量子力学第六章

合集下载

第六章 微扰理论

第六章  微扰理论

ˆ H ˆ k H ˆ H 0 k
k 1

ˆ k H ˆ ) E (H 0 k n n n
k
( 0) (1) ( 2) (k) n n n 2 n k n
E n E (n0) E (n1) 2 E (n2) k E (nk )
(1) n k n ( 0 )* ˆ (0) H d k 1 n (0) k
E
(0) n
E
(0) k
E
( 2) n

( 0 )* n
ˆ ) ˆ ) (H ˆ ) (H (H (1) ( 0 )* ˆ (0) 1 kn 1 kn 1 nk ˆ H1 n d ( 0 ) H1 k d ( 0) (0) n (0) k n E n E k kn E n E k
0) ( 0 )* (1) ( 0 )* ˆ (1) b m (E (m E (n0 ) ) E (n2 ) mn E (n1) m n d m H 1 n d
现在来求能量的二级修正值。当m=n时,上式就变成
( 0 )* (1) ( 0 )* ˆ (1) 0 E (n2 ) E (n1) n n d n H1 n d
( 0) n (1) n (0) n
k
bm
k n
(E(0) n
ˆ ) (H ˆ ) ˆ ) (H ˆ ) (H (H 1 kn 1 mk 1 nn 1 mn 0) ( 0) 2 E (k0) )(E (n0) E (m ) (E(0) n Em )
(k) n E (nk ) 称为能量的k级校正。 称为波函数的k级校正,
假定级数对于λ=1是收敛的,并希望对于很小的微扰,只要取级数的 头几项,就能得到真实能量和波函数得很好近似。

量子力学导论第6章答案

量子力学导论第6章答案

第六章 中心力场6.1) 利用6.1.3节中式(17)、(18),证明下列关系式相对动量 ()21121p m p m Mr p-==∙μ (1) 总动量1p p R M P+==∙ (2)总轨迹角动量p r P R p r p r L L L⨯+⨯=⨯+⨯=+=221121 (3)总动能 μ222222222121pMP m p m p T +=+= (4)反之,有 ,11r m R rμ+= r m R r22μ-= (5) p P m p +=21μ,p P m p -=12μ(6)以上各式中,()212121 ,m m m m m m M +=+=μ证: 212211m m r m r m R ++=, (17) 21r r r -=, (18)相对动量 ()21122121211p m p m M r r m m m m r p-=⎪⎪⎭⎫ ⎝⎛-+==∙∙∙μ (1’)总动量 ()2121221121p p m m r m r m m m R M P+=+++==∙∙∙ (2’)总轨迹角动量 221121p r p r L L L⨯+⨯=+=)5(2211p r m u R p r m u R ⨯⎪⎪⎭⎫⎝⎛-+⨯⎪⎪⎭⎫ ⎝⎛+= ()()2112211p m p mMr p p R -⨯++⨯=)2)(1(p r P R ⨯+⨯=由(17)、(18)可解出21,r r,即(5)式;由(1’)(2’)可解出(6)。

总动能()22112262221212222m p P m m p P m m p m p T ⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫⎝⎛+=+=μμ2122222122112222122222m m p P u m pPm m um m p P u m pPm m u⋅-++⋅++=()()⎪⎪⎭⎫⎝⎛+++++=2122221222211112122m m p Pm m m Pm m m μ2222pMP +=(4’)[从(17),(18)式可解出(5)式;从(1),(2)式可解出(6)式].6.2) 同上题,求坐标表象中p 、P 和L 的算术表示式r i p ∇-= R i P ∇-= ,p r P R L⨯+⨯=解: ()()211221121r r m mMi p m p mMp ∇-∇-=-=(1)其中 1111z k y j x ir ∂∂+∂∂+∂∂=∇,而x X M m x x x X x X x ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂1111,同理,y YM m y ∂∂+∂∂=∂∂11zZM m z ∂∂+∂∂=∂∂11;(利用上题(17)(18)式。

量子力学课件第六章

量子力学课件第六章

第二部分应用第6章不含时微扰理论6.1非简并微扰理论6.1.1 一般公式表达假设对于某些势场(比如,一维无限深势阱),我们已经解出了(定态)薛定谔方程:(6.1)ψ,从而可以得到一套完备的正交本征函数,0n(6.2)E。

现在,我们对这个势进行微小扰动(比方说,在势阱底部加入一个小突起−及对应的能量本征值0n图6.1)。

我们期望可以找到新的本征函数和本征值:(6.3) 但是除非我们非常幸运,对于这个有些复杂的势场,一般我们是不可能精确求解薛定谔方程的。

微扰理论是一套系统的理论,它可以利用已得的无微扰时地精确解求出有微扰时的近似解。

图6.1:受到小微扰的无限深势阱。

首先,我们将哈密顿量写成两项之和:(6.4)其中'H 是微扰(上标0总是表示非微扰量)。

此时,我们将λ取为一个很小的数;稍后我们会将取它为1,H 将为真实的哈密顿量。

下面我们把n ψ和n E 展为λ的幂级数:(6.5)(6.6)其中,1n E 为第n 个本征值的一级修正,1n ψ为第n 个本征函数的一级修正;2n E 和2n ψ为二级修正,以此类推。

将6.5和6.6式代入6.3式,得到:或(将λ幂次相同的项合并)对于零级(0λ)项1有,这没有什么新的内容(它就是6.1式)。

对于一级(1λ)项有,(6.7)对于二级(2λ)项有,(6.8)以此类推。

(方程中并没有λ——它仅仅用来更清楚地按数量级分出各方程——所以现在把λ取为1。

)6.1.2 一级近似理论将0n ψ与6.7式进行内积运算(即乘以(0n ψ)*后积分),1级数展开的唯一性(见第2章,脚标25)保证了相同幂次的系数是相等的。

但是0H 为厄米算符,所以它和右边第一项相抵消。

又有001n n ψψ=,所以,2(6.9)这就是一级近似理论的一个最基本的结果;在实际中,它也是量子力学最重要的方程。

它说明能量的一级修正就是微扰在非微扰态中的期待值。

例子6.1 无微扰的无限深势阱波函数为(2.28式):图6.2:存在于整个势阱的常微扰。

量子力学 第6章-2-第18讲

量子力学 第6章-2-第18讲

m 0, 1, 2,... (4)
代入能量本征方程,可求得径向方程
2
2M
2
2
1
m2
2
1 2
M
2 L
2
R
(
)
E m R()
(5)
L
可解出能量本征值E ( Landau能级 )
E EN N 1 L ,
N (2n m m) 0, 2, 4, , n 0,1, 2,
EN N 1 0
N 2n m 0,1, 2,...
f (N) N 1
E EN N 1 L ,
均匀磁场中的电子
N (2n m m) 0, 2, 4,...,

n 0,1, 2,...
对于较低的几条能级的简并度分析
E EN N 1 L ,
N (2n m m) 0, 2, 4, , n 0,1, 2,
第6章 电磁场中粒子的运动
§1 电磁场中荷电粒子的运动,两类动量
§2 正常Zeeman效应 §3 Landau能级 §4* Aharonov-Bohm(AB)效应
§3 Landau能级
一、电子的Hamilton量
考虑电子(质量M,荷电-e)在均匀磁场B 中运动,则相应的矢势A可取为
A 1 Br 2
(6)
N
EN/ћωL

m
0
1
0
0,-1,-2,-3,…
2
3
0
1
1
0,-1,-2,-3,…
4
5
6
7
0
2
1
1
2
0,-1,-2,-3,…
0
3
1
2
2
1

量子力学答案(第二版)苏汝铿第六章课后答案6.7-6#15

量子力学答案(第二版)苏汝铿第六章课后答案6.7-6#15

1 的本征态,粒子 2
1 2 的本征态,取 =1 ,求体系总自旋 S 的可能值及相应的概率。 2
解: S x ;
1 Sz ; Sz ; 2
1 2

(1)
Sz ; Sx ;
(2)
系统处于 S1z ; S2 x ; 的态上,将其写到 S z 的表象中为
S1z ;
编辑者:霍团长 6— 7
对于两个自旋 1/2 的例子组成的体系,证明张量算符
S12
3 (σ1 r )(σ2 r ) σ1 σ2 r2
和 S 2 及 J 对易。 S 为总自旋, J 是总角动量 J = S + l ,l 是体系的轨迹角动量,在质心坐 标系中, l 的算符形式是:
l r p i r , r = r1 - r2
而 S s( s 1)
2
1 S2 z ; S2 z ; 2

其可能值为 0或2 总自旋为零的态可表示为:
0
1 S1z ; S2 z ; S1z ; S2 z ; 2
0
1 1 1 S2 z ; S1z ; S1z ; S2 z ; 2 2 2
证明: (1)
3 2 , σ1 3, ( 1n )2 1 4 1 S s1 s2 (σ1 σ2 ) 2 3 1 ∴ S 2 σ1 σ 2 2 2 1 1 Sn S n (σ1 n σ2 n) ( 1n 2 n ) 2 2 1 1 1 ∴ Sn 2 ( 1n 2 2 n 2 2 1n 2 n ) 1n 2 n 4 2 2
2 解:取系统的力学量完全集为 ( H , S12 , S 2 , Sz )

量子力学(第六章)

量子力学(第六章)

i ( ) t 2 2 q 1 p p A p A p c 2


1 q p p p p A 2 c 2q i p p A 2 c
代入正则方程
H H ,P r P r
(2)
即可得出
式中
1 r q E v B (3) c 1 E A (电场强度) (4) c t
B A (磁感应强度)
c
• H和 p 的关系一样。这里 p 为正则动量。由这
个原理和正则量子化规则可知,有电磁场时, 量子化规则应当变更为
i i q t t q i A c
• 这就将电磁势引进了 Schrodinger 方程 。于是, 有电磁场时的 Schrodinger 方程为
的电子的速度 v 远小于光速 c ( v / c 102 ),辐
射场中磁场对电子的作用远小于电场,一般只
考虑电场的作用 。
本章将讨论恒定磁场中原子能级和光谱
的变化(Zeeman效应)以及自由荷电粒子在恒
定磁场中的运动(Lanbau能级)。 下面首先给出给出荷电粒子在恒定电磁 场中的Schrodinger方程。
A A A ( r , t ) 1 (r , t ) (16) c t 电场强度 E 和磁场强度 B 都不改变。
可以证明Schrodinger方程(9)在规范变换(16)
式下,只需波函数也同时经受如下定域相位变

量子力学 6-1 电子自旋的实验证据

量子力学  6-1 电子自旋的实验证据
1
6-1 电子自旋的实验证据
第六章 电子自旋 全888—1969),
1888年2月17日出生于德国。1906年开 始学习物理化学,1912年在布雷斯劳大 学获博士学位。同年他到布拉格当爱因 斯坦的助手,以后又随爱因斯坦转到苏 黎世,1913年成为物理化学私人讲师。 1943年诺贝尔物理学奖授予斯特恩,表 彰他发展分子束方法和发现了质子的磁矩。
M sz e Sz
7

S
自旋回旋磁比率:
6-1 电子自旋的实验证据
第六章 电子自旋 全同粒子 能级排列
注意
此节重点
(1)理解电子自旋是一种纯粹的量子力学效应,没有经 典图象与之对应。(不是电子自转之类的空间运动)
(2)验证电子自旋存在的实验是斯特恩—盖拉赫实验 (3)每个电子具有自旋角动量 向的取值只能有两个 S z 。 2
1922年,他和合作,成功地做了斯特恩-盖 拉赫实验,通过这个著名实验,他们用分 子束方法证明了空间量子化的真实性,并 为进一步测定质子之类的亚原子粒子的磁 矩奠定了基础。
2
6-1 电子自旋的实验证据
第六章 电子自旋 全同粒子 能级排列
格拉赫(Walther Gerlach)
1889出生于德国. 1912年于图宾根大学获得物理学博士学位。 他的研究对象是黑体辐射和光电效应。一战期间, 盖拉赫和 维恩一起发展无线电报技术。在工业界呆了一段时间后, 盖 拉赫于1920年在法兰克福的实验物理研究所谋到了一个助手 的位置, 该所紧捱着玻恩的理论物理所。后来和斯特恩合作 完成了斯特恩-盖拉赫实验. 3
6-1 电子自旋的实验证据
第六章 电子自旋 全同粒子 能级排列
从薛定谔方程出发可以解释许多微观现象,例如计 算谐振子和氢原子的能级从而得出它们的谱线频率 等。计算结果在相当精确的范围内与实验符合。

第六章-力学量与本征态1

第六章-力学量与本征态1

第六章 力学量与本征态 §6 - 1 量子力学中的力学量 一 力学量用算符表达量子力学中的两个基本概念 ● 量子态 波函数 ● 力学量 (具有特定性质的)算符算符代表着对波函数的一种运算(但并不一定都与力学量相对应):()ddx ψ:对波函数取导数,ψ)(r U :对波函数乘以)(r U ,*ψ: 对波函数取复共轭,ψ: 对波函数开平方根考察位置算符r 和动量算符pˆ:r r →,(6. 1)∇-=→ i ˆpp . (6. 2)经典力学中的力学量还有:势能)(r V 纯位置坐标的函数(算符不变)力)()(r r F V ∇-=速度m /p v = 动量的函数(算符可由动量的对应关系得出)动能m p T 2/2= 动能2222ˆ ()222P T m m m x y z222222∂∂∂==-∇=-++∂∂∂ (6. 3)角动量∇⨯-=⨯=r p r Li ˆˆ (6. 4)在直角坐标系中的分量表达式)(i ˆˆˆyz z y p z py L y z x ∂∂-∂∂-=-= )(i ˆˆˆzx x z p x pz L z x y ∂∂-∂∂-=-=(6. 5))(i ˆˆˆxy y x p y px L x y z ∂∂-∂∂-=-=角动量算符Lˆ的模方(L ˆ的平方) L LL ˆˆˆˆ22⋅==L 222ˆˆˆz y x L L L ++=. (6. 6)角动量在球面坐标系的表示]sin 1)sin (sin 1[ˆ22222ϕθθθθθ∂∂+∂∂∂∂-= L(6. 7)ϕ∂∂-= i ˆz L (6. 8)θθθθθ2222sin ˆ)sin (sin ˆzL L +∂∂∂∂-= (6. 9)利用了:ϕθcos sin r x =,ϕθsin sin r y =, θcos r z =;2222z y x r ++=,rz =θcos , x y=ϕtan .图21 - 1 球面坐标系二 量子力学中的哈密顿量1、 哈密顿算符 薛定谔方程的普遍形式在量子力学中,薛定谔方程的普遍形式是ψψH tˆi =∂∂(6. 10)式中H ˆ是体系的哈密顿算符( = 动能函数 +势能函数)V T H +=,(6. 11)对于一个粒子在势场V ( r )中运动的情况,有)(2ˆ22r V mH +∇-= ,(6. 12) 讨论:● 哈密顿算符决定了体系的量子态随时间的变化规律,在量子力学中占有特别重要的地位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dL mr dv r ma r F 磁力矩的存在将引起角动量的变化
dt
dt
B
L
B
d d L μ B 或
dt
dt
d ; B
dt
这就是拉莫尔进动的角速度公式。它表明:在均匀外磁场中
的一个高速旋转的磁矩并不向 B 方向靠拢,而是以一定的角 速度 绕 B 进动, 的方向和 B 的方向一致。
积;n0是垂直于该面积的单位矢量。
B
从经典电磁学知道载流线圈在均匀外磁场中磁力矩: iSB sin
iS iSn0
iS B
磁矩在均匀外场中不受力,但受到一个力矩的作用
B
原子中电子绕核运动必定产生一个磁矩。若电子绕核旋转的
圆周频率为ν,轨道半径为r,则磁矩为
iSn0
e r2n0
e 2 r
1925年,两位荷兰学生乌仑贝克与古兹米特根据一系列的实 验事实大胆地提出这样一个假设:电子不是点电荷,它除了轨 道角动量以外,还有自旋运动,它具有固有的自旋角动量。
L ll 1 , l 0,1,2,3,......n. S ss 1 , s 1/ 2
轨道量子数
自旋量子数
Lz ml ml 0,1,2,..... l
Sz
1 2
ms
1. 2
任何电子都有相同的自旋角动量 1 ,而且它们在z方
2
向的分量只取两个数值 1 ,自旋磁矩是理论值的两倍。
2
电子自旋是原子物理学和量子力学中十分重要的概念, 在假说的提出与被接受的过程中,从名不见经传的在校学 生到物理学权威皆卷入其间,不同观点针锋相对,虽然电 子自旋假说的提出稍早于量子论的矩阵力学和波动力学, 但它们之间没有直接的逻辑联系,因此不是物理学史家关 注的焦点。
磁矩及其Z分量的大小是量子化的,它来源于轨道角动量L及 其Z分量LZ的大小的量子化。
L l(l 1) Lz ml
Z
μ
L
L l l(l 1)B , l 0,1,2,3.......n
l,z mlB , m 0,1,2,3....... l
二、史特恩—盖拉赫实验
史特恩和盖拉赫在1921年进行的实验是对原子在外场中取向 量子化的首次直接观测,它是原子物理学中最重要的实验之一, 其装置示意图如下 氢原子从容器O内通过小 孔逸出,氢原子通过狭缝 后,形成细束,经过一不均 匀的磁场区域,在磁场的垂 直方向运动,最后撞在底片 P上, 显像后在底片上看到 两条黑斑,表明氢原子在经 过不均匀磁场区域时已分 成两束.
cos
Bz z
dD 3kT
Z
B z
由公式可见,若仅仅μ是量子化的,而cosβ可以是任意的
话那么μz就不是量子化的,而z2也不可能是量子化。只有当空 间也是量子化时,即μ在z方向的投影也是量子化的,z2的数值 才可能是分立的。因此从实验上测得z2的数值是否是分立的, 就可以反过来证明μz是否量子化。史特恩—盖拉赫实验的结果 表明,氢原子在磁场中只有两个取向,这就有力的证明了原子
x方向:x v/ /t v/ / (t1 t2 ) 原子束在经过磁场区(长度为d)
z方向:
z1
1 2
Fz m
t12
到达出口时,已经偏离x轴z1的 距离,此时沿z方向的速度为
v
at1
D
d
2
Fz m
v/ /t2
d v/ /
z2 z1 vt2
然后原子束沿直线运动,一直落
在屏幕P上,那时偏离x轴的距离
第六章 电子自旋及一般角动量
§6.1 电子自旋的引入 §6.2 自旋算符和自旋态矢量 §6.3 一般角动量的基本知识 §6.4 两个角动量的耦合
§6.1 电子自旋的引入
一、电子的轨道磁矩 二、施特恩-盖拉赫实验 三、电子自旋假设
一、电子的轨道磁矩
经典磁矩μ的表达式(载流线圈)
B
iSn0
式中i是电流的大小;S是电流所围面
Fz
U z
x
Bx z
y
By z
z
Bz z
由于B的方向在z轴方向,所以
Fz
z
Bz z
由此可见,只有在非均匀磁场中才能有最终的合力。
原子束以水平速度v进入磁场,在垂直方向受到力FZ的作用,这
就好比平抛运动,原子束在磁场内将作抛物运动。假设氢原子刚 离开磁场区域的时间为t1,离开磁场到达屏幕的时间为t2。
B0
B 0 z
史特恩—盖拉赫实验(1922) 角动量取向量子化
史特恩和盖拉赫的功绩之一,就是制造了一块能在很小线度
内产生不均匀磁场的磁铁,对于这样的一个磁场,磁矩只有在Z
方向受力
B U B μ B
任何一个力都可以写成势能的负梯度,即
F
U
U x

U y
ˆj
U z

所以,一磁矩在z方向上受到的力就可以写成
由于自旋发现的历史非常曲折有趣,而且很有教育意 义。艾伦费斯特的教育艺术、乌仑贝克与古兹米特的理论 实验协作、泡利的直觉与执着、克罗尼格的背运、爱因斯 坦的举重若轻、托马斯的数学计算都在这个故事里让人眼 睛一亮。
在磁场中的取向是量子化的。
尽管这个实验证实了原子在磁场中的空间量子化,但由于实
验给出的氢原子在磁场中只有两个取向的事实,在当时,却是
空间量子化的理论所不能解释的。按空间量子化理论,当l一定 时,ml有2l+1个取向,由于l是整数,2l+1就一定是奇数。在实
验中,确实观察到奇数取向的例子,例如对于基态氧原子,得
到五个取向;而对于锌、镉、汞等原子,只观察到一个取向。
但对于氢、锂、钠、钾、铜、银、金等原子都观察到两个取向。
这只能说明,到此为止,我们对原子的描述仍然是不完善的。
三、电子自旋假设
从史特恩—盖拉赫实验只能解释奇数条纹分裂,无法解释偶 数条纹分裂。该实验出现偶数分裂的事实,给人的启示是:要 2l+1为偶数,只有角动量为半整数,而根据轨道角动量理论是 l不可能给出半整数的。
为z2,可以证明
z2
z1 at1t2
1 2
at12
at1t2
1 2
Fz m
d v/ /
2
Fz m
d v/ /
Dd
2
v/ /
FzdD mv/ / 2
v// v
Fz
z
Bz z
z2
z
Bz z
dD mv2
热平衡时,原子的速度满足 mv2 3kT
z2
z
Bz z
dD 3kT
z cos ຫໍສະໝຸດ z2r2n0e 2me
mern0
e 2me
L
令 e γ称为旋磁比,式中me为电子的质量,则
2me
L
此公式即为原子中电子绕核 运动的磁矩和电子的轨道角动 量之间的关系式。
L
可见电子绕核运动的磁矩与轨
v μ
道角动量是反向的(磁矩方向是 根据电流方向的右手螺旋定则定 义的, L r m mr )。
相关文档
最新文档