材料科学基础-晶体缺陷

合集下载

《材料科学基础》教学中的晶体缺陷

《材料科学基础》教学中的晶体缺陷

《材料科学基础》教学中的晶体缺陷
晶体缺陷是晶体中的异常结构,它可以影响晶体的物理性质和力学性质。

在《材料科学基础》教学中,学生需要了解以下关于晶体缺陷的内容:
1. 晶体缺陷的分类:晶体缺陷可以分为内部缺陷和表面缺陷,内部缺陷包括缺位缺陷、离子缺陷、晶界缺陷、层缺陷等,而表面缺陷则包括裂纹、气孔、氧化物等。

2. 晶体缺陷的形成机制:晶体缺陷的形成可以由晶体原子或离子的迁移、晶体原子或离子的排斥、晶体原子或离子的结晶不足、晶体原子或离子的结晶过度等机制来解释。

3. 晶体缺陷的影响:晶体缺陷可以影响材料的物理性质和力学性质,例如热导率、电导率、磁导率等,以及材料的强度、韧性、硬度等。

4. 晶体缺陷的检测方法:常用的晶体缺陷检测方法包括X射线衍射、扫描电子显微镜、拉曼光谱、热扩散系数测定等。

材料科学基础第三章晶体缺陷

材料科学基础第三章晶体缺陷

够的能量而跳入空位,并占据这个平衡位置,这时在这个原 子的原来位置上,就形成一个空位。这一过程可以看作是空 位向邻近结点的迁移。
在运动过程中,当间隙原子与一个空位相遇时,它将落入
这个空位,而使两者都消失,这一过程称为复合,或湮没。
(a)原来位置;
(b)中间位置;
(c)迁移后位置
图 空位从位置A迁移到B
2 Ar a 3 N A 8.57 (3.294108 )3 6.0231023 x 1 2 Ar 2 92.91 7.1766103 106 7.1766103 7176 .6(个) 所以, 106 个Nb中有7176 .6个空位。
a NA
作业:
二.本章重点及难点 1、点缺陷的形成与平衡浓度 2、位错类型的判断及其特征、伯氏矢量的特征和物理意义 3、位错源、位错的增殖(F-R源、双交滑移机制等)和运动、 交割
4、关于位错的应力场可作为一般了解
5、晶界的特性(大、小角度晶界)、孪晶界、相界的类型
维纳斯“无臂” 之美更深入人心
处处留心皆学问
2.点缺陷的形成(本征缺陷的形成)
点缺陷形成最重要的环节是原子的振动 原子的热振动
(以一定的频率和振幅作振动)
原子被束缚在它的平衡位置上,但原子却在做着挣脱
束缚的努力
点缺陷形成的驱动力:温度、离子轰击、冷加工
在外界驱动力作用下,哪个原子能够挣脱束缚,脱离
平衡位置是不确定的,宏观上说这是一种几率分布
刃型位错的特点:
1).刃型位错有一个额外的半原子面。其实正、负之分只具 相对意义而无本质的区别。 2).刃型位错线可理解为晶体中已滑移区与未滑移区的边界 线。它不一定是直线,也可以是折线或曲线,但它必与滑移 方向相垂直,也垂直于滑移矢量。

材料科学基础第3章

材料科学基础第3章

3.2 位错
晶体在结晶时受到杂质、温度变化或振动产
生的应力作用,或由于晶体受到打击、切削、 研磨等机械应力的作用,使晶体内部质点排列 变形,原子行列间相互滑移,即不再符合理想 晶格的有序排列,由此形成的缺陷称位错。
3.2.1 位错的基本类型和特征
刃型位错 螺型位错
刃型位错结构的特点: 1) 刃型位错有一个额外的半原子面。一般把多出的半原子面在滑移面 上边的称为正刃型位错,记为“┻”;而把多出在下边的称为负刃 型位错,记为“┳”。
螺型位错
a. 位错中心附近的原子移动小于一个原子间距的距离。 b. 位错线在滑移面上向左移动了一个原子间距。
c. d. e. 当位错线沿滑移面滑移通过整个晶体时,就会在晶体表面沿柏氏矢 量方向产生宽度为一个柏氏矢量大小的台阶。 螺型位错的运动方向始终垂直位错线并垂直于柏氏矢量。 螺型位错线与柏氏矢量平行,故其滑移不限于单一的滑移面上,所 有包含位错线的晶面都可成为其滑移面。
晶体中的位错环
晶体中的位错网络
3.柏氏矢量的表示法
•柏氏矢量的大小和方向可用与它同向的 晶向指数来表示。
[
a a a [2 2 2 ]
]
a [1 1 1] 2
例如:
在体心立方中, 柏氏矢量等于从体心 立方晶体的原点到体 心的矢量。
b=
a [1 1 1] 2
a •一般立方晶系中柏氏矢量可表示为b= n <u v w>
4)
5)
2.螺型位错
设立方晶体右侧受到切 应力的作用,其右侧上 下两部分晶体沿滑移面 ABCD发生了错动,如图 所示。这时已滑移区和 未滑移区的边界线 bb´(位错线)不是垂直而 是平行于滑移方向。
F
C D

《材料科学基础》 第03章 晶体缺陷

《材料科学基础》 第03章 晶体缺陷

第三节 位错的基本概念
三、位错的运动
刃位错的攀移运动:刃型位错在垂直于滑移面方向上的运动。 刃位错发生攀移运动时相当于半原子面的伸长或缩短,通常把 半原子面缩短称为正攀移,反之为负攀移。 滑移时不涉及单个原子迁移,即扩散。刃型位错发生正攀 移将有原子多余,大部分是由于晶体中空位运动到位错线上的 结果,从而会造成空位的消失;而负攀移则需要外来原子,无 外来原子将在晶体中产生新的空位。空位的迁移速度随温度的 升高而加快,因此刃型位错的攀移一般发生在温度较高时;另 外,温度的变化将引起晶体的平衡空位浓度的变化,这种空位 的变化往往和刃位错的攀移相关。切应力对刃位错的攀移是无 效的,正应力的存在有助于攀移(压应力有助正攀移,拉应力 有助负攀移),但对攀移的总体作用甚小。
第一节 材料的实际晶体结构
二、晶体中的缺陷概论
晶体缺陷按范围分类:
1. 点缺陷 在三维空间各方向上尺寸都很小,在原 子尺寸大小的晶体缺陷。
2. 线缺陷 在三维空间的一个方向上的尺寸很大(晶 粒数量级),另外两个方向上的尺寸很小(原子尺 寸大小)的晶体缺陷。其具体形式就是晶体中的 位错Dislocation 。
说明:这是一个并不十分准确的定义方法。柏氏矢量的方向与位错线方向的定义有关,应该首 先定义位错线的方向,再依据位错线的方向来定柏氏回路的方向,再确定柏氏矢量的方 向。在专门的位错理论中还会纠正。
第三节 位错的基本概念
二、柏氏矢量
柏氏矢量与位错类型的关系:
刃型位错 柏氏矢量与位错线相互垂直。(依方向关系可 分正刃和负刃型位错) 螺型位错 柏氏矢量与位错线相互平行。(依方向关系可 分左螺和右螺型位错) 混合位错 柏氏矢量与位错线的夹角非0或90度。
过饱和空位 晶体中含点缺陷的数目明显超过平衡 值。如高温下停留平衡时晶体中存在一平衡空位, 快速冷却到一较低的温度,晶体中的空位来不及移 出晶体,就会造成晶体中的空位浓度超过这时的平 衡值。过饱和空位的存在是一非平衡状态,有恢复 到平衡态的热力学趋势,在动力学上要到达平衡态 还要一时间过程。

材料科学基础第三章 晶体缺陷

材料科学基础第三章 晶体缺陷

贵州师范大学
化学与材料科学学院
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
二、点缺陷的产生 1. 平衡点缺陷及其浓度 虽然点缺陷的存在使晶体的内能增高,但 同时也使熵增加,从而使晶体的能量下降。因 此,点缺陷是晶体中热力学平衡的缺陷。 等温等容条件下,点缺陷使晶体的亥姆霍 A U T S 兹自由能变化为:
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
三、点缺陷与材料行为 1. 点缺陷的运动 1)空位的运动
2)间隙原子的运动 3)空位片的形成
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
第三章 晶体缺陷
CRYSTAL DEFECTS
点缺陷 位错的基本概念 位错的弹性性质 作用在位错线上的力 实际晶体结构中的位错 晶体中的界面
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
一、点缺陷的类型
点缺陷的类型: (a) Schottky 空位; (b) Frenkel 缺陷; (c) 异类间隙原子; (d) 小置换原子; (e) 大置换原子
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY

晶体缺陷【材料科学基础】

晶体缺陷【材料科学基础】

14
大角度晶界
¾ ¾ 9 9
大角度晶界的结构较复杂,其中原子排列较不规则。 有关大角度晶界的结构,人们曾提出许多模型: 早期:认为晶界是由一层很薄(几个原子间距)的非晶 质组成。 后来: 过渡结构模型:晶界原子分布同时受两相邻晶粒位向的 影响,处于折中位置。 小岛结构模型:晶界中的一部分原子与其相邻两边界的 点阵匹配排列,成为好区;有的部分(岛屿)原子排列 较混乱,成为坏区。好区与坏区交替相间组成晶界。

相界能低(畸变非常小)。
36
半共格相界
定义:两相结构相近而原子 间距相差较大,在相界面上 出现了一些刃位错。(界面 上两相原子部分匹配) 相界能较高(有畸变)。相 界面上的原子共格关系主要 通过一组刃位错调整和维持。

37

半共格相界上位错间距D取决于相界处两相匹配晶 面的错配度(δ) 。 相界两侧原子的不匹配程度
19
晶界的性质
晶界能:形成单位面积晶界时所增加的能量。 ¾ 小角度晶界的晶界能: 小角度晶界的能量主要来自位错能量(形成位错的 能量和将位错排成有关组态所作的功),而位错密 度又决定于晶粒间的位向差,所以,小角度晶界能 也和位向差有关:

20
可见,小角度晶界的界面能随位向差增加而增大。
21
大角度晶界的晶界能: 9 基本恒定,约在0.25~1.0J/m2范围内,与晶粒 之间的位向差无关。 9 晶界能可以界面张力的形式来表现,且可以通过界 面交角的测定求出它的相对值。三个晶粒相交于一 点,界面张力达到平衡时:
9
界面结构:溶质原子在大角度晶界中偏聚严重。
27
¾ ¾ ¾ ¾ ¾
晶界的其它特性: 晶界的扩散激活能约为晶内的一半,晶界处原子的 扩散速度比在晶内快得多。 随温度升高,保温时间延长,晶界发生迁移,晶粒 要长大,晶界平直化;晶界可能熔化(过烧)。 新相易在晶界处优先形核(晶界能量高,原子活动 能力大)。 晶界具有较低的抗腐蚀能力。 晶界阻碍位错运动,使金属具有较高的塑变抗力。

材料科学基础 晶体缺陷

材料科学基础 晶体缺陷

二元离子晶体——不等径刚球密堆理论
.
12
2. 共价晶体结构(原子晶体)
典型共价晶体结构
金刚石型(单质型) ZnS型(AB型) SiO2型(AB2型)
.
13
第三节 原子的不规则排列
晶体中的缺陷——原子排列偏离完整性的区域
点缺陷——在三个方向上尺寸都很小 线缺陷——在二个方向上尺寸很小 面缺陷——在一个方向上尺寸很小
24
(1) 包含位错线做一封闭回路——柏氏回路 (2) 将同样的回路置于完整晶体中——不能闭合 (3) 补一矢量(终点指向起点)使回路闭合——柏氏矢量
43 21
1
2
2
1
1
3
1
1 23 4
b
43
2
1 2
1
1 23 4
.
25
2)柏氏矢量特性
(1) 满足右螺旋规则时,柏氏矢量与柏氏回路路径无关
二、金属晶体结构及几何特征
1. 常见的三种晶体结构
面心立方 体心立方
既是晶体结构,又是点阵
密排六方 —— 仅是晶体结构,不是点阵 — 简单六方
.
1
1) 面心立方(fcc 或 A1)
点 阵 常 数: R 2 a
4
最近原子间距:d 2 a 2
<110> 方向 晶胞原子数: 1/8×8 +1/2 ×6 = 4
1a 1b 0c a[11 ] 0
22
2
例:b 5a 2[11 0]、 b 6a 2[01] 1
b 5b 6a 2[11 0]a 2[01 ]1 a 2[11 ] 0
1) 刃位错


多出(或少了) 称为
半排原子面

大学材料科学基础第四章晶体缺陷

大学材料科学基础第四章晶体缺陷

Point defects: (a) vacancy, (b) interstitial atom, © small substitutional atom, (d) large substitutional atom, (e) Frenkel defect-ionic cystals (f) Schottky defect- ionic crystals. All of these defects disrupt the perfect arrangement of the surrounding atoms.
第一节 点缺陷
一、点缺陷的类型 1.点缺陷的概念 指在三维方向上尺寸都很小的原子错排区 域,不能理解为一个几何点。
(1) vacancy; (2) selfinterstitial; (3) interstitial impurity; (4), (5) substitutional impurities. The arrows show the local stresses introduced by the point defects.
3830 6480 10960 2630
0.786 0.49 2.75 0.393
2.位错学说的提出
图5 位错滑动模型
位错理论发展进程 1934年,Talay和Orowa 度低于理论强度的现象。 1939 1939年,Burgers提出用柏氏矢量来表征位错 Burgers 类型,为用数学方法处理位错奠定了基础。 1947年,Cottrell提出柯氏气团钉扎模型,成 功地解释了低碳钢的屈服现象。 1950年,Frank和Read提出金属塑性变形中位 错增殖机制,即Frank-Read位错源学说。
刃型位错柏氏矢量确定
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料科学基础-晶体缺陷(总分:430.00,做题时间:90分钟)一、论述题(总题数:43,分数:430.00)1.设Cu中空位周围原子的振动频率为1013S-1,△E v为0.15×10-18J,exp(△S m/k)约为1,试计算在700K和室温(27℃)时空位的迁移频率。

(分数:10.00)__________________________________________________________________________________________ 正确答案:(空位的迁移频率[*][*])解析:2.Nb的晶体结构为bcc,其晶格常数为0.3294nm,密度为8.57g/cm3,试求每106Nb中所含的空位数目。

(分数:10.00)__________________________________________________________________________________________ 正确答案:(设空位之粒子数分数为x,[*]106×7.1766×10-3=7176.6(个)所以,106个Nb中有7176.6个空位。

)解析:3.Pt的晶体结构为fcc,其晶格常数为0.3923nm,密度为21.45g/cm3,试计算其空位粒子数分数。

(分数:10.00)__________________________________________________________________________________________ 正确答案:(设空位所占粒子数分数为x,[*])解析:4.若fcc的Cu中每500个原子会失去1个,其晶格常数为0.3615nm,试求Cu的密度。

(分数:10.00)__________________________________________________________________________________________ 正确答案:([*])解析:5.由于H原子可填入α-Fe的间隙位置,若每200个铁原子伴随着1个H原子,试求α-Fe理论的和实际的密度与致密度(已知α-Fe的a=0.286nm,r Fe=0.1241nm,r H=0.036nm)。

(分数:10.00)__________________________________________________________________________________________ 正确答案:([*])6.MgO的密度为3.58g/cm3,其晶格常数为0.42nm,试求每个MgO单位晶胞内所含的肖特基缺陷数。

(分数:10.00)__________________________________________________________________________________________ 正确答案:(设单位晶胞内所含的肖特基缺陷数为x个,[*])解析:7.若在MgF2中溶入LiF,则必须向MgF2中引入何种形式的空位(阴离子或阳离子)?相反,若要使LiF中溶入MgF2,则须向LiF中引入何种形式的空位(阴离子或阳离子)?(分数:10.00)__________________________________________________________________________________________ 正确答案:(MgF2若要溶入LiF,由Mg2+取代Li+,则须引入阳离子空位,因为被取代的离子和新加入的离子,其价电荷必须相等。

相反,若要使LiF溶入MgF2,由Li+取代Mg2+,则须引入阴离子空位,使电荷平衡且不破坏原来的MgF2结构。

)解析:8.若Fe2O3固溶于NiO中,其质量分数ω(Fe2O3)=10%。

此时,部分3Ni2+。

被(2Fe3++□)取代以维持电荷平衡。

,求1m3中有多少个阳离子空位数?(分数:10.00)__________________________________________________________________________________________ 正确答案:(根据其固溶度,100g固溶体中则有10g的Fe2O3,90g的NiO。

[*][*]因为NiO具有NaCl型结构,CN=6,且[*],故可视为ω(Fe2O3)为10%时母体的NaCl型结构不变,因此[*]由于每单位晶胞含有4个Ni2+和4个O2-,故1m3中含有氧离子数为[*]而在此固溶度条件下,每1.393mol的氧离子同时含有0.125mol的Fe3+和[*]mol的阳离子空位数,所以1m3固溶体中含有阳离子空位数为[*])解析:9.在某晶体的扩散实验中发现,在500℃时,1010个原子中有1个原子具有足够的激活能,可以跳出其平衡位置而进入间隙位置;在600℃时,此比例会增加到109。

①求此跳跃所需要的激活能。

②在700℃时,具有足够能量的原子所占的比例为多少?(分数:10.00)__________________________________________________________________________________________ 正确答案:(①热激活过程通常可由著名的Arrhenius方程来描述。

令E为形成一个间隙原子所需的能量,因此,能量超过平均能量而具有高能量的原子数n与总原子数N之比为[*]式中A为比例常数;k为玻尔兹曼常数;T为绝对温度。

上式两边取对数,则有解上述联立方程得lnA=-2.92,E=2.14×10-10(J)②在700℃时 [*]故 [*])解析:10.某晶体中形成一个空位所需要的激活能为0.32×10-18J。

在800℃时,1×104个原子中有一个空位。

求在何种温度时,103个原子中含有一个空位?(分数:10.00)__________________________________________________________________________________________ 正确答案:(根据Arrhenius方程得知:[*]将已知条件代入上式:[*]得lnA=12.4而 [*]所以T=1201K=928℃)解析:11.已知Al为fcc晶体结构,其点阵常数a=0.405nm,在550℃时的空位浓度为2×10-6,计算这些空位均匀分布在晶体中的平均间距。

(分数:10.00)__________________________________________________________________________________________ 正确答案:(1μm3体积Al含有阵点数为[*]所以1μm3体积内的空位数n V=CN=6.021×1010×2×10-6=1.204×105(个)假定空位在晶体内是均匀分布的,其平均间距[*])解析:12.在Fe中形成1mol空位的能量为104.675kJ,试计算从20℃升温至850℃时空位数目增加多少倍?(分数:10.00)__________________________________________________________________________________________ 正确答案:([*],取A=1[*])解析:13.由600℃降至300℃时,Ge晶体中的空位平衡浓度降低了6个数量级,试计算Ge晶体中的空位形成能。

(分数:10.00)__________________________________________________________________________________________ 正确答案:([*]故 [*])解析:14.W在20℃时每1023个晶胞中有一个空位,从20℃升温至1020℃时,点阵常数膨胀了(4×10-4)%,而密度下降了0.012%,求W的空位形成能和形成熵。

(分数:10.00)__________________________________________________________________________________________ 正确答案:([*];而W的晶体结构为bcc,每个晶胞含有2个W原子,故[*]。

由于升温时晶体总质量不变,即[*]而晶体从T1上升至T2时,体积的膨胀是由点阵原子间距增大和空位浓度增高共同引起的,对边长为L的立方体,从T1升至T2时总的体积变化率[*]由点阵常数增大引起的体积变化率[*]若T1时空位浓度与T2时相比可忽略不计,则T2时的平衡空位浓度[*]故C1020=(0.012-3×4×10-4)%=1×10-4因此,[*]解得[*])解析:15.Al的空位形成能(E v)和间隙原子形成能(E i)分别为0.76eV和3.0eV,求在室温(20℃)及500℃时,Al空位平衡浓度与间隙原子平衡浓度的比值。

(分数:10.00)__________________________________________________________________________________________ 正确答案:(20℃时:[*]500℃时:[*]讨论:点缺陷形成能的微小变化会引起其平衡浓度产生大幅度的变化。

由于Al晶体中空位形成能低于间隙原子形成能,从而使同一温度下空位平衡浓度大大高于间隙原子平衡浓度。

温度越低,此现象越明显。

随温度下降,形成能较高的间隙原子的平衡浓度下降速度要比形成能较低的空位C v下降速度快得多。

)解析:16.若将一位错线的正向定义为原来的反向,此位错的伯氏矢量是否改变?位错的类型性质是否变化?一个位错环上各点位错类型是否相同?(分数:10.00)__________________________________________________________________________________________ 正确答案:(由伯氏矢量回路来确定位错的伯氏矢量方法中得知,此位错的伯氏矢量将反向,但此位错的类型性质不变。

根据位错线与伯氏矢量之间的夹角判断,若一个位错环的伯氏矢量垂直于位错环线上各点位错,则该位错环上各点位错性质相同,均为刃位错;但若位错环的伯氏矢量与位错线所在的平面平行,则有的为纯刃型位错,有的为纯螺型位错,有的则为混合型位错;当伯氏矢量与位错环线相交成一定角度时,尽管此位错环上各点均为混合型位错,然而各点的刃型和螺型分量不同。

相关文档
最新文档