2n +3=1(2n +1)(2n +3)=1212n +1-12n +3 ,T n =1213-15+15-17+⋯12n +1-12n +3 =1213-12n +3 =n 6n +9.故答案为:n6n +9.【练习3】12!+23!+34!+⋅⋅⋅+nn +1 !=_______.【答案】1-1n +1 !【解析】∵k k +1 !=k +1-1k +1 !=1k !-1k +1 !,∴12!+23!+34!+⋅⋅⋅+n n +1 !=1-12!+12!-13!+13!-14!+⋅⋅⋅+1n -1 !-1n !+1n !-1n +1 !=1-1n +1 !.故答案为:1-1n +1 !.【练习4】设数列a n 满足a 1+4a 2+⋯+(3n -2)a n =3n .(1)求a n 的通项公式;(2)求数列a n3n +1 的前n 项和T n .【答案】(1)a n =33n -2(2)T n =3n3n +1【解析】(1)解:数列a n 满足a 1+4a 2+⋯+(3n -2)a n =3n ,当n =1时,得a 1=3,n ≥2时,a 1+4a 2+⋯+(3n -5)a n -1=3(n -1),两式相减得:(3n -2)a n =3,∴a n =33n -2,当n =1时,a 1=3,上式也成立.∴a n =33n -2;(2)因为a n 3n +1=3(3n -2)(3n +1),=13n -2-13n +1,∴T n =11-14+14-17+⋯+13n -2-13n +1,=1-13n +1=3n3n +1.【练习5】已知数列a n 的前n 项和为S n ,且2S n =1-a n n ∈N ∗ .(1)求数列a n 的通项公式;(2)设b n =log 13a n ,C n =n +1-nb n b n +1,求数列C n 的前n 项和T n【答案】(1)a n =13n (2)T n =1-1n +1【解析】(1)当n =1时,2a 1=2S 1=1-a 1,解得:a 1=13;当n ≥2时,2a n =2S n -2S n -1=1-a n -1+a n -1,即a n =13a n -1,∴数列a n 是以13为首项,13为公比的等比数列,∴a n =13 n =13n .(2)由(1)得:b n =log 1313 n =n ,∴C n =n +1-n n n +1=1n -1n +1,∴T n =1-12+12-13+13-14+⋅⋅⋅+1n -1-1n +1n -1n +1=1-1n +1.【练习6】已知数列a n 中,2n a 1+2n -1a 2+⋯+2a n =n ⋅2n .(1)证明:a n 为等比数列,并求a n 的通项公式;(2)设b n =(n -1)a nn (n +1),求数列b n 的前n 项和S n .【答案】(1)证明见解析;a n =2n -1n ∈N *(2)2n n +1-1【解析】(1)解:2n a 1+2n -1a 2+⋯+2a n =n ⋅2n ,即为a 1+a 22+⋯+a n2n -1=n ·······①,又a 1+a 22+⋯+a n -12n -2=n -1,········②,①-②得a n2n -1=1,即a n =2n -1(n ≥2),又当n =1时,a 1=1=21-1,故a n =2n -1n ∈N * ;从而a n +1a n =2n2n -1=2n ∈N * ,所以a n 是首项为1,公比为2的等比数列;(2)由(1)得b n =(n -1)2n -1n (n +1)=2n n +1-2n -1n ,所以S n =212-201 +223-212 +⋯+2n n +1-2n -1n =2nn +1-1.【练习7】记S n 是公差不为零的等差数列a n 的前n 项和,若S 3=6,a 3是a 1和a 9的等比中项.(1)求数列a n 的通项公式;(2)记b n =1a n ⋅a n +1⋅a n +2,求数列b n 的前20项和.【答案】(1)a n =n ,n ∈N *(2)115462【解析】(1)由题意知a 23=a 1⋅a 9,设等差数列a n 的公差为d ,则a 1a 1+8d =a 1+2d 2,因为d ≠0,解得a 1=d又S 3=3a 1+3d =6,可得a 1=d =1,所以数列a n 是以1为首项和公差为1的等差数列,所以a n =a 1+n -1 d =n ,n ∈N *(2)由(1)可知b n =1n n +1 n +2 =121n n +1 -1n +1 n +2,设数列b n 的前n 和为T n ,则T n =1211×2-12×3+12×3-13×4+⋅⋅⋅+1n n +1 -1n +1 n +2=1212-1n +1 n +2,所以T 20=12×12-121×22 =115462所以数列b n 的前20和为115462【练习8】已知等差数列a n 满足a 3=7,a 5+a 7=26,b n =1a 2n -1(n ∈N +).(1)求数列a n ,b n 的通项公式;(2)数列b n 的前n 项和为S n ,求S n .【答案】(1)a n =2n +1,b n =14n n +1(2)S n =n 4n +1【解析】(1)由题意,可设等差数列a n 的公差为d ,则a 1+2d =72a 1+10d =26,解得a 1=3,d =2,∴a n =3+2n -1 =2n +1;∴b n =1a 2n -1=12n +1 2-1=14n 2+4n =14n n +1 ;(2)∵b n =14n n +1=141n -1n +1 ,S n =141-12+12-13+⋯+1n -1n +1 =141-1n +1 =n 4n +1.【练习9】已知正项数列a n 的前n 项和为S n ,且4、a n +1、S n 成等比数列,其中n ∈N ∗.(1)求数列a n 的通项公式;(2)设b n =4S na n a n +1,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1(2)T n =n +n2n +1【解析】(1)解:对任意的n ∈N ∗,a n >0,由题意可得4S n =a n +1 2=a 2n +2a n +1.当n =1时,则4a 1=4S 1=a 21+2a 1+1,解得a 1=1,当n ≥2时,由4S n =a 2n +2a n +1可得4S n -1=a 2n -1+2a n -1+1,上述两个等式作差得4a n =a 2n -a 2n -1+2a n -2a n -1,即a n +a n -1 a n -a n -1-2 =0,因为a n +a n -1>0,所以,a n -a n -1=2,所以,数列a n 为等差数列,且首项为1,公差为2,则a n =1+2n -1 =2n -1.(2)解:S n =n 1+2n -12=n 2,则b n =4S n a n a n +1=4n 22n -1 2n +1 =4n 2-1+12n -1 2n +1 =1+12n -1 2n +1=1+1212n -1-12n +1,因此,T n =n +121-13+13-15+⋯+12n -1-12n +1 =n +n2n +1.【练习10】已知S n 是数列a n 的前n 项和,a 1=1,___________.①∀n ∈N ∗,a n +a n +1=4n ;②数列S n n 为等差数列,且S nn 的前3项和为6.从以上两个条件中任选一个补充在横线处,并求解:(1)求a n ;(2)设b n =a n +a n +1a n ⋅a n +1 2,求数列b n 的前n 项和T n .【答案】(1)条件选择见解析,a n =2n -1(2)T n =2n n +12n +12【解析】(1)解:选条件①:∀n ∈N ∗,a n +a n +1=4n ,得a n +1+a n +2=4n +1 ,所以,a n +2-a n =4n +1 -4n =4,即数列a 2k -1 、a 2k k ∈N ∗ 均为公差为4的等差数列,于是a 2k -1=a 1+4k -1 =4k -3=22k -1 -1,又a 1+a 2=4,a 2=3,a 2k =a 2+4k -1 =4k -1=2⋅2k -1,所以a n =2n -1;选条件②:因为数列S n n 为等差数列,且S nn 的前3项和为6,得S 11+S 22+S 33=3×S 22=6,所以S 22=2,所以S n n 的公差为d=S 22-S 11=2-1=1,得到Sn n =1+n -1 =n ,则S n =n 2,当n ≥2,a n =S n -S n -1=n 2-n -1 2=2n -1.又a 1=1满足a n =2n -1,所以,对任意的n ∈N ∗,a n =2n -1.(2)解:因为b n =a n +a n +1a n ⋅a n +1 2=4n 2n -1 22n +1 2=1212n -1 2-12n +1 2,所以T n =b 1+b 2+⋅⋅⋅+b n =12112-132+132-152+⋅⋅⋅+12n -1 2-12n +1 2 =121-12n +1 2 =2n n +1 2n +12.【过关检测】一、单选题1.S n=12+24+38+⋯+n2n=( )A.2n-n2n B.2n+1-n-22nC.2n-n+12n+1D.2n+1-n+22n【答案】B 【解析】由S n=12+24+38+⋯+n2n,得12S n=1×122+2×123+3×124+⋯+n⋅12n+1,两式相减得12S n=12+122+123+124+⋯+12n-n⋅12n+1=121-12n1-12-n12 n+1=1-12n-n⋅12 n+1=2n+1-n-22n+1.所以S n=2n+1-n-22n.故选:B.2.数列n⋅2n的前n项和等于( ).A.n⋅2n-2n+2B.n⋅2n+1-2n+1+2C.n⋅2n+1-2nD.n⋅2n+1-2n+1【答案】B【解析】解:设n⋅2n的前n项和为S n,则S n=1×21+2×22+3×23+⋯+n⋅2n, ①所以2S n=1×22+2×23+⋯+n-1⋅2n+n⋅2n+1, ②①-②,得-S n=2+22+23+⋯+2n-n⋅2n+1=21-2n1-2-n⋅2n+1,所以S n=n⋅2n+1-2n+1+2.故选:B.3.已知等比数列{an}的前n项和为Sn,若S3=7,S6=63,则数列{nan}的前n项和为( )A.-3+(n+1)×2nB.3+(n+1)×2nC.1+(n+1)×2nD.1+(n-1)×2n【答案】D【解析】设等比数列{an}的公比为q,易知q≠1,所以由题设得S3=a11-q31-q=7S6=a11-q61-q=63 ,两式相除得1+q3=9,解得q=2,进而可得a1=1,所以an=a1qn-1=2n-1,所以nan=n×2n-1.设数列{nan }的前n 项和为Tn ,则Tn =1×20+2×21+3×22+⋯+n ×2n -1,2Tn =1×21+2×22+3×23+⋯+n ×2n ,两式作差得-Tn =1+2+22+⋯+2n -1-n ×2n =1-2n1-2-n ×2n =-1+(1-n )×2n ,故Tn =1+(n -1)×2n .故选:D .4.已知等差数列a n ,a 2=3,a 5=6,则数列1a n a n +1的前8项和为( ).A.15B.25C.35D.45【答案】B 【解析】由a 2=3,a 5=6可得公差d =a 5-a 23=1 ,所以a n =a 2+n -2 d =n +1,因此1a n a n +1=1n +1 n +2 =1n +1-1n +2 ,所以前8项和为12-13 +13-14 +⋯+19-110 =12-110=25故选:B 5.已知数列a n 的前n 项和为S n ,S n +4=a n +n +1 2.记b n =8a n +1a n +2,数列的前n 项和为T n ,则T n 的取值范围为( )A.863,47 B.19,17C.47,+∞D.19,17【答案】A 【解析】因为数列a n 中,S n +4=a n +(n +1)2,所以S n +1+4=a n +1+n +2 2,所以S n +1+4-S n +4 =a n +1-a n +2n +3,所以a n =2n +3.因为b n =8a n +1a n +2,所以b n =82n +5 2n +7=412n +5-12n +7 ,所以T n =417-19+19-111+⋅⋅⋅+12n +5-12n +7=417-12n +7 .因为数列T n 是递增数列,当n =1时,T n =863,当n →+∞时,12n +7→0,T n →47,所以863≤T n <47,所以T n 的取值范围为863,47 .故选:A .6.已知数列满足a 1+2a 2+3a 3+⋯+na n =n 2,设b n =na n ,则数列1b n b n +1的前2022项和为( )A.40424043B.20214043C.40444045D.20224045【答案】D【解析】因为a 1+2a 2+3a 3+⋯+na n =n 2①,当n =1时,a 1=1;当n ≥2时,a 1+2a 2+3a 3+⋯+n -1 a n -1=(n -1)2②,①-②化简得a n =2n -1n ,当n =1时:a 1=2×1-11=1=1,也满足a n =2n -1n,所以a n =2n -1n ,b n =na n =2n -1,1b n b n +1=1(2n -1)(2n +1)=1212n -1-12n +1 所以1b n b n +1的前2022项和121-13+13-15+⋯+12×2022-1-12×2022+1 =121-12×2022+1 =20224045.故选:D .7.已知数列a n 满足a 1=1,且a n =1+a n a n +1,n ∈N *,则a 1a 2+a 2a 3+a 3a 4+⋯⋯+a 2020a 2021=( )A.2021 B.20202021C.122021D.22021【答案】B 【解析】∵a n =1+a n a n +1,即a n +1=a n 1+a n ,则1a n +1=1+a n a n =1a n +1∴数列1a n是以首项1a 1=1,公差d =1的等差数列则1a n =1+n -1=n ,即a n =1n∴a n a n +1=1n n +1=1n -1n +1则a 1a 2+a 2a 3+a 3a 4+⋯⋯+a 2020a 2021=1-12+12-13+...+12020-12021=20202021故选:B .8.等差数列a n 中,a 3=5,a 7=9,设b n =1a n +1+a n,则数列b n 的前61项和为( )A.7-3B.7C.8-3D.8【答案】C 【解析】解:因为等差数列满足a 3=5,a 7=9,所以d =a 7-a 37-3=1,所以a n =a 3+n -3 d =n +2,所以b n =1n +3+n +2=n +3-n +2,令数列b n 的前n 项和为S n ,所以数列b n 的前n 项和S n =4-3+5-4+⋯+n +3-n +2=n +3-3,所以S 61=8-3.故选:C .9.设数列n 22n -1 2n +1的前n 项和为S n ,则( )A.25<S 100<25.5B.25.5<S 100<26C.26<S 100<27D.27<S 100<27.5【答案】A 【解析】由n 2(2n -1)(2n +1)=14⋅4n 24n 2-1=141+14n 2-1 =141+121(2n -1)(2n +1)=14+1812n -1-12n +1,∴S n =n 4+181-13+13-15+⋅⋅⋅+12n -1-12n +1 =n 4+181-12n +1 =n (n +1)2(2n +1),∴S 100=100×1012(2×100+1)≈25.12,故选:A .10.已知数列a n 满足a n =1+2+4+⋯+2n -1,则数列2n a n a n +1 的前5项和为( )A.131B.163C.3031D.6263【答案】D 【解析】因为a n =1+2+4+⋯+2n -1=2n -1,a n +1=2n +1-1,所以2n a n a n +1=2n 2n -1 2n +1-1 =2n +1-1 -2n-1 2n -1 2n +1-1=12n -1-12n +1-1.所以2n a n a n +1 前5项和为121-1-122-1 +122-1-123-1 +⋯+125-1-126-1 =121-1-126-1=1-163=6263故选:D 11.已知数列a n 的首项a 1=1,且满足a n +1-a n =2n n ∈N * ,记数列a n +1a n +2 a n +1+2的前n 项和为T n ,若对于任意n ∈N *,不等式λ>T n 恒成立,则实数λ的取值范围为( )A.12,+∞ B.12,+∞C.13,+∞D.13,+∞【答案】C 【解析】解:因为a n +1-a n =2n n ∈N * ,所以a 2-a 1=21,a 3-a 2=22,a 4-a 3=23,⋯⋯,a n -a n -1=2n -1,所以a n -a 1=21+22+⋯+2n -1=21-2n -1 1-2=2n -2,n ≥2 ,又a 1=1,即a n =2n -1,所以a n +1=2n ,所以a n +1a n +2 a n +1+2 =2n 2n +1 2n +1+1=12n +1-12n +1+1,所以T n =121+1-122+1+122+1-123+1+⋯+12n +1-12n +1+1=13-12n +1+1<13所以λ的取值范围是13,+∞ .故选:C 12.在数列a n 中,a 2=3,其前n 项和S n 满足S n =n a n +12 ,若对任意n ∈N +总有14S 1-1+14S 2-1+⋯+14S n -1≤λ恒成立,则实数λ的最小值为( )A.1B.23C.12D.13【答案】C 【解析】当n ≥2时,2S n =na n +n ,2S n -1=n -1 a n -1+n -1 ,两式相减,整理得n -2 a n =(n -1)a n -1-1①,又当n ≥3时,n -3 a n -1=n -2 a n -2-1②,①-②,整理得n -2 a n +a n -2 =2n -4 a n -1,又因n -2≠0,得a n +a n -2=2a n -1,从而数列a n 为等差数列,当n =1时,S 1=a 1+12即a 1=a 1+12,解得a 1=1,所以公差d =a 2-a 1=2,则a n =2n -1,S n =na 1+n (n -1)2d =n 2,故当n ≥2时,14S 1-1+14S 2-1+⋯+14S n -1=122-1+142-1+⋯+12n 2-1=11×3+13×5+⋯+12n -1 2n +1=121-13+13-15+⋯+12n -1-12n +1 =121-12n +1 ,易见121-12n +1 随n 的增大而增大,从而121-12n +1 <12恒成立,所以λ≥12,故λ的最小值为12,故选:C .二、填空题13.已知正项数列{an }满足a 1=2且an +12-2an 2-anan +1=0,令bn =(n +2)an ,则数列{bn }的前8项的和等于__.【答案】4094【解析】由a 2n +1-2a 2n -a n a n +1=0,得(an +1+an )(an +1-2an )=0,又an >0,所以an +1+an >0,所以an +1-2an =0,所以an +1a n=2,所以数列{an }是以2为首项,2为公比的等比数列,所以a n =2×2n -1=2n ,所以b n =n +2 a n =n +2 ⋅2n ,令数列{bn }的前n 项的和为Tn ,T 8=3×21+4×22+⋯+9×28,则2T 8=3×22+4×23+⋯+9×29,-T 8=6+22+23+⋯+28 -9×29=6+221-271-2-9×29=2-8×29=-4094,则T 8=4094,故答案为:4094.14.已知数列{an }的前n 项和为Sn ,且Sn =2an -2,则数列n a n的前n 项和Tn =__.【答案】2-n +22n.【解析】解:∵Sn =2an -2,∴Sn -1=2an -1-2(n ≥2),设公比为q ,两式相减得:an =2an -2an -1,即an =2an -1,n ≥2,又当n =1时,有S 1=2a 1-2,解得:a 1=2,∴数列{an }是首项、公比均为2的等比数列,∴an =2n ,n a n =n2n ,又Tn =121+222+323+⋯+n2n ,12Tn =122+223+⋯+n -12n +n 2n +1,两式相减得:12Tn =12+122+123+⋯+12n -n 2n +1=121-12n1-12-n2n +1,整理得:Tn =2-n +22n.故答案为:Tn =2-n +22n .15.将1+x n (n ∈Ν+)的展开式中x 2的系数记为a n ,则1a 2+1a 3+⋅⋅⋅+1a 2015=__________.【答案】40282015【解析】1+xn的展开式的通项公式为T k +1=C k n x k ,令k =2可得a n =C 2n =n n -12;1a n =2n n -1=21n -1-1n ;所以1a 2+1a 3+⋅⋅⋅+1a 2015=21-12 +212-13 +⋯+212014-12015=21-12015 =40282015.故答案为:40282015.16.数列a n 的前项n 和为S n ,满足a 1=-12,且a n +a n +1=2n 2+2nn ∈N * ,则S 2n =______.【答案】2n 2n +1【解析】由题意,数列{a n }满足a n +a n +1=2n 2+2n,可得a 2n -1+a 2n =2(2n -1)2+2(2n -1)=2(2n -1)(2n +1)=12n -1-12n +1,所以S 2n =11-13+13-15+⋯+12n -1-12n +1=1-12n +1=2n2n +1,故答案为:2n2n +1三、解答题17.已知数列a n 满足a 1=1,2a n +1a n +a n +1-a n =0.(1)求证:数列1a n 为等差数列;(2)求数列a n a n +1 的前n 项和S n .【答案】(1)证明见解析;(2)S n =n2n +1.【解析】(1)令b n =1a n ,因为b n +1-b n =1a n +1-1a n =a n -a n +1a n ⋅a n +1=2,所以数列b n 为等差数列,首项为1,公差为2;(2)由(1)知:b n =2n -1;故a n =12n -1;所以a n a n +1=12n -1 2n +1=1212n -1-12n +1 ;所以S n =a 1a 2+a 2a 3+⋯+a n a n +1=11×3+13×5+⋯+12n -1 2n +1=121-13+13-15+⋯+12n -1-12n +1 =n 2n +1;18.已知正项数列a n 的前n 项和为S n ,a n +1-a n =3n ∈N * ,且S 3=18.(1)求数列a n 的通项公式;(2)若b n =1a n a n +1,求数列b n 的前n 项和T n .【答案】(1)a n =3n (2)T n =n9n +9【解析】(1)∵a n +1-a n =3,∴数列a n 是以公差为3的等差数列.又S 3=18,∴3a 1+9=18,a 1=3,∴a n =3n .(2)由(1)知b n =13n ×3n +1=19×1n -1n +1 ,于是T n =b 1+b 2+b 3+⋅⋅⋅+b n =191-12 +12-13 +13-14 +⋅⋅⋅+1n -1n +1 =191-1n +1 =n 9n +919.已知数列a n 的首项为3,且a n -a n +1=a n +1-2 a n -2 .(1)证明数列1a n -2 是等差数列,并求a n 的通项公式;(2)若b n =-1 n an n +1,求数列b n 的前n 项和S n .【答案】(1)证明见解析;a n =1n+2(2)-1+-1 n1n +1【解析】(1)因为a n -a n +1=a n +1-2 a n -2 ,所a n -2 -a n +1-2 =a n +1-2 a n -2 ,则1a n +1-2-1a n -2=1,所以数列1a n -2 是以13-2=1 为首项,公差等于1的等差数列,∴1a n -2=1+n -1 =n ,即a n =1n+2;(2)b n =-1 n a n n +1=-1 n 1n n +1+2n +1 =-1 n 1n +1n +1 ,则S n =-1+12 +12+13 -13+14 +⋅⋅⋅+-1 n 1n +1n +1 =-1+-1 n 1n +1;综上,a n =1n +2,S n =-1+-1 n 1n +1 .20.已知数列a n 中,a 1=-1,且满足a n +1=2a n -1.(1)求证:数列a n -1 是等比数列,并求a n 的通项公式;(2)若b n =n +11-a n +1,求数列b n 的前n 项和为T n .【答案】(1)证明见解析,a n=-2n+1(2)T n=32-n+32n+1【解析】(1)解:对任意的n∈N∗,a n+1=2a n-1,所以a n+1-1=2a n-1,且a1-1=-2,所以数列a n-1是以-2为首项,2为公比的等比数列.所以a n-1=-2n,所以a n=-2n+1.(2)解:由已知可得b n=n+11-a n+1=n+12n+1,则T n=222+323+424+⋯+n+12n+1,所以,12T n=223+324+⋯+n 2n+1+n+12n+2,两式相减得12T n=222+123+⋯+12n+1-n+12n+2=12+181-12n-11-12-n+12n+2=34-1 2n+1-n+12n+2=34-n+32n+2,因此,T n=32-n+32n+1.21.已知等比数列a n,a1=2,a5=32.(1)求数列a n的通项公式;(2)若数列a n为正项数列(各项均为正),求数列(2n+1)⋅a n的前n项和T n.【答案】(1)a n=2n或a n=2·-2n-1;(2)T n=2+(2n-1)⋅2n+1.【解析】(1)等比数列a n的公比为q,a1=2,a5=32,则q4=a5a1=16,解得q=±2,所以当q=2时,a n=2n,当q=-2时,a n=2⋅(-2)n-1.(2)由(1)知,a n=2n,则有(2n+1)⋅a n=(2n+1)⋅2n,则T n=3×21+5×22+7×23+⋯+(2n+1)⋅2n,于是得2T n=3×22+5×23+⋯+(2n-1)⋅2n+(2n+1)⋅2n+1,两式相减,得-T n=6+2×(22+23+⋯+2n)-(2n+1)⋅2n+1=6+2×22×(1-2n-1)1-2-(2n+1)⋅2n+1=-2-(2n-1)⋅2n+1,所以T n=2+(2n-1)⋅2n+1.22.已知等差数列a n满足a1=1,a2⋅a3=a1⋅a8,数列b n的前n项和为S n,且S n=32b n.(1)求数列a n,b n的通项公式;(2)求数列a n b n的前n项和T n.【答案】(1)a n=1或a n=2n-1;b n=3n;(2)若a n=1,则T n=33n-13;若a n=2n-1,则T n=n-13n+1+3.【解析】(1)设等差数列a n的公差为d,∵a1=1,a2⋅a3=a1⋅a8,∴1+d1+2d=1+7d,化简得2d2-4d=0,解得:d=0或d=2,若d=0,则a n=1;若d=2,则a n=2n-1;由数列b n的前n项和为S n=32b n-32①,当n=1时,得b1=3,当n≥2时,有S n-1=32b n-1-32②;①-②有b n=32b n-32b n-1,即b nb n-1=3,n≥2,所以数列b n是首项为3,公比为3的等比数列,所以b n=3n,综上所述:a n=1或a n=2n-1;b n=3n;(2)若a n=1,则a n b n=b n=3n,则T n=3+32+⋯+3n=31-3n1-3=33n-12,若a n=2n-1,则a n b n=2n-13n,则T n=1×3+3×32+⋯+2n-1×3n③;③×3得3T n=1×32+3×33+⋯+2n-1×3n+1④;③-④得:-2T n=3+2×32+2×33+⋯+2×3n-2n-1×3n+1=3+2×32(1-3n-1)1-3-(2n-1)×3n+1整理化简得:T n=n-13n+1+3,综上所述:若a n=1,则T n=33n-13;若a n=2n-1,则T n=n-13n+1+3.。
高考数学构造法求数列通项的八种技巧(三)(解析版)

构造法求数列通项的八种技巧(三)【必备知识点】◆构造六:取对数构造法型如a n +1=ca n k ,a n =ca n -1k或者a n +b =c (a n -1+b )k ,b 为常数.针对出现这种数列,为方便计算,两边通常取以c 或首项为底的对数,就能找到突破口.什么情况取c 为底,什么情况取首项为底呢?我们来看两道例题.【经典例题1】数列a n 中, a 1=2,a n +1=a n 2,求数列a n 的通项公式.【解析】取以a 1=2为底的对数(不能取c 为底,因为c =1,不能作为对数的底数),得到log a n +12=log an22,log a n +12=2log a n2,设b n =log a n2,则有b n +1=2b n ,所以b n 是以b 1=log a 12=1为首项,2为公比的等比数列,所以b n =2n -1,所以log a n2=2n -1,a n =22n -1.【经典例题2】数列a n 中,a 1=1,a n +1=2a n 2,求数列a n 的通项公式.【解析】取以2为底的对数(这里知道为什么不能取a 1=1为底数的对数了吧),得到log a n +12=log 2a n22,log an +12=log 22+2log a n2,log a n +12=1+2log a n2设b n =log an2,则有b n +1=1+2b n ,这又回归到构造二的情况,接下来的步骤大家应该都记得吧,由于这道题较为简单,所以直接可看出b n +1+1=2(b n +1),所以b n +1 是以b 1+1=1为首项,2为公比的等比数列,所以b n +1=2n -1,所以b n =2n -1-1,log a n2=2n -1-1,a n =22n -1-1.【经典例题3】已知a 1=2,点a n ,a n +1 在函数f x =x 2+2x 的图像上,其中n ∈N *,求数列a n 的通项公式.【解析】将a n ,a n +1 代入函数得a n +1=a n 2+2a n ,a n +1+1=a n 2+2a n +1=a n +1 2,即a n +1+1=a n +1 2两边同时取以3为底的对数,得log a n +1+13=log a n+123⇒log a n +1+13=2log a n+13(为什么此题取以3为底的对数呢,大家思考下,新构造的数列首项为log a 1+13,a 1+1=3,所以应当取以3为底,这样计算会简单很多,当然如果你计算能力较强,也可以取其他数作为底数).所以log a n+1 3 是以1为首项,2为公比的等比数列,即log a n+1 3=1×2n -1,a n +1=32n -1,a n =32n -1-1.【经典例题4】在数列a n 中, a 1=1,当n ≥2时,有a n +1=a n 2+4a n +2,求数列a n 的通项公式.【解析】由a n +1=a n 2+4a n +2,得a n +1+2=a n 2+4a n +4,即a n +1+2=a n +2 2,两边同取以3为底的对数,得log a n +1+23=log a n+223,即log a n +1+23=2log a n+2 3,所以数列log a n+2 3是以1为首项,2为公比的等比数列,log a n+23=2n -1,a n +2=32n -1,即a n =32n -1-2.◆构造七:二阶整体构造等比简单的二阶整体等比:关于a n +1=Aa n +Ba n -1的模型,可通过构造二阶等比数列求解,大部分题型可转化为a n +1-a n =(A -1)a n -a n -1 ,利用a n +1-a n 成等比数列,以及叠加法求出a n .还有一小部分题型可转化为a n +1+a n =(A +1)a n +a n -1 ,利用a n +1+a n 成等比数列求出a n .【经典例题1】已知数列a n 满足a 1=1,a 2=3,a n +2=3a n +1-2a n n ∈N * ,求数列a n 的通项公式.【解析】由a n +1=3a n -2a n -1⇒a n +1-a n =2a n -a n -1 ,故a n +1-a n 是以a 2-a 1=2为首项,2为公比的等比数列,即a n +1-a n =a 2-a 1 2n -1=2n ,接下来就是叠加法啦,a n -a n -1=2n -1...a 2-a 1=2全部相加得:a n -a 1=2n-2,所以a n =2n -1.【经典例题2】已知数列a n 中,a 1=1,a 2=2,a n +2=23a n +1+13a n ,求数列a n 的通项公式。
高三数学数列极限试题答案及解析

高三数学数列极限试题答案及解析1.已知数列是公差为2的等差数列,是的前n项和,则= .【答案】【解析】由题意得:,因此【考点】数列极限2..【答案】【解析】.【考点】数列的极限.3.计算:.【答案】1【解析】这是“”型极限问题,求极限的方法是转化,分子分母同时除以化为一般的极限问题,.【考点】“”型极限.4.已知点列在直线上,P1为直线轴的交点,等差数列的公差为1 。
(1)求、的通项公式;;(2)若,试证数列为等比数列,并求的通项公式。
(3).【答案】(1)(2)是以2为公比,4为首项的等比数列.(3)1【解析】(1)在直线∵P1为直线l与y轴的交点,∴P1(0,1),又数列的公差为1(2)是以2为公比,4为首项的等比数列.(3)【考点】本题考查了数列的通项及前n项和点评:等差数列的通项公式及应用是数列的重点内容,数列的大题对逻辑推理能力有较高的要求,在数列中突出考查学生的理性思维,这是近几年新课标高考对数列考查的一个亮点,也是一种趋势.随着新课标实施的深入,高考关注的重点为等差、等比数列的通项公式,错位相减法、裂项相消法等求数列的前n项的和等等5.设,,则等于( ).A.B.C.或D.不存在【答案】B【解析】即.6.… =_______________【答案】【解析】,所以.7.数列中,则数列的极限值()A.等于B.等于C.等于或D.不存在【答案】B【解析】解:因为数列中,,可知数列有规律,那么利用极限概念可知其项的值趋近于1,选B.8.计算.【答案】【解析】略9.数列{an}中,a1=,an+an+1=,则(a1+a2+…+an) = ()A.B.C.D.【答案】B【解析】本题考查数列求和技巧及无穷等比数列各项和知识。
由an+an+1=(a1+a2+…+an) =10.数列的通项公式为,则A.1B.C.1或D.不存在【答案】B【解析】由数列的极限的定义可知,数列的极限与该数列的前有限项的值无关,所以故选择B11.设正数满足,则【答案】【解析】略12.。
高考数学复习考点知识与结论专题讲解33 数列的概念和性质

高考数学复习考点知识与结论专题讲解第33讲 数列的概念和性质通关一、数列的概念一般地,按一定次序排列的一列数叫作数列,数列中的每一个数叫作这个数列的项.数列的一般形式可以写成:123,,,,,n a a a a ,简记为{}n a ,其中数列的第1项1a ,也称首项;数列的第n 项n a ,也叫数列的通项. 要点诠释:(1){}n a 与n a 的含义完全不同:{}n a 表示一个数列,n a 表示数列的第n 项;(2)数列的项与项数是两个不同的概念:数列的项是指数列中的某一个确定的数,而项数是指这个数在数列中的位置序号;(3)数列中的数是按一定次序排列的,因此,如果组成两个数列的数相同序排列次序不同,那么它们就是不同的数列;(4)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出.通关二、数列的分类1,2,3,4,,100 ,,n3,4,5,,n1,,20156,6,6,6,2,3,4,-1,1,1,-1,3,4,4,通关三、数列的通项公式如果数列{}n a 的第n 项n a 与n 之间的函数关系可以用一个公式表示成n a ()f n =,那么这个公式就叫作这个数列的通项公式,数列的通项公式就是相应函数的解析式. 要点诠释:(1)并不是所有数列都能写出其通项公式.(2)一个数列的通项公式有时是不唯一的.如数列:1,0,1,0,1,0,通项公式可以是11(1)2n n a ++-=,也可以是sin 2n n a π=.(3)数列通项公式的作用: ①求数列中任意一项;②检验某数是否是该数列中的一项.(4)数列的通项公式具有双重身份,它表示了数列的第n 项,又是这个数列中所有各项的一般表示.通关四、数列{}n a 的前n 项和数列{}n a 的前n 项和:指数列{}n a 的前n 项逐个相加之和,通常用n S 表示,即12n n S a a a =+++,1*1(1)2(n n n S n a S S n n -=⎧⎪=⎨-∈⎪⎩N )且….结论一、数列通项公式给出数列的前几项求通项时,需要注意观察数列中各项与其序号之间的关系,在所给数列的前几项中,先看看哪些部分是变化的,哪些是不变的,再探索各项中变化部分与序号间的关系,主要从以下几个方面来考虑:(1)分式形式的数列,分子、分母分别求通项,较复杂的还要考虑分子、分母的关系; (2)若第n 项和第1n +项正负交错,那么符号用(1)n-或1(1)n +-或1(1)n --来调控;(3)熟悉一些常见数列的通项公式;(4)对于较复杂数列的通项公式,其项与序号之间的关系不容易发现,这就需要将数列各项的结构形式进行变形,将数列的各项分解成若干个常见数列对应项的“和”“差”“积”“商”后再进行归纳.【例1】根据数列的前几项,写出下列各数列的一个通项公式.(1)4142,,,,52117;(2)1925,2,,8,,222;(3)7,77,777,; (4)0,3,8,15,24,.【答案】(1)432n a n =+(2)22n n a =(3)()71019n n a =-(4)21n a n =-【解析】(1)注意前四项中有两项的分子为4,不妨把分子统一为4,即为4444,,,581114,,它们的分母相差3,因而有432n a n =+. (2)把分母统一为2,则有1491625,,,,,22222,因而有22n n a =.(3)把各项除以7,得到1,11,111,,再乘以9,得到9,99,999,,因而有()71019n n a =-. (4)观察数列递增速度较快,用平方数列对照看一看,即222221,2,3,4,5,,则有21n a n =-.【变式】根据数列的前几项,写出下列各数列的一个通项公式(1)23451,,,,,3579;(2)3143984,,,,251017;(3)392565,,,,24816;(4)5791,,,,81524--.【答案】(1)21n n -(2)221n n n ++(3)12n n +(4)1221(1)2n n n n ++-+【解析】(1)先将数列23451,,,,,3579,第1项也化为分数,数列变为12345,,,,13579,此时可以看出分子是按正整数顺序排列,分母是按奇数排列,因此此数列的通项公式为21n na n =-. (2)将数列各项化为带分数,即149161,2,3,4,251017,可以发线正整数部分是按正整数顺序排列的,分数部分各分子均为2n ,分母都比分子大1,所以分数部分的通项公式为221n n +.两部分合成为221n n a n n =++.(3)将数列各项化为带分数,即11111,2,3,4,24816,可以发现整数部分是按正整数顺序排列的,分数部分各分子均为1,分母是2n,所以两部分合成为12nn +. (4)先将数列各项取为正数,即为5791,,,,81524,再将第1项也化为分数(注意第1项化为分子符合各项分子变化规律的分数)即为3579,,,,381524,可以观察出各项分子是3开始的奇数,通项公式可以写为21n +,分母排成的数列后项与前项的差呈现出等差数列规律,求出分母的通项公式是22n n +,合起来为2212n n n ++,再考虑正负号变化规律,即可得出通项公式为1221(1)2n n n n++-+. 结论二、数列的周期性对于数列{}n a ,如果存在一个常数()*T T ∈N,使得对任意的正整数0n n >,恒有n Tn aa +=成立,则称数列{}n a 是从第0n 项起的周期为T 的周期数列.若01n =,则称数列{}n a 为纯周期数列,若02n …,则称数列{}n a 为混周期数列,T 的最小值称为最小正周期,简称周期. 【例2】设数列{}n a 满足1112,1n na a a +==-,记数列{}n a 前n 项之积为n T ,则2020T 的值为(). A.2 B 1 C.1-D.2-【答案】D 【解析】因为12a =,111n n a a +=-,所以211112a a =-=,32111a a =-=-,43112a a =-=,即数列{}n a 是周期为3的周期数列,且1231a a a ⋅⋅=-,故673202067331(1)22T T ⨯+==-⨯=-.故选D.【变式】数列{}n a 满足112,02121,12n n n n n a a a a a +⎧<⎪⎪=⎨⎪-<⎪⎩……,若167a =,则20a 的值为().A.67B57C.37D.17【答案】B【解析】因为数列{}n a 满足112,02121,12n n n n n a a a a a +⎧<⎪⎪=⎨⎪-<⎪⎩……,167a =,所以215217a a =-=,323217a a =-=,43627a a ==,所以数列{}n a 是周期为3的循环数列,所以20257a a ==.故选B.结论三、已知n S 求n a 的一般步骤任意数列{}n a 的前n 项和1121(1);(2)n n n nn S n S a a a a S S n -=⎧=+++=⎨-⎩….要点诠释:由前n 项和n S 求数列通项时,要分三步进行: (1)先利用11a S =求出1a ;(2)用1n -替换n S 中的n 得到一个新的关系,利用1,2n n n a S S n -=-…便求出当2n …时n a 的表达式;(3)对1n =时的结果进行检验,看是否符合2n …时n a 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分1n =与2n …两段来写. 【例3】已知数列{}n a 的前n 项和为21n S n =-,则其通项公式na =__________.【答案】0,121,2n n n =⎧⎨-⎩…【解析】因为已知数列{}n a 的前n 项和21n S n =-,所以当1n =时,110a S ==,当2n …时,1n n n a S S -=-22221(1)1(1)21n n n n n ⎡⎤=----=--=-⎣⎦,经检验,1n =时,1a 不满足上述式子,故数列{}n a 的通项公式0,1.21,2n n a n n =⎧=⎨-⎩…【变式】已知数列{}n a 的前n 项和31nn S =+,则其通项公式na =__________.【答案】14,123,2n n n -=⎧⎨⋅⎩… 【解析】当1n =时,11314a S ==+=;当2n …时,()()111131312323nnnnn n na S S ----=-=+-+=⋅=⋅.当1n =时,111232a -⨯=≠,所以14,1.23,2n n na n -=⎧=⎨⋅⎩…结论四、n a 与n S 混合在一起的处理方法数列{}n a 的前n 项和n S 与通项n a 的关系为11,1,2n nn S n a S S n -=⎧=⎨-⎩…,通过纽带:1(2)n n n a S S n -=-…,根据题目已知条件,消掉n a 或n S ,再通过构造成等差数列或者等比数列进行求解. 要点诠释:(1)若消掉n S ,应利.用已知递推式,把n 换成1n -得到另一个式子,两式相减即可求得通项. (2)若消掉n a ,只需把1n n n a S S -=-代入递推式得到n S ,1n S -的关系,求出n S 后再利用n a 与n S 的关系求通项.【例4】若数列{}n a 的前n 项和为2133n n S a =+,则1a =数列{}n a 的通项公式n a =__________.【答案】11(2)n --【解析】由已知条件得,当1n =时,112133a a =+,故11a =.当2n …时,2133n n S a =+,112133n n S a --=+,所以12233n n n a a a -=-,即12n n a a -=-.所以{}n a 是以1为首项,2-为公比的等比数列,所以1(2)n n a -=-.【变式】已知数列{}n a 的前n 项和n S ,若1111,3n n a S a +==,则7a =().A.74B. 534⨯C. 634⨯D. 641+【答案】B【解析】由113n n S a +=,可得11,23n n S a n -=…,两式相减可得:111,233n n n a a a n +=-…,即14,2n n a a n +=….数列{}n a 是从第二项起的等比数列,公比为4, 因为113n n S a +=,11a =.所以23a =.所以72572434a a -==⨯.故选B.结论五、数列单调性的判断方法①作差法:10n n a a +->⇔数列{}n a 是递增数列; 10n n a a +-<⇔数列{}n a 是递减数列; 10n n a a +-=⇔数列{}n a 是常数列.②作商法:当0n a >时,11n n a a +>⇔数列{}n a 是递增数列; 11n na a +<⇔数列{}n a 是递减数列; 11n na a +=⇔数列{}n a 是常数列. 当0n a <时,11n na a +>⇔数列{}n a 是递减数列; 11n na a +<⇔数列{}n a 是递增数列; 11n na a +=⇔数列{}n a 是常数列. 【例5】已知{}n a 是递增数列,且对于任意的*2,n n a n n λ∈=+N 恒成立,则实数λ的取值范围是__________. 【答案】3λ>-【解析】解法一(定义法)因为{}n a 是递增数列,所以对任意的*n ∈N ,都有1n a +>n a ,即22(1)(1)n n n n λλ+++>+,整理得210n λ++>,即(21)(*)n λ>-+. 因为1n …,所以(21)3n -+-…,要使不等式(*)恒成立,只需3λ>-.解法二(函数法)设2()n f n a n n λ==+,其图像的对称轴为直线2n λ=-,要使数列{}n a 为递增数列,只需使定义在正整数上的函数()f n 为增函数,故只需满足(1)(2)f f <,即3λ>-. 【变式】已知数列{}n a 的通项公式为(37)0.9n n a n =+⨯,则数列{}n a 的最大项是().A.5aB. 6aC. 7aD. 8a 【答案】C 【解析】由1310913710n n a n a n ++=⨯>+,解得203n <,又*n ∈N ,所以6n ….于是12a a <<7a <,当7n …时,11n na a +<, 故78a a >>, 因此最大项为7a .故选C .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学中的数列问题解析
数列作为高中数学中的一个重要知识点,也是高考数学考试必
考内容之一,其考察形式多样。
解题要求考生掌握数列的概念和
性质,熟悉数列的常见变形和常用公式,能够灵活运用数列的基
本思想和方法,多角度、多方式考虑问题,进行问题转化和求解,从而获得高分。
一、数列的概念和性质
数列是由一定的规律按照一定的次序排列起来的一列数,其中
每一个数都叫做这个数列的项。
对于数列 $\{a_n\}$, $a_n$表示
第 $n$ 项,$n$称为项号。
项号从1开始,依次递增,可以是自然
数或正整数等。
数列也可以用通项公式或递推公式来表示。
数列中有些重要的性质,比如数列的通项公式和前n项和的公式,需要考生掌握。
比较常见的有等差数列和等比数列。
1.等差数列
如果一个数列从第二项开始,每一项与它前面的项之差等于同
一个常数 $d$,那么这个数列就叫做等差数列。
等差数列的通项公式和前n项和分别为:
$$a_n=a_1+(n-1)d$$
$$S_n=\dfrac{n}{2}(a_1+a_n)=\dfrac{n}{2}[2a_1+(n-1)d]$$
其中,$a_1$表示首项,$d$表示公差,$S_n$表示前$n$ 项和。
2.等比数列
如果一个数列从第二项开始,每一项与它前面的项之比等于同
一个常数 $q$,那么这个数列就叫做等比数列。
等比数列的通项公式和前n项和分别为:
$$a_n=a_1q^{n-1}$$
$$S_n=\dfrac{a_1(1-q^n)}{1-q}$$
其中,$a_1$表示首项,$q$表示公比,$S_n$表示前$n$ 项和。
二、数列的常见变形和常用公式
在高考中,常常会出现各种数列的常见变形,考生需要熟悉各
种数列变形的求法和特点,这样才能在考试中不失分机会。
1.递推数列
递推数列是指每一项都是由它前面的项或几项经过一定的运算
算出来的,因此我们称之为递推数列。
比如斐波那契数列、鬼谷
数列等就是递推数列的典型例子。
在高考数学考试中,考生通常需要利用递推数列的递推式来求
得数列的某一项。
2.变形求和
某一数列的前 $n$ 项和可以用原数列的通项公式和递推公式表示,但在一些特定情况下,一些数列的前 $n$ 项和可以通过变形
公式求得,比如:
$$S_n=(a_1+a_n)+(a_2+a_{n-1})+\cdots+(a_{n-
1}+a_2)+(a_n+a_1)=\dfrac{2n}{2}(a_1+a_n)$$
其中, $a_1$表示首项,$a_n$表示末项, $n$表示项数。
3.变形列求和
通常考生在做数列题时,会遇到一类数列求和问题:将数列进
行适当变形之后,再求其前 $n$ 项和。
$$S_n=n(a_1+a_n)/2=a_1n+n(n-1)d/2$$
例如等差数列从第二项开始,每一个项都比它前面的项大$m$,设其首项为 $a_1$,其通项公式为,$a_n=a_{n-1}+m (n\geq 2)$,
则前 $n$ 项和为:
$$S_n=\dfrac{a_1+a_n}{2}n=\dfrac{a_1+[a_1+(n-1)m]}{2}n$$
$$=\dfrac{2a_1+(n-1)m}{2}n=\dfrac{n}{2}[2a_1+(n-1)m]$$
三、数列问题的解析
1.数列的求和
在高考数学考试中,数列的求和问题是最为常见的,需要灵活
运用关于数列求和的各种公式,同时注意运算的准确性和合理性,避免粗心计算带来的失误。
2.数列的反演
数列的反演是一种重要的思想方法,通常可以借助适当的变形
公式将数列逆向思考,从而推导出数列的性质和特点,得到有效
的解题思路。
比如,有时候我们需要证明某一个数列是等差数列
或等比数列,就可以考虑利用反演的思想,先证明这个数列的某
个表达式具有等差或等比的形式,再利用一些有效的公式或方法
求得该数列的通项公式或递推公式。
3.数列的连续和
数列的连续和也是考试中经常出现的题型,通常考生需要考虑其分段求和,或运用分差求和等方法,确定前若干项和的值,并据此推导出整个数列的和。
4.数列的极限
数列的极限在高考数学中也是一个非常重要的概念。
当一个数列 $a_n$ 的前若干项都相近并趋于某个常数 $A$ 时,我们说该数列的极限是 $A$,记为:
$$\lim\limits_{n\to\infty}a_n=A$$
数列极限的求解要求考生熟悉极限的概念和性质,掌握数列极限的求解方法,例如夹逼原理、单调有界原理等,熟悉相关的计算方法,并能够运用这些方法求出数列的极限。
总之,数列在高考数学中是一个非常重要的知识点,从基本概念、性质到各种变形、求解问题都需要考生熟练掌握,并能对各种实际问题进行转化和求解。
在备考过程中,考生可以通过多做相关习题,巩固和拓展数列相关的知识,提高自己的解题能力和应试水平。