高中物理复习 气体状态方程
8.3 理想气体的状态方程

理想气体
假设这样一种气体在任何温度和任何压强下都能严格地遵 循气体实验定律,我们把这样的气体叫做“理想气体”。
理想气体的特点:
1.理想气体是不存在的,是一种理想模型 2.从微观上说:分子间忽略除碰撞外其他的作用力,忽略分子 自身的大小,分子本身没有体积 3.分子之间、分子与器壁之间的碰撞,都是弹性碰撞。除碰撞 以外,分子的运动是匀速直线运动,各个方向的运动机会均等. 4.理想气体分子之间无分子势能,一定质量的理想气体的内能 仅由温度决定,与气体的体积无关.
【变式】如图中,圆筒形容器内的弹簧下端挂一个不计重力的
活塞,活塞与筒壁间的摩擦不计,活塞上面为真空,当弹簧自
然长度时,活塞刚好能触及容器底部,如果在活塞下面充入t1 = 27 ℃的一定质量某种气体,则活塞下面气体的长度 h = 30 cm,问温度升高到t2=90 ℃ 时气柱的长度为多少?
解:
k Δx 1 p1 = S p2= k Δx 2 S p1V 1 p2V 2 = T1 T2
理想气体状态方程:
[例]内径均匀的L形直角细玻璃管,一端封闭,一端开口竖直 向上,用水银柱将一定质量空气封存在封闭端内,空气柱长4 cm,水银柱高58 cm,进入封闭端长2 cm,如图所示,温度是 87 ℃,大气压强为75 cmHg,求: (1)在图示位置空气柱的压强p1. (2)在图示位置,要使空气柱的长度变为3 cm,温度必须降低 到多少度?
理想气体
[例]关于理想气体的性质,下列说法中正确的是: A.理想气体是一种假想的物理模型,实际并不存在 B.理想气体的存在是一种人为规定,它是一种严格 遵守气体实验定律的气体 C.一定质量的理想气体,内能增大,其温度一定升 高
D.氦是液化温度最低的气体,任何情况下均可视为
高考物理混合气体的状态方程和典型题型

1T混合气体的状态方程和典型题型高中物理中常常涉及到气体混合、打气、抽气、漏气、气体分装等问题,对这类问题,大多数老师和 资料采用的是等效法——先将分离的不同部分气体看作是同一温度和压强的气体,用一定质量的理想气体 状态方程处理后,再一部分一部分的当做质量不变的理想气体分别处理。
这种思路一方面是比较绕,另一 方面是实际并不存在这样的中间过程,对于大部分同学而言,这种方法不大容易掌握。
其实,上述困境是老师教学过程中刻意回避或不熟悉混合气体的状态方程的结果,如果直接把混合气体的状态方程告知学生,不仅没有增加教学的难度,反而使得这一类混合气体的题目的处理变得简洁明了, 一个方程,一步,就可以搞定,何乐而不为?一、混合气体的状态方程 1、克拉珀龙方程将物质的量包含进理想气体状态方程,就是克拉珀龙方程:pV nRT 或pV nRT表达式中,n 为理想气体的物质的量,R 为普适气体常量。
所谓一定质量的理想气体,即物质的量 n 保持不变,所以有p 1V 1T 1p 2V 2nR ,这就是高中物理教材T 2呈现的一定质量的理想气体状态方程。
对 pVnRT 中的四个参量两两控制,则可得到理想气体的五个实验定律:①玻意耳定律:一定质量,一定温度,pV =C ; ②查理定律:一定质量,一定体积,p /T =C ;③盖-吕萨克定律:一定质量,一定压强,V /T =C ; ④阿伏伽德罗定律:等温等压气体混合,V ∝n ; ⑤道尔顿分压定律:等温等容气体混合,p i ∝n i 。
(混合气体的压强,等于各种气体单独产生压强的代数和,且各种气体单独产生的压强与该气体的物 质的量成正比。
p 1V n 1RT , p 2V n 2 RT , p 1V p 2V n 1RT n 2 RT , ( p 1 p 2 )V(n 1 n 2 )RT )2、混合气体状态方程将两种不同状态的气体混合在一起,对每一种气体,有p 1V 1n R ,p 2V 2 n R ,两式左右相加,得1T 2n R n R p 1V 1 p 2V 2 1 21 2 其中,等式的左边可以改写为n 1R n 2 R (n 1 n 2 )R nR ,即混合后的气体的物质的量乘以普适气体常量。
高中物理选修3-3第八章 3理想气体的状态方程

3 理想气体的状态方程[学科素养与目标要求]物理观念:1.了解理想气体的模型,并知道实际气体看成理想气体的条件.2.理解理想气体状态方程的内容和表达式.科学思维:1.掌握理想气体状态方程,知道其推导过程.2.能利用理想气体状态方程分析、解决实际问题.一、理想气体1.理想气体:在任何温度、任何压强下都遵从气体实验定律的气体. 2.理想气体与实际气体(1)实际气体在温度不低于零下几十摄氏度、压强不超过大气压的几倍时,可以当成理想气体来处理.(2)理想气体是对实际气体的一种科学抽象,就像质点、点电荷模型一样,是一种理想模型,实际并不存在. 二、理想气体的状态方程1.内容:一定质量的某种理想气体,在从一个状态(p 1、V 1、T 1)变化到另一个状态(p 2、V 2、T 2)时,尽管p 、V 、T 都可能改变,但是压强跟体积的乘积与热力学温度的比值保持不变. 2.表达式:p 1V 1T 1=p 2V 2T 2或pVT =C .3.成立条件:一定质量的理想气体.1.判断下列说法的正误.(1)理想气体在超低温和超高压时,气体的实验定律不适用了.( × )(2)能用气体实验定律来解决的问题不一定能用理想气体状态方程来求解.( × ) (3)对于不同的理想气体,其状态方程pVT=C (恒量)中的恒量C 相同.( × )(4)一定质量的理想气体温度和体积均增大到原来的2倍,压强增大到原来的4倍.( × ) 2.一定质量的某种理想气体的压强为p ,温度为27 ℃时,气体的密度为ρ,当气体的压强增为2p ,温度升为327 ℃时,气体的密度是________. 答案 ρ一、对理想气体的理解为什么要引入理想气体的概念?答案由于气体实验定律只在压强不太大,温度不太低的条件下理论结果与实验结果一致,为了使气体在任何温度、任何压强下都遵从气体实验定律,引入了理想气体的概念.理想气体的特点1.严格遵守气体实验定律及理想气体状态方程.2.理想气体分子本身的大小与分子间的距离相比可忽略不计,分子不占空间,可视为质点.3.理想气体分子除碰撞外,无相互作用的引力和斥力.4.理想气体分子无分子势能的变化,内能等于所有分子热运动的动能之和,只和温度有关.例1(多选)下列对理想气体的理解,正确的有()A.理想气体实际上并不存在,只是一种理想模型B.只要气体压强不是很高就可视为理想气体C.一定质量的某种理想气体的内能与温度、体积都有关D.在任何温度、任何压强下,理想气体都遵从气体实验定律答案AD解析理想气体是一种理想模型,温度不太低、压强不太大的实际气体可视为理想气体;理想气体在任何温度、任何压强下都遵从气体实验定律,选项A、D正确,选项B错误.一定质量的理想气体的内能只与温度有关,与体积无关,选项C错误.二、理想气体的状态方程如图所示,一定质量的某种理想气体从状态A到B经历了一个等温过程,又从状态B到C 经历了一个等容过程,请推导状态A的三个参量p A、V A、T A和状态C的三个参量p C、V C、T C之间的关系.答案从A→B为等温变化过程,根据玻意耳定律可得p A V A=p B V B①从B→C为等容变化过程,根据查理定律可得p BT B=p CT C②由题意可知:T A=T B③V B=V C④联立①②③④式可得p A V AT A=p C V CT C.1.对理想气体状态方程的理解(1)成立条件:一定质量的理想气体.(2)该方程表示的是气体三个状态参量的关系,与中间的变化过程无关.(3)公式中常量C仅由气体的种类和质量决定,与状态参量(p、V、T)无关.(4)方程中各量的单位:温度T必须是热力学温度,公式两边中压强p和体积V单位必须统一,但不一定是国际单位制中的单位.2.理想气体状态方程与气体实验定律p1V1T1=p2V2T2⇒⎩⎪⎨⎪⎧T1=T2时,p1V1=p2V2(玻意耳定律)V1=V2时,p1T1=p2T2(查理定律)p1=p2时,V1T1=V2T2(盖—吕萨克定律)例2(2019·清远市高三上期末)如图1所示,一汽缸竖直固定在水平地面上,活塞质量m =4 kg,活塞横截面积S=2×10-3 m2,活塞上面的汽缸内封闭了一定质量的理想气体,下面有气孔O与外界相通,大气压强p0=1.0×105 Pa.活塞下面与劲度系数k=2×103 N/m的轻弹簧相连,当汽缸内气体温度为T1=400 K时弹簧为自然长度,此时缸内气柱长度L1=20 cm,g取10 m/s2,活塞不漏气且与缸壁无摩擦.图1(1)当弹簧为自然长度时,缸内气体压强p1是多少?(2)当缸内气柱长度L2=24 cm时,缸内气体温度T2为多少K?答案(1)8×104 Pa(2)720 K解析(1)当弹簧为自然长度时,设封闭气体的压强为p1,对活塞受力分析得:p1S+mg=p0S代入数据得:p 1=8×104 Pa(2)当缸内气柱长度L 2=24 cm 时,设封闭气体的压强为p 2,对活塞受力分析得: p 2S +mg =p 0S +F 其中:F =k (L 2-L 1) 联立可得:p 2=p 0+F -mgS代入数据得:p 2=1.2×105 Pa 对缸内气体,根据题意得:V 1=20S V 2=24S T 1=400 K根据理想气体状态方程,得:p 1V 1T 1=p 2V 2T 2解得T 2=720 K.例3 如图2所示,U 形管左端封闭,右端开口,左管横截面积为右管横截面积的2倍,在左管内用水银封闭一段长为26 cm 、温度为280 K 的空气柱,左右两管水银面高度差为36 cm ,外界大气压为76 cmHg.若给左管的封闭气体加热,使管内空气柱长度变为30 cm ,则此时左管内气体的温度为多少?图2答案 420 K解析 以封闭气体为研究对象,设左管横截面积为S ,当左管封闭的空气柱长度变为30 cm 时,左管水银柱下降4 cm ;右管水银柱上升8 cm ,即两端水银柱高度差为:h ′=24 cm ,由题意得:V 1=L 1S =26S ,p 1=p 0-p h =76 cmHg -36 cmHg =40 cmHg ,T 1=280 K ,p 2=p 0-p h ′=52 cmHg ,V 2=L 2S =30S .由理想气体状态方程:p 1V 1T 1=p 2V 2T 2,解得T 2=420 K.应用理想气体状态方程解题的一般步骤1.明确研究对象,即一定质量的理想气体;2.确定气体在初、末状态的参量p 1、V 1、T 1及p 2、V 2、T 2; 3.由状态方程列式求解; 4.必要时讨论结果的合理性.例4 (2019·唐山市期末)如图3所示,绝热性能良好的汽缸固定放置,其内壁光滑,开口向右,汽缸中封闭一定质量的理想气体,活塞(绝热)通过水平轻绳跨过滑轮与重物相连,已知活塞的面积为S =10 cm 2,重物的质量m =2 kg ,重力加速度g =10 m/s 2,大气压强p 0=1.0×105 Pa ,滑轮摩擦不计.稳定时,活塞与汽缸底部间的距离为L 1=12 cm ,汽缸内温度T 1=300 K.图3(1)通过电热丝对汽缸内气体加热,气体温度缓慢上升到T 2=400 K 时停止加热,求加热过程中活塞移动的距离d ;(2)停止加热后,在重物的下方加挂一个2 kg 的重物,活塞又向右移动4 cm 后重新达到平衡,求此时汽缸内气体的温度T 3. 答案 (1)4 cm (2)375 K解析 (1)加热前p 1S +F T =p 0S ,F T =mg 加热后p 2S +F T =p 0S ,F T =mg , 所以p 1=p 2=0.8×105 Pa ,加热过程为等压变化,故有L 1S T 1=(L 1+d )S T 2代入数据解得d =4 cm.(2)加挂重物后p 3S +F T ′=p 0S ,F T ′=(m +m ′)g 由理想气体状态方程p 1L 1S T 1=p 3(L 1+d +d ′)ST 3代入数据解得T 3=375 K.1.(理想气体状态方程的应用)用固定的活塞把容器分成A 、B 两部分,其容积之比V A ∶V B =2∶1,如图4所示.起初A 中空气温度为127 ℃,压强为1.8×105 Pa ,B 中空气温度为27 ℃,压强为1.2×105 Pa.拔去销钉,使活塞可以无摩擦地移动(不漏气),由于容器缓慢导热,最后都变成室温27 ℃,活塞也停止移动,求最后A 中气体的压强(T =t +273 K).图4答案 1.3×105 Pa解析 设开始时气体A 和B 的压强、体积、温度分别为p A 、V A 、T A 和p B 、V B 、T B ,最终活塞停止时,两部分气体压强相等,用p 表示,温度相同,用T 表示,A 和B 的体积分别为V A ′和V B ′.根据理想气体状态方程可得 A 部分气体:p A V A T A =pV A ′T ①B 部分气体:p B V B T B =pV B ′T②活塞移动前后总体积不变,则V A ′+V B ′=V A +V B ③ 联立①②③和V A =2V B 可得p =T (2p A 3T A +p B 3T B )=300×(2×1.83×400+ 1.23×300)×105 Pa =1.3×105 Pa.2.(理想气体状态方程的综合应用)(2019·济宁一中高三开学考试)图5为一上粗下细且下端开口的薄壁玻璃管,管内有一段被水银密闭的气体,下管足够长,图中管的横截面积分别为S 1=2 cm 2,S 2=1 cm 2,管内水银长度为h 1=h 2=2 cm ,封闭气体长度l =10 cm ,大气压强p 0相当于76 cm 高水银柱产生的压强,气体初始温度为300 K ,若缓慢升高气体温度.试求:(g 取10 m/s 2)图5(1)当粗管内的水银刚被全部挤出时气体的温度;(2)当气体温度为525 K 时,水银柱上端距玻璃管最上端的距离. 答案 (1)350 K (2)24 cm解析 (1)选择封闭气体作为研究对象,设末态粗管内的水银刚被全部挤出时水银的总长度为h ′,根据水银的总体积保持不变可得:h 1S 1+h 2S 2=h ′S 2,可得:h ′=6 cm 初态:压强p 1=p 0-p h 1-p h 2=72 cmHg , 体积V 1=lS 1=20 cm 3,温度T 1=300 K 末态:压强p 2=p 0-p h ′=70 cmHg , 体积V 2=(l +h 1)S 1=24 cm 3,温度为T 2 根据理想气体的状态方程可得p 1V 1T 1=p 2V 2T 2解得粗管内的水银刚被全部挤出时气体的温度: T 2=350 K.(2)设温度为525 K 时水银柱上端距离玻璃管最上端的距离为H , 初态:压强p 2=70 cmHg , 体积V 2=24 cm 3,温度T 2=350 K末态:压强p 3=70 cmHg ,体积V 3=(l +h 1)S 1+(H -l -h 1)S 2,温度T 3=525 K 这个过程是等压变化,根据盖—吕萨克定律可得:V 2T 2=V 3T 3解得气体温度为525 K 时,水银柱上端距离玻璃管底部的距离:H =24 cm.一、选择题考点一 理想气体及理想气体状态方程的理解1.(多选)关于理想气体的认识,下列说法正确的是( ) A .它是一种能够在任何条件下都能严格遵守气体实验定律的气体 B .它是一种从实际气体中忽略次要因素,简化抽象出来的理想化模型 C .在温度不太高、压强不太低的情况下,气体可视为理想气体 D .被压缩的气体,不能视为理想气体 答案 AB2.对于一定质量的理想气体,下列状态变化中可能实现的是( ) A .使气体体积增加而同时温度降低B .使气体温度升高,体积不变、压强减小C .使气体温度不变,而压强、体积同时增大D .使气体温度升高,压强减小,体积减小 答案 A解析 由理想气体状态方程pVT=C 得A 项中若使压强减小就有可能,故A 项正确;体积不变,温度与压强应同时变大或同时变小,故B 项错误;温度不变,压强与体积成反比,故不能同时增大,故C 项错误;温度升高,压强减小,体积不可能减小,故D 项错误. 3.关于气体的状态变化,下列说法中正确的是( )A .一定质量的理想气体,当压强不变而温度由100 ℃上升到200 ℃时,其体积增大为原来的2倍B .气体由状态1变化到状态2时,一定满足方程p 1V 1T 1=p 2V 2T 2C .一定质量的理想气体体积增大到原来的4倍,则气体可能压强减半,热力学温度加倍D .一定质量的理想气体压强增大到原来的4倍,则气体可能体积加倍,热力学温度减半 答案 C解析 一定质量的理想气体压强不变,体积与热力学温度成正比,温度由100 ℃上升到200 ℃时,体积增大为原来的1.27倍,故A 错误;理想气体状态方程成立的条件为气体可看做理想气体且质量不变,故B 错误;由理想气体状态方程pVT =C 可知,C 正确,D 错误.考点二 理想气体状态方程的应用4.如图1所示为伽利略设计的一种测温装置示意图,玻璃管的上端与导热良好的玻璃泡连通,下端插入水中,玻璃泡中封闭有一定质量的空气.若玻璃管中水柱上升,则外界大气的变化可能是( )图1A .温度降低,压强增大B .温度升高,压强不变C .温度升高,压强减小D .温度不变,压强减小答案 A解析 由题意可知,封闭空气温度与大气温度相同,封闭空气体积随水柱的上升而减小,将封闭空气近似看作理想气体,根据理想气体状态方程pVT=常量,若温度降低,体积减小,则压强可能增大、不变或减小,A 正确;若温度升高,体积减小,则压强一定增大,B 、C 错误;若温度不变,体积减小,则压强一定增大,D 错误.5.已知湖水深度为20 m ,湖底水温为4 ℃,水面温度为17 ℃,大气压强为1.0×105 Pa.当一气泡从湖底缓慢升到水面时,其体积约为原来的(取g =10 m/s 2,ρ水=1.0×103 kg/m 3)( ) A .12.8倍 B .8.5倍 C .3.1倍 D .2.1倍 答案 C解析 湖底压强为p 0+ρ水gh =3.0×105 Pa ,即3个大气压强,由理想气体状态方程可得3p 0V 1(4+273.15) K =p 0V 2(17+273.15) K,即V 2=290.15277.15×3V 1≈3.14V 1.所以当一气泡从湖底缓慢升到水面时,其体积约为原来的3.1倍,C 正确.6.一定质量的理想气体,经历了如图2所示的状态变化过程,则此三个状态的温度之比是( )图2A .1∶3∶5B .3∶6∶5C .3∶2∶1D .5∶6∶3答案 B解析 由理想气体状态方程得:pVT =C (C 为常数),可见pV =TC ,即pV 的乘积与温度T 成正比,故B 项正确.7.(多选)一定质量的理想气体处于某一平衡态,此时其压强为p 0,有人设计了四种途径,使气体经过每种途径后压强仍为p 0.下面可能实现的途径是( ) A .先等温膨胀,再等容降温 B .先等温压缩,再等容降温 C .先等容升温,再等温压缩D .先等容降温,再等温压缩 答案 BD解析 由理想气体状态方程pVT=C 分析.T 不变,V 增大时,p 减小;V 不变,T 变小时,p 仍变小,故A 项错误.T 不变,V 减小时,p 增大;V 不变,T 变小时,p 变小,压强可能回到初态的压强值,故B 项正确.V 不变,T 变大时,p 增大;T 不变,V 减小时,p 增大,故C 项错误.V 不变,T 变小时,p 减小;T 不变,V 减小时,p 增大,压强可能回到初态的压强值,故D 项正确. 二、非选择题8.我国“蛟龙”号深海探测船载人下潜超过七千米.在某次深潜试验中,“蛟龙”号探测到990 m 深处的海水温度为280 K .某同学利用该数据来研究气体状态随海水深度的变化,如图3所示,导热良好的汽缸内封闭一定质量的气体,不计活塞的质量和摩擦,汽缸所处海平面的温度T 0=300 K ,压强p 0=1 atm ,封闭气体的体积V 0=3 m 3.如果将该汽缸下潜至990 m 深处,此过程中封闭气体可视为理想气体.求990 m 深处封闭气体的体积(1 atm 相当于10 m 深的海水产生的压强).图3答案 2.8×10-2 m 3解析 当汽缸下潜至990 m 深处时,设封闭气体的压强为p ,温度为T ,体积为V ,由题意知p =100 atm.由理想气体状态方程得p 0V 0T 0=pV T ,代入数据得V =2.8×10-2 m 3.9.如图4所示,圆柱形汽缸A 中用质量为2m 的活塞封闭了一定质量的理想气体,气体温度为27 ℃,汽缸中的活塞通过滑轮系统悬挂一质量为m 的重物,稳定时活塞与汽缸底部的距离为h ,现在重物m 上加挂一个质量为m3的小物体,已知大气压强为p 0,活塞横截面积为S ,m =p 0Sg,不计一切摩擦,求当气体温度升高到37 ℃且系统重新稳定后,重物m 下降的高度.图4答案 0.24h解析 以汽缸内气体为研究对象,初状态下:p 1S +mg =p 0S +2mgV 1=hS ,T 1=300 K末状态下:p 2S +43mg =p 0S +2mg V 2=(h +Δh )S ,T 2=310 K由题意知m =p 0S g ,解得p 1=2p 0,p 2=53p 0 根据理想气体状态方程:p 1V 1T 1=p 2V 2T 2解得:Δh =0.24h .10.如图5所示,绝热汽缸A 与导热汽缸B 均固定于地面上,由刚性杆连接的绝热活塞与两汽缸间均无摩擦.两汽缸内装有处于平衡态的理想气体,开始时体积均为V 0、温度均为T 0.缓慢加热A 中气体,停止加热达到稳定后,A 中气体压强变为原来的1.2倍.设环境温度始终保持不变,求汽缸A 中气体的体积V A 和温度T A .图5答案 76V 0 1.4T 0 解析 设初态压强为p 0,膨胀后A 、B 中气体压强相等,p A =p B =1.2p 0,B 中气体始、末状态温度相等,有p 0V 0=1.2p 0(2V 0-V A ),所以V A =76V 0,A 中气体满足p 0V 0T 0=1.2p 0V A T A,所以T A =1.4T 0.11.竖直平面内有一直角形内径处处相同的细玻璃管,A 端封闭,C 端开口,最初AB 段处于水平状态,中间有一段水银将气体封闭在A 端,各部分尺寸如图6所示.初始时,封闭气体温度为T1=300 K,外界大气压强p0=75 cmHg.求:图6(1)若对封闭气体缓慢加热,当水平管内水银全部进入竖直管内时,气体的温度是多少;(2)若保持(1)问的温度不变,从C端缓慢注入水银,使水银与C端管口平齐,需要注入水银的长度为多少.答案(1)450 K(2)14 cm解析(1)设细管的横截面积为S,以AB内封闭的气体为研究对象.初态p1=p0+5 cmHg=80 cmHg,V1=30S,T1=300 K当水平管内水银全部进入竖直管内时,此时:p2=p0+15 cmHg=90 cmHg,体积V2=40S,设此时温度为T2,由理想气体状态方程得:p1V1T1=p2V2T2解得T2=450 K.(2)保持温度不变,初态p2=90 cmHg,体积V2=40S,末态p3=p0+25 cmHg=100 cmHg 由玻意耳定律得:p2V2=p3V3解得V3=36S故需要加入的水银长度Δl=(30+20-36) cm=14 cm.。
高中物理《气体》章末复习

第八章气体课前预习一、气体定律1.玻意耳定律:一定质量的某种气体,在不变的情况下,与成反比。
公式为或P1V1= 。
2.查理定律:一定质量的某种气体,在不变的情况下,与成正比。
公式为P= 或P1/P2= 。
2.盖—吕萨克定律:一定质量的某种气体,在不变的情况下,与成正比。
公式为V= 或V1/V2= 。
二、理想气体状态方程1.理想气体:在和下都能遵从气体实验定律的气体。
理想气体是一种的模型;其分子间作用力,分子势能为。
2.理想气体状态方程一定质量的某种理想气体在从一个状态变化到另一个状态,尽管压强、温度、体积都可能改变,但是跟的乘积与的比值保持不变。
公式为:三、气体定律的微观解释1.玻意耳定律的微观解释:一定的气体,温度保持不变时,分子的是一定的。
在这种情况下,体积减小时,分子的增大,气体的就增大。
2.查理定律的微观解释:一定质量的气体,保持不变时,分子的密集程度保持不变。
在这种情况下,温度升高时,分子的增大,增大,气体的压强就增大。
3.盖—吕萨克定律的微观解释:一定质量的气体,温度升高,分子的平均动能增大。
只有气体的同时增大,使分子的密集程度,才能保持压强不变。
例1、如图,粗细均匀、两端开口的U形管竖直放置,两管的竖直部分高度为20cm,内径很小,水平部分BC长14cm。
一空气柱将管内水银分隔成左右两段。
大气压强P0=76cmHg。
当空气柱温度为T0=273K、长为L0=8cm时,BC管内左边水银柱长2cm,AB管内水银柱长也为2cm。
求:(1)右边水银柱总长是多少?(2)当空气柱温度升高到多少时,左边的水银恰好全部进入竖直管AB内?(3)为使左、右侧竖直管内的水银柱上表面高度差最大,空气柱温度至少要升高到多少?例2.水平放置,粗细均匀,两侧都封闭的细长玻璃管中,有一段水银柱将管中气体分为两部分如图所示,将玻璃管温度均匀升高的过程中,水银柱将()A、向右移动B、向左移动C.始终不动 D、以上三种情况都有可能例3、如图所示,活塞质量为M,横截面积为S,上表面水平,下表面与水平成α角,摩擦不计,外界大气压为po,被封闭气体的压强为()A、po—Mgcosα/S B、p o cosα—Mg/SC、po —Mg/S D、po—Mgcos2α/S图8—14练习1:一定质量的理想气体经历一等温膨胀过程,这一过程可以用p-V图上的曲线来表示,如图所示.由此可知,当气体的体积V1=5 L时,气体的压强p1=________Pa;当气体的体积V2=10L时,气体的压强p2=________Pa;当气体的体积V3=15 L时,气体的压强p3=________Pa.2:为了将空气装入气瓶内,现将一定质量的空气等温压缩,空气可视为理想气体.下列图象能正确表示该过程中空气的压强p和体积V关系的是.3.下面图中描述一定质量的气体做等容变化的过程的图线是()4、如图8—19所示,是一定质量的气体从状态A经B到状态C的V—T图象,由图象可知()A、PA>PBB、PC<PBC、PA>PCD、PC>PB5、如图8—20所示,是一定质量的气体从状态A经B到状态C的P—T图象,由图象可知()A、VA=VBB、VB=VCC、VB<VCD、VA>VCPTOPTOPTOPOt/0C-273A B C DVOTABCTABC6.如图为竖直放置的上细下粗的密闭细管,水银柱将气体分隔成A、B两部分,初始温度相同。
高中物理 第8章 气体 第3节 理想气体的状态方程

? 『想一想』
? 如图所示,某同学用吸管吹出一球形肥皂泡,开始时,气 体在口腔中的温度为37℃,压强为1.1标准大气压,吹出后 的肥皂泡体积为0.5L,温度为0℃,压强近似等于1标准大 气压。则这部分气体在口腔内的体积是多少呢?
质点。 ? ③理想气体分子除碰撞外,无相互作用的引力和斥力,故无分子势能,理想
气体的内能等于所有分子热运动动能之和,一定质量的理想气体内能只与温 度有关。
2.理想气体的状态方程 (1)理想气体状态方程与气体实验定律
??T1=T2时,p1V1=p2V2?玻意耳定律 ?
p1V T1
1=pT2V2
2?
? ?
? 答解案析::空3气2.柱7m的L初状态49参.1量m:L
p0=760mmHg ,V0=5mL ,T0=300K 。 它在体内收缩压时的状态参量:
p1=120mmHg ,T1=310K 。
解析: 取水银气压计内空气柱为研究对象。
初状态:
p1=(758-738)mmHg =20mmHg ,
V1=80Smm 3(S 是管的横截面积 )
T1=(273+27)K =300K
末状态: p2=p-743mmHg
V2=(738+80)Smm 3-743Smm 3=75Smm 3
T2=273K +(-3)K =270K
根据理想气体的状态方程
p1V T1
1=
p2V T2
2得20×30800S
=?p-74237?0×75S
解得: p=762.2mmHg
答案: 762.2mmHg
? 〔对点训练1〕 如果病人在静脉输液时,不慎将5mL的空 气柱输入体内,会造成空气栓塞,致使病人死亡。设空气 柱在输入体内前的压强为760mmHg,温度为27℃,人的血 压为120/80mmHg,试估算空气柱到达心脏处时,在收缩 压和扩张压两种状态下,空气柱的体积分别为多少?
高中物理气体的性质公式总结

高中物理气体的性质公式总结高中物理气体的性质公式1.气体的状态参量:温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=1900pxHg(1Pa=1N/m2)2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}注:(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。
高中物理气体的性质1.气体的状态参量:温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}注:(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。
高中物理气体知识点总结

高中物理气体知识点总结一、气体的性质1. 气体的无定形:气体没有固定的形状和体积,能够自由流动。
2. 气体的可压缩性:由于气体分子之间的间距较大,气体易受到外界压力的影响而发生压缩或膨胀。
3. 气体的弹性:气体分子之间存在相互作用力,当气体受到外力作用时,能够产生弹性形变。
二、气体的状态方程1. 理想气体状态方程:PV = nRT,其中P为气体的压强,V为气体的体积,n为气体的物质的量,R为气体常数,T为气体的绝对温度。
2. 理想气体状态方程的应用:可以用于计算气体的压强、体积、物质的量和温度之间的关系,也适用于气体的混合、稀释等情况。
三、气体的压强1. 气体的压强定义:单位面积上气体分子对容器壁的撞击力。
2. 压强的计算公式:P = F/A,其中P为压强,F为气体分子对容器壁的撞击力,A为单位面积。
3. 压强的单位:国际单位制中,压强的单位为帕斯卡(Pa)。
4. 大气压:大气对地面单位面积上的压强,标准大气压为101325Pa。
四、气体的温度1. 气体的温度定义:气体分子的平均动能的度量。
2. 温度的单位:国际单位制中,温度的单位为开尔文(K)。
3. 摄氏度和开尔文度的转换:T(K) = t(℃) + 273.15。
五、气体的分子速率与平均动能1. 气体分子速率的分布:气体分子的速率服从麦克斯韦速率分布定律,速率越高的分子数目越少。
2. 平均动能与温度的关系:气体的平均动能与温度成正比,温度越高,气体分子的平均动能越大。
六、理想气体的压强与温度的关系1. Gay-Lussac定律:在等体积条件下,理想气体的压强与温度成正比,P1/T1 = P2/T2。
2. Charles定律:在等压条件下,理想气体的体积与温度成正比,V1/T1 = V2/T2。
3. 综合气体状态方程和Gay-Lussac定律、Charles定律,可以得到压强、体积和温度之间的关系。
七、气体的扩散和扩散速率1. 气体的扩散:气体分子由高浓度区域向低浓度区域的自由运动过程。
拓展资料1:理想气体的状态方程(高中物理教学课件)

pV C或者 p1V1 p2V2
T
T1
T2
注意:式中C是与压强p、体积V、温度T无关的常
量,它与气体的质量、种类有关。
问题:一种气体的状态参量发生变化时有没有可
能p、V不变T变大? p不变T增大V减小? T不变p
减小V增大? V不变p增大T减小?
二.理想气体的状态方程
2.理想气体状态方程的应用 解题步骤: ①确定研究对象,即某一定质量的理想气体,分 析它的变化过程; ②确定初、末两状态,准确找出初、末两状态的 状态参量; ③用理想气体状态方程列式求解。
例6. 如图,竖直放置的均匀等臂U形导热玻璃管两端封 闭,管内水银封有A、B两段气柱,左管水银面高于右管 水和若温银pB度,面降则,低(高,设B度h不差)变为, Tph, 稳Tp 定时pA、TpB气T 柱kp的, 压强分别为pA ApA.若 环pB,境p温A 度升pB 高, B减,小pA的增多大, ,pB减小 思思另温B小C压D度液液若若后去pA...路路解度面面温来的若 若若强于变h二一:相右左度:话环环环p比Δ化B::若同移移升取哪p,h2境境境值ΔpB,T原,,,高极边Vhh温温h温增p则可来分h,限液A减增度度液度大:子n设法柱能h2小大Rpp,面降升平,h降升BA等温p,,不则相B均高低高低,度于pp变p液nn平速A呢AB降,,BA减增,,hVV面,增率T?pn/B得A小大稳稳2稳R相压大相越,,VT定定定平强的nn同多ppBTAp,相多后后BB后,(,也因右压,等pp压AAA减为B移Ap、、强,处强Ap小V的相但BBB不液nnh越BA气气等T分VV,可p面V多BA,子柱柱pA能,,T高)BVh若也数,相压的B越再增密压同小强V把大度强,A,变温不增故所化度等大不以Δ升,可p回pp能ABA一.定
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
V 2
p 2T 2V
2T
2
一些不易液化的气体,如氢气、氧气、氮气、氦气、空气等,在通常温度、压强下,它们的性质很近似于
2.一般状态变化图象的处理方法,化“一般”为“特殊”,如图是一定质量的某种气体的状态变化过程A →B →C →A.在V T 图线上,等压线是一簇延长线过原点的直线,过A 、B 、C 三点作三条等压线分别表示三个等压过程, p A ′<p B ′<p C ′,即p A <p B <p C ,所以A →B 压强增大,温度降低,体积减小,B →C 温度升高,体积减小,压强增大,C →A 温度降低,体积增大,压强减小.
五、用理想气体状态方程解决变质量问题
理想气体状态方程是针对一定质量的理想气体的,但在实际问题中,气体的质量往往发生改变,因此不能直接
V 2
p 2T 2V
2T
2
一些不易液化的气体,如氢气、氧气、氮气、氦气、空气等,在通常温度、压强下,它们的性质很近似于
2.一般状态变化图象的处理方法,化“一般”为“特殊”,如图是一定质量的某种气体的状态变化过程A →B →C →A.在V T 图线上,等压线是一簇延长线过原点的直线,过A 、B 、C 三点作三条等压线分别表示三个等压过程, p A ′<p B ′<p C ′,即p A <p B <p C ,所以A →B 压强增大,温度降低,体积减小,B →C 温度升高,体积减小,压强增大,C →A 温度降低,体积增大,压强减小.
五、用理想气体状态方程解决变质量问题
T B.由图可知()
A.T=2T B.T=4T
5.
如图所示,一定质量的理想气体,由状态A沿直线AB变化到状态B,在此过程中,气体分子的平均速率的变
【答案】D
6.(多选)一定质量理想气体的状态,经历了如图所示的ab、bc、cd、da四个过程,其中bc的延长线通过原【答案】AB
7.一圆筒形真空容器,在筒顶系着的轻弹簧下端挂一质量不计的活塞,弹簧处于自然长度时,活塞正好触及
2.在图中,不能反映理想气体经历了等温变化→等容变化→等压变化,又回到原来状态的图是()
【解析】根据pV、pT、VT图象的意义可以判断,其中选项D显示的是理想气体经历了等温变化→等压变【答案】BC
4.已知理想气体的内能与温度成正比.如图所示的实线为气缸内一定质量的理想气体由状态1到状态2的变。