量子力学答案(第二版)苏汝铿第六章课后答案6.7-6#15up

合集下载

苏汝铿量子力学(第二版)课后习题(含答案)---第四章4.5-4.7#14(延边大学)三年级

苏汝铿量子力学(第二版)课后习题(含答案)---第四章4.5-4.7#14(延边大学)三年级

14QM-4.5设粒子处于宽度为的无限深势阱中,求在能量表象中粒子的坐标和动量的矩阵表示。

解:设粒子所处的势场的表达式为(0)()0(0)()x U x x a x a ∞<⎧⎪=≤≤⎨⎪∞>⎩在0x <,x a >两个区域,粒子的波函数均为0.设在0x a ≤≤区域中粒子的波函数为ψ 则它满足薛定谔方程20;2E x a mψψ-''=≤≤ 当 相应的边界条件为:(0)0()0a ψψ=⎧⎨=⎩解得波函数的本征函数为:()sinn n x A x a πψ= 由归一化条件得:n A aπ= 在能量表象中的本征函数为()sin n n n x x a a ππψ=在能量表象中粒子的坐标的矩阵分量为:()()2002222ˆ()()sin sin 114[],,2a a mn n m m n n m x x x x dx mn x x x dx a a a a mn m n m n a m n πππψψπ*-⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎧--≠⎪⎪-=⎨⎪=⎪⎩⎰⎰ 在能量表象中粒子的动量的矩阵分量为()20022ˆ()()sin sin 211[],0,a amn n m m n h n d m p x p x dx i mn x x dx a a dx a ih mn m n a m n m n πππψψππ*-⎛⎫⎛⎫⎛⎫==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎧--⎪≠=⎨-⎪=⎩⎰⎰ 14QM-4.6证明两个厄米矩阵能用同一个幺正变换对角化的充要条件是它们彼此对易。

证明:我们知道任何一个厄米矩阵能被一个幺正矩阵对角化。

设,A B 两个矩阵是对易的,并且能被幺正矩阵L 对角化证明如下:已知0AB BA -=1()LAL A αβαααβδ-'= 则11LABL LBAL --= 1111LAL LBL LBL LAL ----=1111()()()()LAL LBL LBL LAL αααβαβββαβ----''''''=∑∑11()()A LBL LBL A αααβαβββ--''= 1()()0LBL A A αβααββ-''-= 若要1()0LBL αβ-≠则 A A ααββ''=即αβ= 所以1()LBL B αβαααβδ-'=即B 能被同一幺正矩阵L 对角化。

苏汝铿量子力学(第二版)课后习题(含答案)---第四章4.11-4.13#5(延边大学)三年级

苏汝铿量子力学(第二版)课后习题(含答案)---第四章4.11-4.13#5(延边大学)三年级

4.11 已知波函数cos sin i i e e αβδχδ⎛⎫= ⎪⎝⎭,计算它的极化矢量p ,并求能将χ旋转为10⎛⎫⎪⎝⎭态的转动矩阵R U 。

解: *()122Re()2Re(cos sin )2cos()cos sin i x p C C e βαδδβαδδ-===-*()122Im()2Im(cos sin )2sin()cos sin i y p C C e βαδδβαδδ-===-222212cos sin z p C C δδ=-=-其中12cos ,sin i i C e C e αβδδ==故222cos()cos sin 2sin()cos sin cos sin p βαδδβαδδδδ-⎛⎫⎪=- ⎪ ⎪-⎝⎭由转动矩阵的定义,知:10⎛⎫⎪⎝⎭=R U χ 设11122122R a a U a a ⎛⎫=⎪⎝⎭,则: 10⎛⎫ ⎪⎝⎭=11122122a a aa ⎛⎫⎪⎝⎭cos sin i i e e αβδδ⎛⎫⎪⎝⎭故:11122122cos sin 1cos sin 0i i i i a e a e a e a e αβαβδδδδ⎧+=⎪⎨+=⎪⎩ 所以:11122122sin sin()cos sin sin()sin 0a a a a ββαδααβδ=-=-==即:11122122sin sin sin()cos sin()sin 00R a a U a a βαβαδαβδ⎛⎫⎛⎫⎪--== ⎪ ⎪⎝⎭ ⎪⎝⎭4.12 由下述三个纯态不相干混合而成的角动量为1的粒子体系,假定每个态都等概率,这三个态是:(1)100ψ⎛⎫ ⎪= ⎪ ⎪⎝⎭;(2)001001ψ⎛⎫⎛⎫⎪⎪=+⎪⎪⎪⎪⎭⎭;(3)001ψ⎛⎫⎪= ⎪ ⎪⎝⎭(1) 求这个体系的密度矩阵ρ,并证明1tr ρ=。

(2) 选1=,角动量为1的矩阵是010********;0;0002201000001x y z i L L i i L i -⎫⎫⎛⎫⎪⎪ ⎪==-=⎪⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭。

量子力学答案(第二版)苏汝铿第六章课后答案6.16-6#8

量子力学答案(第二版)苏汝铿第六章课后答案6.16-6#8
代入薛定鄂方程: i
(s x + s y + s y ) ??
sin qe- iwt ÷ ÷ ÷ - cos q ÷
,设 f (t )=ç ç
¶f = Hf ¶t
骣 a(t )÷ ÷,则有 ç ÷ b(t )÷ 桫
i d a(t ) = cos qa(t ) + sin qe- iwt b(t )......(1) - m0 B dt i d b(t ) = - cos qb(t ) + sin qeiwt a(t ).....(2) - m0 B dt
c1' = iw1e- iwt c2
化简得: 其中:
c2' = iw1eiwt c1
cos q, w1 = m0 B sin q, w2 = w + 2w0
w0 =
m0 B
a(t ) = c1eiwt b(t ) = c2e- iwt
解得: c2 '' = iw2c2 '- w12c2 (*) 由初始条件:
( S1z - S 2 z )c 1 = 0 ( S1z - S 2 z )c 2 = 0 c 4 ( S1z - S 2 z )c 3 = c 3 ( S1z - S2 z )c 4 = 2 2
骣1 2 ç A ç ç 4 ç ç ç ç ç ç 0 ç 所以得到: H ' = ç ç eB ç ç ç ç mc 2 ç ç ç ç ç 0 ç 桫
eB ( S1z - S2 z ) mc 解: eB =H 0 + A( sx 2 + s y 2 + sz 2 ) + ( S1z - S2 z ) mc H = H 0 + AS1 S2 +

量子力学答案(第二版)苏汝铿第六章课后答案6.10-6#6 @

量子力学答案(第二版)苏汝铿第六章课后答案6.10-6#6 @
点), 这样就有 L
1 N L 2
耦合之后总磁矩
1 1 N L J ( g p g N )N S J J 2 2 R J ( J 1)
因 J LS 有
N 3 ( g p g N ) N (1) J / 2
旋 S , 然后总自旋再与轨道角动量 l 耦合形成总角动量 J , 用核磁子表示你的结果. 已知质子和 中子的磁矩分别是 2.79 和-1.91 核磁子. 解: (i) S,D 态的宇称为正, 而 P 态的宇称为负, 由于宇称守恒, 开始时为 S 态的量子态在任何 时刻都不可能有 P 态混入 (ii)
1 1 1.5 ( g p g N ) N J 0.31 N J 2 2
取 J 方向的投影并使 J s 为最大值 J 1 , 从而有 0.31 N 6.11 一个 介子(赝标粒子, 自旋为零, 奇宇称)最初别束缚在氘核周围, 并处在最低库仑态
的角分布是多少? (i). 反应前后宇称守恒, 有
p( ) p(d )(1) L1 p(n) p(n)(1) L
L1 , L2 分 别 是 d 及n+n 的 轨 道角 动量 . 但反 应 前 是 在库 仑 势的 最低 能 态
中, L1 0 , 且已知: p( ) 1, p(d ) 1 有
2/3 c , 2/ d 3 , 1/ 3
p 1,1 p 1, 1 0 n 1, 0
查 C G 系数表, 可得
a 1 / 3b ,
共振态的 I 3/ 2 , 经过此面的截面比为 1 2 4 2 a : b : c 1: a : ac 1: : 9 9
能的, 因为 L 1 , 所以几率为 0 (iii) 从而有 初始态为 J , J z 1,1 , 将其变成非耦合表象 L 1, S 1, L, L3 , S , S z

量子力学答案(第二版)苏汝铿第六章课后答案6.7-6#5

量子力学答案(第二版)苏汝铿第六章课后答案6.7-6#5
2 2 [S 12 , S12 ] 0,[ S 123 , S123 ] 0 .
S1 , S2 , S3 互相对易,而且
2 2 2 S1 S2 S3
3 4
因此
2 2 2 S 12 S1 S2 2S1 S2 2 S 123
3 2S1 S2 2
9 2( S1 S2 S2 S3 S3 S1 ) 4
(1, 2) (1) (2)
2
1 [ (1) (2) (1) (2)] 2
2
总自旋 S 共有两个本征值:0 和 2. S 0 的本征 (1) (2) (1) (2)] 2
2
在体系的自旋态 中测得 S 0 的概率为
2 S12 S ( S 1), S 0,1
2
2
2
2
2
2
1 1 3 2 S123 S ( S 1), S , , 2 2 2
代入 H 的表达式,就得到能级值,记为 ESS 。由于体系能量与 ( S123 ) z ,即总自旋 z 分量的 本征值 [S , S 1,
r 1 1 ] e [ S , S x ] e ( S [ x , S ] x [ S , S ]) r r r
l
和 S 对易,但 l 和 S n 并不对易,利用基本对易式 [l , x ] i x , 容易证明
[l , Sn ] [l , S
,(S )] 无关,故能级 ESS 的简并度 (2S 1) 。量子数 S , S 的可能组合以
及能级和简并度如下:
S S
1 3/2 1/2
0 1/2
ESS
简并度 (2S 1)
A B 4 2

量子力学答案(第二版)苏汝铿第六章课后答案6.7-6#15

量子力学答案(第二版)苏汝铿第六章课后答案6.7-6#15

1 的本征态,粒子 2
1 2 的本征态,取 =1 ,求体系总自旋 S 的可能值及相应的概率。 2
解: S x ;
1 Sz ; Sz ; 2
1 2

(1)
Sz ; Sx ;
(2)
系统处于 S1z ; S2 x ; 的态上,将其写到 S z 的表象中为
S1z ;
编辑者:霍团长 6— 7
对于两个自旋 1/2 的例子组成的体系,证明张量算符
S12
3 (σ1 r )(σ2 r ) σ1 σ2 r2
和 S 2 及 J 对易。 S 为总自旋, J 是总角动量 J = S + l ,l 是体系的轨迹角动量,在质心坐 标系中, l 的算符形式是:
l r p i r , r = r1 - r2
而 S s( s 1)
2
1 S2 z ; S2 z ; 2

其可能值为 0或2 总自旋为零的态可表示为:
0
1 S1z ; S2 z ; S1z ; S2 z ; 2
0
1 1 1 S2 z ; S1z ; S1z ; S2 z ; 2 2 2
证明: (1)
3 2 , σ1 3, ( 1n )2 1 4 1 S s1 s2 (σ1 σ2 ) 2 3 1 ∴ S 2 σ1 σ 2 2 2 1 1 Sn S n (σ1 n σ2 n) ( 1n 2 n ) 2 2 1 1 1 ∴ Sn 2 ( 1n 2 2 n 2 2 1n 2 n ) 1n 2 n 4 2 2
2 解:取系统的力学量完全集为 ( H , S12 , S 2 , Sz )

量子力学课后习题答案

量子力学课后习题答案

Wnl (r)dr Rnl2 (r)r 2dr
例如:对于基态 n 1, l 0
W10 (r) R102 (r)r 2

4 a03
r e2 2r / a0
求最可几半径
R e 2 r / a0
10
a03 / 2
dW10 (r) 4 (2r 2 r 2 )e2r / a0
x)

k
2
2
(
x)

0
其解为 2 (x) Asin kx B cos kx
根据波函数的标准条件确定系数A、B,由连续性条件,得
2 (0) 1(0) B 0
2 (a) 3 (a) Asin ka 0
A0
sin ka 0
ka n
(n 1, 2, 3,)
[1 r
eikr
r
(1 r
eikr )

1 r
eikr
r
(1 r
eikr )]er
i1 1 11 1 1

2
[ r
(
r2
ik
) r

r
(
r2
ik
r )]er

k
r2
er
J1与er 同向。 1 表示向外传播的球面波。
习题
(2)
J2

i
2
(
2
* 2
2*
解:U (x)与t 无关,是定态问题
薛定谔方程为

2
2
d2 dx2

(x) U (x) (x)

E (x)
在各区域的具体形式为:
x0

量子力学教程(二版)习题答案

量子力学教程(二版)习题答案

第一章 绪论1.1.由黑体辐射公式导出维恩位移定律:C m b bTm3109.2 ,×´==-l 。

证明:由普朗克黑体辐射公式:由普朗克黑体辐射公式:n n p nr n nd ec hd kTh 11833-=, 及ln c=、l ln d c d 2-=得1185-=kThcehc l l l p r ,令kT hc x l =,再由0=l r l d d ,得l .所满足的超越方程为所满足的超越方程为15-=x x e xe用图解法求得97.4=x ,即得97.4=kT hc m l ,将数据代入求得C m 109.2 ,03×´==-b b T ml 1.2.在0K 附近,钠的价电子能量约为3eV ,求de Broglie 波长. 解:010A 7.09m 1009.72=´»==-mEh p h l # 1.3. 氦原子的动能为kT E 23=,求K T 1=时氦原子的de Broglie 波长。

波长。

解:010A 63.12m 1063.1232=´»===-mkT h mE h p h l其中kg 1066.1003.427-´´=m ,123K J 1038.1--×´=k # 1.4利用玻尔—索末菲量子化条件,求:利用玻尔—索末菲量子化条件,求: (1)一维谐振子的能量。

)一维谐振子的能量。

(2)在均匀磁场中作圆周运动的电子的轨道半径。

)在均匀磁场中作圆周运动的电子的轨道半径。

已知外磁场T 10=B ,玻尔磁子123T J 10923.0--×´=B m ,求动能的量子化间隔E D ,并与K 4=T 及K 100=T 的热运动能量相比较。

的热运动能量相比较。

解:(1)方法1:谐振子的能量222212q p E mw m +=可以化为()12222222=÷÷øöççèæ+mw m E q Ep的平面运动,轨道为椭圆,两半轴分别为22,2mw m Eb E a ==,相空间面积为,相空间面积为,2,1,0,2=====òn nh EE ab pdq nw pp 所以,能量 ,2,1,0,==n nh E n方法2:一维谐振子的运动方程为02=+¢¢q q w ,其解为,其解为()j w +=t A q sin速度为速度为 ()j w w +=¢t A q c o s ,动量为()j w mw m +=¢=t A q p cos ,则相积分为,则相积分为 ()()nh T A dt t A dt t A pdq T T ==++=+=òòò2)cos 1(2cos 220220222mw j w mw j w mw , ,2,1,0=n nmw nh T nh A E ===222, ,2,1,0=n (2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明: (1)
3 2 , σ1 3, ( 1n )2 1 4 1 S s1 s2 (σ1 σ2 ) 2 3 1 ∴ S 2 σ1 σ 2 2 2 1 1 Sn S n (σ1 n σ2 n) ( 1n 2 n ) 2 2 1 1 1 ∴ Sn 2 ( 1n 2 2 n 2 2 1n 2 n ) 1n 2 n 4 2 2
又 [Sn , S ] [ S n, S ] [ S , S ] n S [n, S ] 0
2 2 2 2
∴ [S12 , S ] 6[ Sn , S ] 6Sn [ Sn , S ] 6[ Sn , S ]Sn 0
2 2 2 2 2
(2)
2 [ S12 , J ] [6Sn 2S 2 , J ] 2 6[ Sn , J ] 2[ S 2 , J ]

其可能值为 0或2 总自旋为零的态可表示为:
0
1 S1z ; S2 z ; S1z ; S2 z ; 2
0
1 1 1 S2 z ; S1z ; S1z ; S2 z ; 2 2 2
则总自旋 S 2 为 0 的几率是:
P 0
2

1 4
而总自旋 S 2 为 4 的几率是
3 4
6— 9
考虑三个自旋为 1/2 的非全同粒子组成的体系。体系的哈密顿量是:
H AS1 S2 B( S1 S2 ) S3
A、B 为实常数,试找出体系的守恒量,并确定体系的能级和简并度(取 1 为单位) 。
2 解:取系统的力学量完全集为 ( H , S12 , S 2 , Sz )
解: S x ;
1 Sz ; Sz ; 2
1 2

(1)
Sz ; Sx ;
(2)
系统处于 S1z ; S2 x ; 的态上,பைடு நூலகம்其写到 S z 的表象中为
S1z ;
而 S s( s 1)
2
1 S2 z ; S2 z ; 2
2 ∵ s1
故有
3 (σ1 r )(σ 2 r ) σ1 σ 2 r2 3(σ1 n)(σ 2 n) σ1 σ 2 S12 3 1n 2 n σ1 σ 2 1 1 3 1 6( 1n 2 n ) 2( σ1 σ 2 ) 2 2 2 2 2 2 6Sn 2 S
其中 S12 S1 S2 , S S12 S3 S1 S2 S3 ,则本征函数取为 S12 , S3 , S , mS , 定态方程为
H S12 , S3 , S , mS E S12 , S3 , S , mS ,
H AS1 S2 B( S1 S2 ) S3 A 2 B [ S12 S12 S2 2 ] [ S 2 S12 2 S32 ] 。 2 2 A 2 3 B 2 3 [ S12 ] [ S S12 2 ] 2 2 2 4
利用 [l , x ] i x
1 [ S n, lz ] [lz , S x x S y y S z z ] r 1 i ( yS x xS y ) r 1 i (r S ) z r
则 [ Sn , l ] [ S n, l ] i
S12 0, 3 E A ,此能级简并度是 2; 4 S 1/ 2,
S12 1, 1 E A B ,此能级简并度是 2; 4 S 1/ 2,
S12 1, 1 1 E A B ,此能级简并度是 4; 4 2 S 3/ 2,
r S r
故 [ Sn , J ] [ Sn , S ] [ Sn , l ] 0 又 [S 2 , J ] 0 故 [ S12 , J ] 0
6— 8
一个由两个自旋为 1/2 的非全同粒子组成的体系。已知粒子 1 处在 S1z 2 处在 S1x
1 的本征态,粒子 2
1 2 的本征态,取 =1 ,求体系总自旋 S 的可能值及相应的概率。 2

3 B 3 A H S12 , S3 , S , mS [(S12 1) S12 ] [ S ( S 1) S12 ( S12 1) ] S12 , S3 , S , mS 2 2 4 2
E A 3 B 3 [( S12 1) S12 ] [ S ( S 1) S12 ( S12 1) ] 2 2 2 4
6Sn [ Sn , J ] 6[ Sn , J ]Sn 2[ S 2 , J ]

[ S n , S ] [ S n, S ] [ S n , S e ] [ S , S ]n e i S n e (i S n )e i S r r
编辑者:霍团长 6— 7
对于两个自旋 1/2 的例子组成的体系,证明张量算符
S12
3 (σ1 r )(σ2 r ) σ1 σ2 r2
和 S 2 及 J 对易。 S 为总自旋, J 是总角动量 J = S + l ,l 是体系的轨迹角动量,在质心坐 标系中, l 的算符形式是:
l r p i r , r = r1 - r2
相关文档
最新文档