人教A版高中数学选修4-5_《不等式选讲》全册教案

合集下载

选修4-5不等式选讲学案

选修4-5不等式选讲学案

选修4-5 不等式选讲 班级____________ 姓名________________第1课时 不等式的基本性质(学案)一、学习目标:1.复习比较两个实数大小的几何意义和代数意义;2.复习、归纳不等式的基本性质,学会证明这些性质,并会利用不等式的性质解决一些简单的比较大小的问题;3.通过对不等式的实数大小的比较和不等式性质的证明,培养学生逻辑推理、逻辑论证的能力.二、试一试:(一).引例:生活中为什么糖水加糖甜更甜呢?转化为数学问题:a 克糖水中含有b 克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么?分析:起初的糖水浓度为_____,加入m 克糖 后的糖水浓度为__________,要说明糖水更甜,只要证________________即可。

怎么证呢?(二)不等式的基本性质:1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:结论:要比较两个实数的大小,只要考察它们的_____________即可。

当00a ,b >>时,我们还可以用求商的方法来比较两个实数的大小,即:2、不等式的基本性质:性质1.__________________________________________________________________. 性质2.__________________________________________________________________. 性质3.__________________________________________________________________. 推论.__________________________________________________________________.性质4.__________________________________________________________________.推论1.__________________________________________________________________. 推论2.__________________________________________________________________. 推论3.__________________________________________________________________. 推论4.__________________________________________________________________.三、练一练:1.已知a>b ,c<d ,求证:a-c>b-d .2.已知a>b>0,c<0,求证:b ca c >。

选修4-5:《不等式选讲》全套教案系列4

选修4-5:《不等式选讲》全套教案系列4

课 题: 第4课时 指数不等式的解法三维目标:重点难点:教学设计:一、引入:二、范例分析:例1、解不等式)1(332)21(22---<x x x 解:原不等式可化为:)1(332222----<x x x ∵底数2>1∴)1(3322--<--x x x 整理得:062<-+x x解之,不等式的解集为{x |-3<x <2}例2、解不等式2931831>⋅+-+x x 。

解:原不等式可化为:018329332>+⋅-⋅x x即:0)233)(93(>-⋅-x x 解之:93>x 或323<x ∴x >2或32log 3<x ∴不等式的解集为{x |x >2或32log 3<x } 例3、解不等式:)10(,422≠>>+-a a a a x x x 且(当a >1时),4()1,(+∞⋃--∞∈x 当0<a <1时)4,1(-∈x )例4、解不等式:x x -->4)21(32 (-1<x <3) 三、小结:四、练习:五、作业:课 题: 第4课时 对数不等式的解法三维目标:重点难点:教学设计:一、引入:二、范例分析:例1、解不等式2)1(log 3≥--x x 。

解:原不等式等价于 ⎪⎩⎪⎨⎧-≥->->-2)3(11301x x x x 或⎪⎩⎪⎨⎧-≤-<-<>-2)3(113001x x x x 解之得:4<x≤5∴原不等式的解集为{x |4<x ≤5}例2、解关于x 的不等式: )1,0(,2log )12(log )34(log 2≠>>---+a a x x x a a a 解:原不等式可化为)12(2log )34(log 2->-+x x x a a当a >1时有221234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧<<-<<->⇒⎪⎩⎪⎨⎧->-+>-+>-x x x x x x x x x x (其实中间一个不等式可省)当0<a <1时有42234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧>-<<<->⇒⎪⎩⎪⎨⎧-<-+>-+>-x x x x x x x x x x x 或∴当a >1时不等式的解集为⎭⎬⎫⎩⎨⎧<<221x x ; 当0<a <1时不等式的解集为{}42<<x x 。

人教A版高中数学选修4-5-《不等式选讲》全册教案

人教A版高中数学选修4-5-《不等式选讲》全册教案

选修4--5 不等式选讲一、课程目标解读选修系列4-5专题不等式选讲,内容包括:不等式的基本性质、含有绝对值的不等式、不等式的证明、几个著名的不等式、利用不等式求最大(小)值、数学归纳法与不等式。

通过本专题的教学,使学生理解在自然界中存在着大量的不等量关系和等量关系,不等关系和相等关系都是基本的数学关系,它们在数学研究和数学应用中起着重要的作用;使学生了解不等式及其证明的几何意义与背景,以加深对这些不等式的数学本质的理解,提高学生的逻辑思维能力和分析问题解决问题的能力。

二、教材内容分析作为一个选修专题,虽然学生已经学习了高中必修课程的5个模块和三个选修模块,教材内容仍以初中知识为起点,在内容的呈现上保持了相对的完整性.整个专题内容分为四讲,结构如下图所示:第一讲是“不等式和绝对值不等式”,为了保持专题内容的完整性,教材回顾了已学过的不等式6个基本性质,从“数与运算”的思想出发,强调了比较大小的基本方法。

回顾了二元基本不等式,突出几何背景和实际应用,同时推广到n个正数的情形,但教学中只要求理解掌握并会应用二个和三个正数的均值不等式。

对于绝对值不等式,借助几何意义,从“运算”角度,探究归纳了绝对值三角不等式,并用代数方法给出证明。

通过讨论两种特殊类型不等式的解法,学习解含有绝对值不等式的一般思想和方法,而不是系统研究。

第二讲是“证明不等式的基本方法”,教材通过一些简单问题,回顾介绍了证明不等式的比较法、综合法、分析法,反证法、放缩法。

其中,用反证法和放缩法证明不等式是新的课程标准才引入到中学数学教学中的内容。

这些方法大多在选修2-2“推理与证明”已经学过,此处再现也是为了专题的完整性,对于新增的放缩法,应通过实际实际例子,使学生明确不等式放缩的几个简单途径和方法,比如舍掉或加进一些项,在分式中放大或缩小分子或分母,应用基本不等式进行放缩等(见分节教学设计)。

本讲内容也是本专题的一个基础内容。

第三讲是“柯西不等式和排序不等式”。

人教版选修4-5教案

人教版选修4-5教案

选修4_5 不等式选讲课 题: 第01课时 不等式的基本性质目的要求:重点难点:教学过程:一、引入:不等关系是自然界中存在着的基本数学关系。

《列子•汤问》中脍炙人口的“两小儿辩日”:“远者小而近者大”、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,而不做成方的呢?”、“电灯挂在写字台上方怎样的高度最亮?”、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子。

要使制成的盒子的容积最大,应当剪去多大的小正方形?”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决。

而且,不等式在数学研究中也起着相当重要的作用。

本专题将介绍一些重要的不等式(含有绝对值的不等式、柯西不等式、贝努利不等式、排序不等式等)和它们的证明,数学归纳法和它的简单应用等。

人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。

还可从引言中实际问题出发,说明本章知识的地位和作用。

生活中为什么糖水加糖甜更甜呢?转化为数学问题:a 克糖水中含有b 克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么? 分析:起初的糖水浓度为a b ,加入m 克糖 后的糖水浓度为m a m b ++,只要证m a m b ++>ab 即可。

怎么证呢?二、不等式的基本性质:1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:0>-⇔>b a b a0=-⇔=b a b a0<-⇔<b a b a得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。

2、不等式的基本性质:①、如果a>b ,那么b<a ,如果b<a ,那么a>b 。

数学选修45不等式选讲教学设计 (2)

数学选修45不等式选讲教学设计 (2)

数学选修45不等式选讲教学设计一、教学目标通过本次教学,让学生掌握以下知识和能力:1.理解不等式的概念及其表示方法;2.掌握一元一次不等式的解法;3.掌握二元一次不等式的解法;4.学会运用不等式解决实际问题;5.培养学生的逻辑思维能力和问题解决能力。

二、教学重难点•重点:掌握不等式解法和应用方法;•难点:学会运用不等式解决实际问题。

三、教学过程1.引入不等式是中国古代数学中的一个重要概念,也是现代数学中的一个重要部分。

本次课程将围绕不等式的概念、解法和应用展开。

2.概念解释不等式是一种代数式,是通过不等于、小于、大于等符号连接起来的数的形式表达式。

例如:x>3上式中的“大于”符号表示x的取值范围大于3。

3.一元一次不等式的解法一元一次不等式是一个只含有一项的一次式不等于0的不等式。

例如:2x+1>5对于这种不等式,可以采用以下解法:•移项法;•变形法。

4.二元一次不等式的解法二元一次不等式是一个只含有两个变量的一次式不等于0的不等式。

例如:x+2y<6对于这种不等式,可以采用以下解法:•图形法;•代数法;5.应用举例不等式在许多实际问题中有着广泛的应用。

例如:•达到一定生产目标需要完成的任务数;•减肥的过程中需要控制的饮食热量;•经济发展中需要达到的增长目标等。

6.课堂练习这部分通过一些练习题的讲解来加深学生对不等式的掌握。

训练题的设计应紧密贴合所学内容。

7.课堂小结本课程主要介绍了不等式的概念、表示方法、一元一次不等式的解法、二元一次不等式的解法以及应用方法。

通过课堂实践,可以让学生更好地掌握不等式解决实际问题的能力,在数学以及其他学科中取得更好的成绩。

四、教学评价本课程主要用到了讲解和练习两种教学方法。

讲解方法可以帮助学生掌握概念和解法要点,练习则可以提高学生的运用能力。

考试成绩和出勤情况也是对教学效果的重要评价指标。

人教A版数学高二选修4-5教案 绝对值不等式的解法

人教A版数学高二选修4-5教案   绝对值不等式的解法

1.2.2 绝对值不等式的解法一、教学目标1.理解绝对值的几何意义,掌握去绝对值的方法.2.会利用绝对值的几何意义求解以下类型的不等式:|ax +b |≤c ;|ax +b |≥c ;|x -a |+|x -b |≥c ;|x -a |+|x -b |≤c .3.能利用绝对值不等式解决实际问题. 二、课时安排 1课时 三、教学重点理解绝对值的几何意义,掌握去绝对值的方法. 四、教学难点会利用绝对值的几何意义求解以下类型的不等式:|ax +b |≤c ;|ax +b |≥c ;|x -a |+|x -b |≥c ;|x -a |+|x -b |≤c .五、教学过程 (一)导入新课解关于x 的不等式|2x -1|<2m -1(m ∈R ).【解】 若2m -1≤0,即m ≤12,则|2x -1|<2m -1恒不成立,此时,原不等式无解;若2m -1>0,即m >12,则-(2m -1)<2x -1<2m -1,所以1-m <x <m . 综上所述:当m ≤12时,原不等式的解集为∅,当m >12时,原不等式的解集为{x |1-m <x <m }.(二)讲授新课教材整理1 绝对值不等式|x |<a 与|x |>a 的解集教材整理2 |ax +b |≤c ,|ax +b |≥c (c >0)型不等式的解法 1.|ax +b |≤c ⇔ .2.|ax +b |≥c ⇔ .教材整理3 |x -a |+|x -b |≥c ,|x -a |+|x -b |≤c (c >0)型不等式的解法 1.利用绝对值不等式的几何意义求解. 2.利用零点分段法求解.3.构造函数,利用函数的图象求解. (三)重难点精讲题型一、|ax +b|≤c 与|ax +b|≥c 型不等式的解法 例1求解下列不等式.(1)|3x -1|≤6;(2)3≤|x -2|<4;(3)|5x -x 2|<6.【精彩点拨】 关键是去绝对值符号,转化为不含绝对值符号的不等式. 【自主解答】 (1)因为|3x -1|≤6⇔-6≤3x -1≤6, 即-5≤3x ≤7,从而得-53≤x ≤73,所以原不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪-53≤x ≤73. (2)∵3≤|x -2|<4,∴3≤x -2<4或-4<x -2≤-3,即5≤x <6或-2<x ≤-1. 所以原不等式的解集为{x |-2<x ≤-1或5≤x <6}. (3)法一 由|5x -x 2|<6,得|x 2-5x |<6. ∴-6<x 2-5x <6.∴⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-5x -6<0,∴⎩⎪⎨⎪⎧(x -2)(x -3)>0,(x -6)(x +1)<0,即⎩⎪⎨⎪⎧x <2或x >3,-1<x <6. ∴-1<x <2或3<x <6.∴原不等式的解集为{x |-1<x <2或3<x <6}. 法二 作函数y =x 2-5x 的图象,如图所示.|x 2-5x |<6表示函数图象中直线y =-6和直线y =6之间相应部分的自变量的集合.解方程x 2-5x =6,得x 1=-1,x 2=6.解方程x 2-5x =-6,得x ′1=2,x ′2=3.即得到不等式的解集是{x |-1<x <2或3<x <6}. 规律总结:1.形如a <|f (x )|<b (b >a >0)型不等式的简单解法是利用等价转化法,即a <|f (x )|<b (0<a <b )⇔a <f (x )<b 或-b <f (x )<-a .2.形如|f (x )|<a ,|f (x )|>a (a ∈R )型不等式的简单解法是等价命题法,即 (1)当a >0时,|f (x )|<a ⇔-a <f (x )<a . |f (x )|>a ⇔f (x )>a 或f (x )<-a . (2)当a =0时,|f (x )|<a 无解. |f (x )|>a ⇔|f (x )|≠0.(3)当a <0时,|f (x )|<a 无解. |f (x )|>a ⇔f (x )有意义. [再练一题] 1.解不等式: (1)3<|x +2|≤4; (2)|5x -x 2|≥6.【解】 (1)∵3<|x +2|≤4,∴3<x +2≤4或-4≤x +2<-3,即1<x ≤2或-6≤x <-5,所以原不等式的解集为{x |1<x ≤2或-6≤x <-5}.(2)∵|5x -x 2|≥6,∴5x -x 2≥6或5x -x 2≤-6,由5x -x 2≥6,即x 2-5x +6≤0,∴2≤x ≤3, 由5x -x 2≤-6,即x 2-5x -6≥0,∴x ≥6或x ≤-1, 所以原不等式的解集为{x |x ≤-1或2≤x ≤3或x ≥6}. 题型二、含参数的绝对值不等式的综合问题 例2已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围. 【精彩点拨】 解f (x )≤3,由集合相等,求a →求y =f (x )+f (x +5)的最小值,确定m 的取值范围【自主解答】 (1)由f (x )≤3,得|x -a |≤3, 解得a -3≤x ≤a +3.又已知不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5,解得a =2.(2)法一 由(1)知a =2,此时f (x )=|x -2|,设g (x )=f (x )+f (x +5)=|x -2|+|x +3|, 于是g (x )=⎩⎪⎨⎪⎧-2x -1,x <-3,5,-3≤x ≤2,2x +1,x >2.利用g (x )的单调性,易知g (x )的最小值为5. 因此g (x )=f (x )+f (x +5)≥m 对x ∈R 恒成立, 知实数m 的取值范围是(-∞,5]. 法二 当a =2时,f (x )=|x -2|. 设g (x )=f (x )+f (x +5)=|x -2|+|x +3|.由|x -2|+|x +3|≥|(x -2)-(x +3)|=5(当且仅当-3≤x ≤2时等号成立),得g (x )的最小值为5.因此,若g (x )=f (x )+f (x +5)≥m 恒成立, 则实数m 的取值范围是(-∞,5]. 规律总结:1.第(2)问求解的关键是转化为求f (x )+f (x +5)的最小值,法一是运用分类讨论思想,利用函数的单调性;法二是利用绝对值不等式的性质(应注意等号成立的条件).2.将绝对值不等式与函数以及不等式恒成立交汇、渗透,这是命题的新动向.解题时应强化函数、数形结合与转化化归思想方法的灵活运用.[再练一题]2.关于x 的不等式lg(|x +3|-|x -7|)<m . (1)当m =1时,解此不等式;(2)设函数f (x )=lg(|x +3|-|x -7|),当m 为何值时,f (x )<m 恒成立?【解】 (1)当m =1时,原不等式可变为0<|x +3|-|x -7|<10,可得其解集为{x |2<x <7}. (2)设t =|x +3|-|x -7|,则由对数定义及绝对值的几何意义知0<t ≤10, 因y =lg x 在(0,+∞)上为增函数, 则lg t ≤1,当t =10,x ≥7时,lg t =1, 故只需m >1即可,即m >1时,f (x )<m 恒成立. 题型三、含两个绝对值的不等式的解法例3 (1)解不等式|x +2|>|x -1|;(2)解不等式|x +1|+|x -1|≥3.【精彩点拨】 (1)可以两边平方求解,也可以讨论去绝对值符号求解,还可以用数轴上绝对值的几何意义来求解;(2)可以分类讨论求解,也可以借助数轴利用绝对值的几何意义求解,还可以左、右两边构建相应函数,画图象求解.【自主解答】 (1)|x +2|>|x -1|,可化为(x +2)2-(x -1)2>0,即6x +3>0,解得x >-12,∴|x +2|>|x -1|的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >-12. (2)如图,设数轴上与-1,1对应的点分别为A ,B ,那么A ,B 两点间的距离为2,因此区间[-1,1]上的数都不是不等式的解.设在A 点左侧有一点A 1到A ,B 两点的距离和为3,A 1对应数轴上的x .所以-1-x +1-x =3,得x =-32.同理设B 点右侧有一点B 1到A ,B 两点的距离和为3,B 1对应数轴上的x , 所以x -1+x -(-1)=3. 所以x =32.从数轴上可看到,点A 1,B 1之间的点到A ,B 的距离之和都小于3;点A 1的左边或点B 1的右边的任何点到A ,B 的距离之和都大于3,所以原不等式的解集是⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞. 规律总结:|x -a |+|x -b |≥c ,|x -a |+|x -b |≤c (c >0)型不等式的三种解法:分区间(分类)讨论法、图象法和几何法.分区间讨论的方法具有普遍性,但较麻烦;几何法和图象法直观,但只适用于数据较简单的情况.[再练一题]3.已知函数f (x )=|x -8|-|x -4|.(1)作出函数f (x )的图象;(2)解不等式f (x )>2. 【解】 (1)f (x )=⎩⎪⎨⎪⎧4,x ≤4,12-2x ,4<x ≤8,-4,x >8.函数的图象如图所示.(2)不等式|x -8|-|x -4|>2,即f (x )>2. 由-2x +12=2,得x =5, 根据函数f (x )的图象可知, 原不等式的解集为 (-∞,5). (四)归纳小结绝对值不等式的解法—⎪⎪⎪⎪—绝对值的几何意义—|ax +b |≤c 与|ax +b |≥c 型不等式—含两个绝对值的不等式的解法—含参数的绝对值不等式问题(五)随堂检测1.不等式|x |·(1-2x )>0的解集是( )A.⎝⎛⎭⎫-∞,12 B .(-∞,0)∪⎝⎛⎭⎫0,12 C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫0,12 【解析】 原不等式等价于⎩⎪⎨⎪⎧x ≠0,1-2x >0,解得x <12且x ≠0,即x ∈(-∞,0)∪⎝⎛⎭⎫0,12. 【答案】 B2.不等式|x 2-2|<2的解集是( ) A .(-1,1) B .(-2,2) C .(-1,0)∪(0,1) D.(-2,0)∪(0,2)【解析】 由|x 2-2|<2,得-2<x 2-2<2,即0<x 2<4,所以-2<x <0或0<x <2,故解集为(-2,0)∪(0,2).【答案】 D3.不等式|x +1||x +2|≥1的实数解为________.【解析】|x +1||x +2|≥1⇔|x +1|≥|x +2|,且x +2≠0. ∴x ≤-32且x ≠-2.【答案】 ⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-32且x ≠-2六、板书设计七、作业布置同步练习1.2.2:绝对值不等式的解法八、教学反思。

选修4-5 不等式选讲教学案

选修4-5 不等式选讲教学案

选修4-5 不等式选讲(1)内容:含绝对值的不等式、根式不等式一、含绝对值的不等式1、解不等式(1)213+<-x x ; (2)x x ->-213。

2、解不等式(1)512≥-+-x x ; (2).0312>+--+x x3、(1)已知 2,2cb yc a x <-<-,求证 .)()(c b a y x <+-+(2)已知.6,4ay a x << 求证:a y x <-32。

练习1:解下列不等式: (1) 2132≤-x ; (2) 1743<+<x ; (3)321>+++x x练习2:已知 .3,3,3s c C s b B s a A <-<-<- 求证:(1)s c b a C B A <++-++)()(; (2).)()s c b a C B A <-+--+二、含根式的不等式 1、解不等式 (1)0343>---x x ; (2)x x x 34232->-+-; (3)24622+<+-x x x2、解不等式(1)解不等式1112-+>+x x ; (2)655332->-+-x x x练习:解不等式(1)33333++<++-x x x x ; (2)112>+--x x选修4-5 不等式选讲(2)内容:不等式证明方法(综合法、分析法、反证法、放缩法)例1、(1)设b a ≠,求证:)(2322b a b b a +>+。

(2)若实数1≠x ,求证:.)1()1(32242x x x x ++>++练习(1)b a ,都是正数。

求证:.2≥+abb a .(2)设0,0>>b a ,求证.2233ab b a b a +≥+(3)证明:ca bc ab c b a ++≥++222。

(4).)())((22222bd ac d c b a +≥++例2、(1)设233=+b a ,求证2a b +≤;(2)设二次函数q px x x f ++=2)(,求证:)3(,)2(,)1(f f f 中至少有一个不小于21.练习:(1)设0 < a , b , c < 1,求证:(1 - a )b , (1 - b )c , (1 - c )a ,不可能同时大于41(2)若x , y > 0,且x + y >2,则x y +1和yx+1中至少有一个小于2。

选修4-5_不等式选讲(教材解读与教学建议)

选修4-5_不等式选讲(教材解读与教学建议)
不等关系与相等关系都是客观事物 的基本数量关系,是数学研究的重要内 容。建立不等观念、处理不等关系与处 理等量问题是同样重要的。在本模块中, 学生将通过具体情境,感受在现实世界 和日常生活中存在着大量的不等关系。 通过回顾复习,体验从特殊到一般. 从 局部到整体,从具体到抽象的学习过程。
• 一、本章的地位和作用 • 二、考纲和课程标准解读 • 三、教材分析 • 四、教学建议
9.通过一些简单问题了解证明不等式的基本方法: 比较法、综合法、分析法、反证法、放缩法.
10.完成一个学习总结报告.

具体内容
要求
说明

不等式的基本性质
理解 回顾和复习不等式的基本性质和基本不等

式,掌握二元和三元 平均不等式证明和应

基本不等式
掌握 用,理解二元和三元 平均不等式几何背

景,理解这些不等式的实质。会求一些特

本、最重要的方法。它所依据是实数大小的基本事实,
不 等
综合法与分 析法
掌握
证明不等式时关键有较强的恒等变换技巧。比较法两种 中差值法是最基本而重要的一种方法。综合法是由因导

果,而分析法是执果索因,命题时总是交替出现。直接
的 基 反证法
由条件推结论困难时用反证法。放缩法证明题时,把握 理解 好放缩的度。证明不等式是一定注意“逻辑方法”、“思
不 不等 解 证明思路,对具有明确大小顺序、数目相同的两列数,考虑它
等式
们对应乘积之和的大小关系时,排序不等式是很有用的工具。

课 标
具体内容
要 求
说明
了解数学归纳法的原理及其使用范围,会用
数 学

数学归纳法 解 数学归纳法证明一些简单问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修4--5 不等式选讲一、课程目标解读选修系列4-5专题不等式选讲,内容包括:不等式的基本性质、含有绝对值的不等式、不等式的证明、几个著名的不等式、利用不等式求最大(小)值、数学归纳法与不等式。

通过本专题的教学,使学生理解在自然界中存在着大量的不等量关系和等量关系,不等关系和相等关系都是基本的数学关系,它们在数学研究和数学应用中起着重要的作用;使学生了解不等式及其证明的几何意义与背景,以加深对这些不等式的数学本质的理解,提高学生的逻辑思维能力和分析问题解决问题的能力。

二、教材内容分析作为一个选修专题,虽然学生已经学习了高中必修课程的5个模块和三个选修模块,教材内容仍以初中知识为起点,在内容的呈现上保持了相对的完整性.整个专题内容分为四讲,结构如下图所示:第一讲是“不等式和绝对值不等式”,为了保持专题内容的完整性,教材回顾了已学过的不等式6个基本性质,从“数与运算”的思想出发,强调了比较大小的基本方法。

回顾了二元基本不等式,突出几何背景和实际应用,同时推广到n个正数的情形,但教学中只要求理解掌握并会应用二个和三个正数的均值不等式。

对于绝对值不等式,借助几何意义,从“运算”角度,探究归纳了绝对值三角不等式,并用代数方法给出证明。

通过讨论两种特殊类型不等式的解法,学习解含有绝对值不等式的一般思想和方法,而不是系统研究。

第二讲是“证明不等式的基本方法”,教材通过一些简单问题,回顾介绍了证明不等式的比较法、综合法、分析法,反证法、放缩法。

其中,用反证法和放缩法证明不等式是新的课程标准才引入到中学数学教学中的内容。

这些方法大多在选修2-2“推理与证明”已经学过,此处再现也是为了专题的完整性,对于新增的放缩法,应通过实际实际例子,使学生明确不等式放缩的几个简单途径和方法,比如舍掉或加进一些项,在分式中放大或缩小分子或分母,应用基本不等式进行放缩等(见分节教学设计)。

本讲内容也是本专题的一个基础内容。

第三讲是“柯西不等式和排序不等式”。

这两个不等式也是本专题实质上的新增内容,教材主要介绍柯西不等式的几种形式、几何背景和实际应用。

其中柯西不等式及其在证明不等式和求某些特殊类型函数极值中的应用是教材编写和我们教学的重点。

事实上,柯西不等式和均值不等式在求最值方面的简单应用,二者同样重要,在某些问题中,异曲同工。

比如课本P41页,习题3.2 第四题。

排序不等式只作了解,建议在老师指导下由学生阅读自学,了解教材中展示的“探究——猜想——证明——应用”的研究过程,初步认识排序不等式的有关知识。

第四讲是“数学归纳法证明不等式”.数学归纳法在选修2-2中也学过,建议放在第二讲,结合放缩法的教学,进一步理解“归纳递推”的证明。

同时了解贝努利不等式及其在数学估算方面的初步运用。

三、教学目标要求1.不等式的基本性质掌握不等式的基本性质,会应用基本性质进行简单的不等式变形。

2.含有绝对值的不等式理解绝对值的几何意义,理解绝对值三角不等式,会解绝对值不等式。

3.不等式的证明通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法、数学归纳法4.几个著名的不等式(1)认识柯西不等式的几种不同形式,理解它们的几何意义,会用二维三维柯西不等式进行简单的证明与求最值。

(2)理解掌握两个或三个正数的算术—几何平均不等式并应用。

(3)了解n个正数的均值不等式,n维柯西不等式,排序不等式,贝努利不等式5.利用不等式求最大(小)值会用两个或三个正数的算术—几何平均不等式、柯西不等式求一些特定函数的最值。

6.数学归纳法与不等式了解数学归纳法的原理及其使用范围;会用数学归纳法证明简单的不等式。

会用数学归纳法证明贝努利不等式。

四、教学重点难点1、本专题的教学重点:不等式基本性质、均值不等式及其应用、绝对值不等式的解法及其应用;用比较法、分析法、综合法证明不等式;柯西不等式及其应用、排序不等式;2、本专题的教学难点:三个正数的算术-几何平均不等式及其应用、绝对值不等式解法;用反证法,放缩法证明不等式;运用柯西不等式和排序不等式证明不等式以及求最值等。

五、教学总体建议1、回顾并重视学生已学知识学习本专题,学生已掌握的知识有:第一、初中课标要求的不等式与不等式组(1)根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。

(2)解简单的一元一次不等式,并能在数轴上表示出解集。

解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。

(3)根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的问题第二、高中必修5不等式内容:(1)不等关系。

通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。

(2)一元二次不等式。

(3)二元一次不等式组与简单线性规划问题。

(4)基本不等式及其应用(求最值)。

第三、高中选修2-2推理与证明中的比较法、综合法、分析法、反证法、数学归纳法等内容。

回顾并重视学生在学习本课程时已掌握的相关知识,可适当指导学生阅读自学,设置梯度恰当的习题,采用题组教学的形式,达到复习巩固系统化的效果,类似于高考第二轮的专题复习,构建知识体系。

2、控制难度不拓展在解绝对值不等式的教学中,要控制难度:含未知数的绝对值不超过两个;绝对值内的关于未知数的函数主要限于一次函数。

解含有绝对值的不等式的最基本和有效的方法是分区间来加以讨论,把含有绝对值的不等式转化为不含绝对值的不等式;不等式证明的教学,主要使学生掌握比较法、综合法、分析法,其它方法如反证法、放缩法、数学归纳法,应用柯西不等式和排序不等式的证明,只要求了解。

代数恒等变换以及放缩法常常使用一些技巧。

这些技巧是极为重要的,但对大多数学生来说,往往很难掌握这些技巧,教学中要尽力使学生理解这些不等式以及证明的数学思想,对一些技巧不做更多的要求,不要把不等式的教学陷在过于形式化的和复杂的技巧之中。

3、重视不等式的应用不等式应用的教学,主要是引导学生解决涉及大小比较、解不等式和最值问题,其中最值问题主要是用二个或三个正数平均不等式、二维或三维柯西不等式求解。

对于超过3个正数的均值不等式和柯西不等式;排序不等式;贝努里不等式的应用不作要求。

4、重视展现著名不等式的背景几个重要不等式大都有明确的几何背景。

教师应当引导学生了解重要不等式的数学意义和几何背景,使学生在学习中把握这些几何背景,力求直观理解这些不等式的实质。

特别是对于n元柯西不等式、排序不等式、贝努利不等式等内容,可指导学生阅读了解相关背景知识。

第一讲 不等式和绝对值不等式课 题: 第01课时 不等式的基本性质教学目标:1. 理解用两个实数差的符号来规定两个实数大小的意义,建立不等式研究的基础。

2. 掌握不等式的基本性质,并能加以证明;会用不等式的基本性质判断不等关系和用比较法,反证法证明简单的不等式。

教学重点:应用不等式的基本性质推理判断命题的真假;代数证明,特别是反证法。

教学难点:灵活应用不等式的基本性质。

教学过程:一、引入:不等关系是自然界中存在着的基本数学关系。

《列子•汤问》中脍炙人口的“两小儿辩日”:“远者小而近者大”、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,而不做成方的呢?”、“电灯挂在写字台上方怎样的高度最亮?”、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子。

要使制成的盒子的容积最大,应当剪去多大的小正方形?”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决。

而且,不等式在数学研究中也起着相当重要的作用。

本专题将介绍一些重要的不等式(含有绝对值的不等式、柯西不等式、贝努利不等式、排序不等式等)和它们的证明,数学归纳法和它的简单应用等。

人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。

还可从引言中实际问题出发,说明本章知识的地位和作用。

生活中为什么糖水加糖甜更甜呢?转化为数学问题:a 克糖水中含有b 克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么? 分析:起初的糖水浓度为a b ,加入m 克糖 后的糖水浓度为m a m b ++,只要证m a m b ++>ab 即可。

怎么证呢?二、不等式的基本性质:1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:0>-⇔>b a b a0=-⇔=b a b a0<-⇔<b a b a得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。

2、不等式的基本性质:①、如果a>b ,那么b<a ,如果b<a ,那么a>b 。

(对称性)②、如果a>b ,且b>c ,那么a>c ,即a>b ,b>c ⇒a>c 。

③、如果a>b ,那么a+c>b+c ,即a>b ⇒a+c>b+c 。

推论:如果a>b ,且c>d ,那么a+c>b+d .即a>b , c>d ⇒a+c>b+d .④、如果a>b ,且c>0,那么ac>bc ;如果a>b ,且c<0,那么ac<bc .⑤、如果a>b >0,那么n n ba > (n ∈N ,且n>1) ⑥、如果a>b >0,那么n n b a >(n ∈N ,且n>1)。

三、典型例题:例1、比较)7)(3(++x x 和)6)(4(++x x 的大小。

分析:通过考察它们的差与0的大小关系,得出这两个多项式的大小关系。

例2、已知d c b a <>,,求证:d b c a ->-.例3、已知a>b>0,c>d>0,求证:c bd a >。

四、课堂练习:1:已知3>x ,比较x x 113+与662+x 的大小。

2:已知a>b>0,c<d<0,求证:db ac a b -<-。

五、课后作业:课本9P 第1、2、3、4题六、教学后记:课 题: 第02课时 基本不等式教学目标:1.学会推导并掌握均值不等式定理;2.能够简单应用定理证明不等式并解决一些简单的实际问题。

教学重点:均值不等式定理的证明及应用。

教学难点:等号成立的条件及解题中的转化技巧。

教学过程:一、知识学习:定理1:如果a 、b ∈R ,那么a 2+b 2 ≥2ab (当且仅当a =b 时取“=”号)证明:a 2+b 2-2ab =(a -b )2当a ≠b 时,(a -b )2>0,当a =b 时,(a -b )2=0所以,(a -b )2≥0 即a 2+b 2 ≥2ab由上面的结论,我们又可得到定理2(基本不等式):如果a ,b 是正数,那么 a +b 2 ≥ab (当且仅当a =b 时取“=” 号)证明:∵(a )2+(b )2≥2ab∴a +b ≥2ab ,即a +b2≥ab 显然,当且仅当a =b 时,a +b 2 =ab 说明:1)我们称a +b2 为a ,b 的算术平均数,称ab 为a ,b 的几何平均数,因而,此定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数.2)a 2+b 2≥2ab 和a +b2 ≥ab 成立的条件是不同的:前者只要求a ,b 都是实数,而后者要求a ,b 都是正数.3)“当且仅当”的含义是充要条件.4)几何意义.二、例题讲解:例1 已知x ,y 都是正数,求证:(1)如果积xy 是定值P ,那么当x =y 时,和x +y 有最小值2P ;(2)如果和x +y 是定值S ,那么当x =y 时,积xy 有最大值14S 2 证明:因为x ,y 都是正数,所以x +y 2 ≥xy (1)积xy 为定值P 时,有x +y 2 ≥P ∴x +y ≥2P上式当x =y 时,取“=”号,因此,当x =y 时,和x +y 有最小值2P .(2)和x +y 为定值S 时,有xy ≤S 2 ∴xy ≤ 14S 2 上式当x=y 时取“=”号,因此,当x=y 时,积xy 有最大值14S 2. 说明:此例题反映的是利用均值定理求最值的方法,但应注意三个条件:ⅰ)函数式中各项必须都是正数;ⅱ)函数式中含变数的各项的和或积必须是常数;ⅲ)等号成立条件必须存在。

相关文档
最新文档