基于PLC的电机调速控制系统
《2024年基于PLC的变频调速电梯系统设计》范文

《基于PLC的变频调速电梯系统设计》篇一一、引言随着城市化进程的加快,电梯已经成为现代建筑中不可或缺的一部分。
为满足现代社会的需求,电梯系统需要具有高可靠性、高效率和灵活性。
本文旨在介绍一种基于PLC(可编程逻辑控制器)的变频调速电梯系统设计,该系统可有效提高电梯的运行效率、安全性和用户体验。
二、系统设计概述本电梯系统设计采用PLC作为核心控制器,通过变频调速技术实现电梯的精确控制。
系统主要由以下几个部分组成:PLC控制器、变频器、电机、编码器、传感器以及人机界面等。
三、硬件设计1. PLC控制器:选用高性能的PLC控制器,具有高可靠性、高速度和高精度的特点,可实现电梯的逻辑控制和运动控制。
2. 变频器:采用变频调速技术,根据电梯的运行需求,实时调整电机的运行速度,实现电梯的平稳启动和停止。
3. 电机:选用高效、低噪音的电梯专用电机,与变频器配合使用,实现电梯的精确控制。
4. 编码器:通过安装在电机上的编码器,实时监测电机的运行状态,为PLC控制器提供反馈信号。
5. 传感器:包括位置传感器、速度传感器等,用于实时监测电梯的运行状态,确保电梯的安全运行。
6. 人机界面:采用触摸屏或按钮等方式,实现用户与电梯系统的交互。
四、软件设计软件设计是本系统的关键部分,主要涉及PLC控制程序的编写和调试。
1. 逻辑控制程序:根据电梯的运行需求,编写逻辑控制程序,实现电梯的召唤、应答、启停、开门关门等基本功能。
2. 运动控制程序:采用PID(比例-积分-微分)控制算法,根据电梯的运行状态和目标位置,实时调整电机的运行速度和方向,实现电梯的平稳运行。
3. 人机交互程序:编写人机交互程序,实现用户与电梯系统的友好交互,包括显示楼层信息、运行状态等。
4. 故障诊断与保护程序:编写故障诊断与保护程序,实时监测电梯的运行状态和传感器信号,一旦发现异常情况,立即采取相应措施,确保电梯的安全运行。
五、系统实现与测试在完成硬件和软件设计后,进行系统实现与测试。
基于PLC的三相异步电机变频调速系统的设计毕业论文

高等教育自学考试本科毕业论文基于PLC的三相异步电机变频调速系统的设计高等教育自学考试本科毕业论文基于PLC的三相异步电机变频调速系统的设计摘要随着科技的进步,电机的运用已经深入到各行各业的各个领域。
而现今也是一个资源高度消耗造成能源匮乏的时代,在这个时候考虑如何让其在高可靠性的同时又有效的节约能源耗费提高自身的效率,这不仅可以使企业的生产成本降低,而且对于社会的可持续发展有着重要的意义。
本文所讨论的是利用PLC控制的三相异步电机变频调速的基本原理与实现方法。
三相异步电机一般的调速方法有:降压调速,转子回路串电阻调速,变极调速,串极调速,变频调速等。
但是这些调速方法都有着各自的缺点,降压调速的调速范围很小,没有多大的实用价值;转子回路串电阻调速不利于空载或轻载调速,效率低,经济性差;变极调速调速的平滑性差;串极调速的控制设备复杂,成本高,控制困难。
所以调速性能至少需从两方面考虑。
第一,应从节能和提高效率的角度考虑,应将损耗在转子附加电阻上的能量吸收,转化成别的有用的能量或反馈到电网,以提高传动系统的效率。
第二,应从高性能调速要求考虑,应用控制理论,将其组成闭环调速控制系统,满足调速精度、动态响应等各项指标的要求。
综上所述,利用PLC控制的变频调速系统,是使三相异步电动机实现高性能高效率调速的有效办法。
通过改变定子绕组的供电频率f来实现,当转差率s一定时,电动机的转速n基本上正比于f。
很明显,只要有输出频率可以平滑调节的变频电源,就能平滑的调节异步电动机的转速。
关键词:变频调速,PLC,异步电机The three-phase asynchronous motor variable frequency speed regulation system based on PLC designAbstractHuman being is seriously threatened by exhausting mineral fuel, such as coal and fossil oil. As a kind of new type of energy sources, solar energy has the advantages of unlimited reserves, existing everywhere,using clean and economical .But it also has disadvantages ,such as low density,intermission,change of space distributing and so on. These make that the current series of solar energy equipment for the utilization of solar energy is not high. In order to keep the energy exchange part to plumb up the solar beam,it must track the movement of solar.In this paper, the solar tracking system of the mechanical part and control system part are designed.Mechanical structure mainly includes the main spindle, stepping motors, gears and gear ring, and so on. When the sun's rays has a deviation, small gear are rotated by stepper motor according to the control signal from MCU. And the large gear and main spindle is rotated by small gear in order to track to achieve the level direction.At the same time, another small gear is rotated by another stepper motor according to the control signal.And the large gear and the solar panels are rotated by the small gear in order to track to achieve the vertical direction. Solar is tracked by the two stepper motors together.Control system mainly includes the sensors part, stepper motor, MCU system and the corresponding external circuit, and so on. Photoelectric detection system is used to track solar. Sensors use photosensitive resistance. The two same photosensitive resistances were placed in east and west direction of the bottom edge .When the two photosensitive resistances received different light at the same time, the signal from comparison circuit is sent to MCU in order to rotate stepping motors.Keywords: Frequency control, PLC, asynchronous motor目录中文摘要 (II)英文摘要 ........................................................................................ 错误!未定义书签。
基于PLC和触摸屏的电机变频调速控制系统设计与实现

基于PLC和触摸屏的电机变频调速控制系统设计与实现文章以西门子S7-200系列PLC的CPU224XP作为核心控制处理器,以西门子SMART700触摸屏作为人机交互界面,通过人机交互界面对电动机的运行状态进行监视及控制,完成电动机的启停、变频调速、正反转运行。
实验结果表明:该系统工作稳定、运行可靠、控制精度较高。
标签:PLC;触摸屏;变频调速引言PLC以其编程简单方便、控制稳定可靠、功能强大等优点通常作为控制器广泛应用于现代工业控制领域,触摸屏作为人机交互界面在一定程度上减少PLC 的外部I/O点的使用以及减轻系统外部按钮开关的连线复杂程度,同时也提高了运行维护的方便性。
本设计选择西门子PLC的CPU224XP为核心控制处理器,西门子SMART700触摸屏,通过PLC、触摸屏软、硬件设计与调试,在实验室实现三相异步电动机的启停、变频调速、正反转运行。
1 系统设计总体方案电机变频调速控制系统原理框图如图1所示,计算机下载程序到PLC和触摸屏,通过触摸屏输入指令,PLC将信号传给变频器,由变频器实现三相异步电动机的启停、变频调速、正反转运行。
2 控制系统硬件设计2.1 硬件的选择PLC型号为西门子14输入10输出的CPU224XP,可连接7个扩展模块,6个独立的高速计数器(100KHz),2个100KHz的高速脉冲输出,2个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力,能够满足变频调速的要求。
SMART700触摸屏分辨率较高,具备强大的通信能力,它可以同西门子PLC之间进行通讯,并且为用户提供一个友好的界面,便于用户对控制系统中的设备运行情况进行监控和控制。
变频器选择西门子MICROMASTER440,是专门针对与通常相比需要更加广泛的功能和更高动态响应的应用而设计的,具有快速响应输入和定位减速斜坡功能,是实现变频调速的主要部件,三相异步电动机选择功率为750W。
2.2 硬件电路设计3 控制系统软件设计3.1 PLC程序设计3.1.1 PLC程序流程图PLC经初始化后,可通过触摸屏和外部按钮发出信号,经变频器控制电机的启停、正反转、加速和减速,当完成指令之后,一个周期结束,PLC的流程图如图3所示。
基于PLC的直流电机调速系统设计方案

基于PLC的直流电机调速系统设计方案
设计方案如下:
1. 硬件设计:
- 选择一块适配的PLC控制器作为主控制单元;
- 选择适配的直流电机作为驱动装置;
- 选择适配的输入输出模块,包括数字输入模块和模拟输出模块;
- 选择适配的传感器,如速度传感器和电流传感器。
2. 系统连接:
- 将输入模块与传感器连接,以便获取所需的输入信号; - 将输出模块与驱动装置连接,以控制电机的速度;
- 将PLC控制器与输入输出模块连接,以实现信号的采集和控制命令的输出。
3. 系统控制:
- 编写PLC控制程序,包括数据采集、数据处理和控制输出等部分;
- 设计调速算法,根据所需的速度控制要求,计算控制输出;
- 根据实际情况进行参数调整和校正,以达到较好的调速效果。
4. 系统测试:
- 对整个系统进行测试,包括信号采集、数据处理和控制输出等部分;
- 测试系统的响应速度、稳定性和精度,根据实际情况进行参数调整和校正。
5. 安全保护:
- 在设计中考虑安全保护措施,如过电流保护、过温保护等;
- 在控制程序中添加故障检测和报警功能,以及急停功能。
最后,根据具体的应用要求和实际情况,可以对设计方案
进行扩展和改进。
基于PLC的电机变频调速系统设计

1 M
异 步 电动机 转 子转 速 的表达 式 可记 为 :
n=
。、 ,
上吣l 源自 I I IB 2 S: 13 1 S 4 B
I l
直 1S = 1. U (— ) n(一 ) s
P
() 3
I 1 1 1 1
S I B
() 1
异 步 电动 机 转 子 n与 定 子旋 转 磁 场 转速 n 之 间存 在 着 转 速 。 差, 可用 转 差率 J表 示 : s
S tn  ̄n - 一
1
() 2
I L
牛 KK MM 43 I K M 3
Q1 . 1 Q1 2 Q1 3 Q1 . 4 Q 1 5
图 1 PL C控 制 变 频 调 速 系 统 原 理 框 图
根 据 数控 机 床 系统 控 制 功 能要 求 , 统 共 有 l 点 , 中输 系 2个 其
入 控 制 点 7个 , 出控制 点 5 , 输 个 根据 输 入 ( / 出 ( ) 址 分配 I输 ) 0地 表 ,可 设 计 出 P C开关 量 输入 / 出控 制 点端 子接 线 图 如 图 2 L 输 所
羹 量 sj × hve eun iF
基于 P C的电机变频调速 系统设 计 L
张 雪 琴 常 荣 胜 - 张立 涛 - 刘 媛z
(. 拉玛 依职业技术学院 , 1 克 新疆 克拉玛 依 83 0 : . 36 0 2克拉玛依区天 山路街道社 区卫 生服务中心, 新疆 克拉玛依 8 3 0 ) 3 6 0 摘 要 : 出 了基于 S — 0 L 给 7 2 0P C的电机变频调速试验系统 的组 成、 控制方案及信号处 理方法 , 设计 了以单片机 为核 心的硬件 电路 。采用软
毕业设计(论文)-基于PLC控制的多段调速系统实现

摘要随着工业控制要求的发展,对电机速度的控制越来越高。
传统的模拟信号控制方式存在抗干扰能力差、对设备要求复杂、控制精度不高等问题,难以适应日益复杂的工业环境。
本文主要介绍了多段调速系统的结构,并完成了以PLC为控制器,以增量式光电编码器为速度采集的闭环PID控制系统,通过RS-485对变频器的控制实现了三相异步电机的多段调速。
关键字:PLC;RS-485;多段调速;光电编码器AbstractWith the requirements of the development of industrial control, the speed of motor control is more and more strict. The traditional analog signal control mode has poor capacity of resisting disturbance, the requirement of complex equipment, the control precision low and some other problems, it is difficult to adapt to the increasingly complex industrial environment. In this article, mainly introduces the structure of various speed system, and completed the closed loop PID control system through the PLC as controller and incremental photoelectric encoder for speed acquisition, achieve the multistage speed control three-phase asynchronous motor through Frequency converter based on RS-485.Key words: PLC; RS-485; multistage speed; encoder目录第一章概述 (4)1.1 课题研究的背景及意义 (4)1.2 课题研究现状 (5)1.3 本课题研究的主要内容 (6)第二章系统分析 (7)2.1 PLC基本知识 (7)2.1.1 PLC的基本功能 (8)2.1.2 PLC的特点 (9)2.1.3 PLC的展望 (11)2.2 变频器基本知识 (12)2.2.1 变频器的应用 (12)2.2.2 变频器的分类 (13)2.2.3 变频器控制的展望 (14)2.3 光电编码器 (15)2.3.1 增量式编码器 (15)2.3.2 绝对式编码器 (16)第三章系统设计 (19)3.1 总体方案 (19)3.2 硬件设计 (19)3.2.1 变频器的连接 (20)3.2.2 光电编码器的配置 (20)3.2.3 PLC输入输出口分配 (21)3.3 软件设计 (21)3.3.1 变频器的参数设置 (22)3.3.2 PLC的设计 (23)第四章结论 (28)结束语 (29)致谢 (30)参考文献 (31)第一章概述1.1 课题研究的背景及意义随着计算机技术、电子技术的不断进步,PLC(可编程逻辑控制器)技术、变频(变频器)调速技术的发展极为迅速,已渗透到各个领域,以它们为主导的现代生产技术正以史无前例的速度迅猛发展。
基于PLC的步进电机调速和正反转控制系统

高 的力 矩转 动惯 量 比 ,步 进频 率较 高 ,频 率 响应快 ,不 通 电时 可 以 时始 终有 一相 通 电 ,可 以使 工作 稳定 ,不 易失 步 。其步 距 角和单 三
自由转 动 、结构简 单 、寿命 长 的特点 。
拍相 同 ,步距 角 系数c=1。
反 应式 步进 电动机 的工作 原理 从 图1a中可 以看 出 ,在 定子 上有
运 动 主 要完 成 切 削任 务 ,其 动 力约 占整 台机 床 动 力 的70~80% 。
齿 距 角 :转 子上 齿 距在 空 间 的角 度 。如转 子 上 有N个 齿 ,齿 距
基本是 步 进 电动机 和伺 服 电机 对主轴 的 正 、反转 和停 止 控制拖 动 , 角 0=360 Ⅳ。
商 业 科 技
基于PLC的步进 电机调速和正 反 转 控 制 系 统
_ 赵俊生 江苏财经职业技术学院
『摘 要 ]本文 阐述 三 相 步进 电动 机 结构 与 步进 过程 原理 ,以
及 对 步进 电动 机 的调 速和 正 反转 研 究 ,采 用PLC基本 逻 辑指 令和 常
用指令 的 方 法对步 进 电动机 的调 速 和正 反 转控 制 ,经过 对步进 电机
动速 度和 轨迹 ,对 被控 制 的对 象进 行 自动操 作 的一种 技术 。从 数 控
拍 数 :电动 机定 子绕 组 每改 变一 次通 电方式 称 为一 拍。
机 床 最终 要完 成 的任务 看 ,主 要有 主轴 运动 。 和普通 车 床一 样 。主
步 距 角 :转 子经 过一 拍 转过 的空 间角 度 用符号 a表 示。
械 角位移 ,并 由传 动丝 杠带 动 工作 台移 动 。由 于该 系统 中 为位 置 和 所 需 的拍 数为 工作 拍数 。 对A、B、C三相 轮流 通 电一次 称 为一个 通
基于PLC实现的三相异步电动机变频调速控制

基于Plc控制电机调速实验报告电控学院电气0904班李文涛0906060427—、实验名称:基于PLC实现的三相异步电动机变频调速控制二、实验目的:通过综合实验,使学生对所学过的可编程控制器在电动机变频调速控制中的应用有一个系统的认识,并运用自己学过的知识,自己设计变频调速控制系统。
要求用PLC控制变频器,通过光电编码器反馈速度信号达到电动机调速的精确控制,自己设计,自己编程,最后进行硬件、软件联机的综合调试,实现自己的设计思想。
三、实验器材:220V PLC实验台一套、380V变频器实验台一套、万用表一个、导线若干三、实验各部分原理:1.实验主要器件原理1)光电编码器:COM01030002040CH光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。
这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。
光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。
由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。
2)变频器:I原理概述变频调速能够应用在大部分的电机拖动场合,由于它能提供精确的速度控制,因此可以方便地控制机械传动的上升、下降和变速运行。
变频应用可以大大地提高工艺的高效性(变速不依赖于机械部分),同时可以比原来的定速运行电机更加节能,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波石电感。
矢量控制:U/f控制方式建立于电机的静态数学模型,因此,动态性能指标不高。
对于对动态性能要求较高的应用,可以采用矢量控制方式。
矢量控制的基本思想是将异步电动机的定子电流分解为产生磁场的电流分量(励磁电流)和与其相垂直的产生转矩的电流分量(转矩电流),并分别加以控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
控制系统课程设计
项目名称:以西门子S7-200为核心的电机速度监控
系统
学生姓名 / 学号:
卢泽涛 1307300108
吴钟森 1307300105
夏杰东 1307300107
指导老师:黄峥
班级电气133
专业名称电气工程及其自动化
提交日期 2016 年 12月 15 日
答辩日期 2016 年 12月 15日
一、系统整体功能说明及软硬件选型
1、通过PLC控制变频器,实现远程方式控制控制鼠笼式异步电动机的正反转及速度。
2、将编码器中与转速相对应的输出电压采集到PLC中。
3、通过PLC编写PID控制程序,控制电机的转速。
4、应用触摸屏组态软件设计控制系统的界面,与PLC进行动态连接,可在界面中控制电机的转速,显示变频器的频率、电机的正反转状态、实际转速等。
5、设置电机的正常转速范围(上、下限),当电机转速超出正常范围时,停机并报警,并可复位报警信号。
6、软硬件选型说明表如下:
二、 I/O点与输入输出设备对应关系表
PLC与变频器对应接线表
组态软件与PLC通信关系表
另外,变频器U、V、W端口分别接电机A、B、C三相,如图:
三、系统的原理图,包括主电路和控制电路。
四、软硬件相关设置的说明
1、软件相关设置:MCGS组态软件与西门子s7-200PLC连接相关设置如下:
2、欧姆龙变频器参数设置:n01=08;n02=01;n03=02;n32=0.4
五、程序功能的详细说明
1、MCGS组态设计,设计的界面以及功能如下:
(1)电机运转前必须先输入转速(例如800 r/min)然后点击正转或反转按钮,为了安全,在电机转向切换时,先按停止,待电机停下再进行转向变换。
(2)该组态设置了电机转速报警,大于上限值(例如|1200| r/min)时停机报警。
(3)该组态可精准转换编码器转速对应频率。
(4)PID控制参数于PLC程序中编好,采用效果最好的一组。
(5)各参数设置详见上文第四硬件设置部分。
2、西门子s7-200PLC原程序详细说明如下:(见下页)
(1)主程序详解:
//调用子程序SBR_0,初始化PID模块
//控制电机正转
//控制电机反转
(2)子程序SBR_2详解
//将输入转速转化为0—1的大小,并保存至AC1
(3)子程序SBR_0详解(PID模块初始化):
//过程变量值PVn=0.75
//比例项增益Kc=50.0 //采样周期Ts=0.1s
//积分时间常数
T1=10.0min
//微分时间常数
Td=0.0
//将SMB35定时器
设置为100ms
//使能、调用中断程序
(4)中断程序INIT_0详解:
//将模拟量输入值AIW0
转换为双整数
//将AC0双整数转换为
实数
//AC0/285.0=实际频率
保存至VD2
//AC0/10.81=实际转速
保存至VD4
//AC0/32000=“-1--1”
//判断AC0<0
若小于,则乘以 -1,变正数
//将AC0的值传送到VD100
过程变量值PVn处
//调用子程序SBR_2
//将AC1的值传送到VD104
给定值SPn处
六、调试过程:调试阶段的问题分析,解决措施,测试记录以
及结果分析。
1、使用变频器直接控制转速,测得的一组实验数据如下表:
分析数据可得:
(1) AD转换值与实际转速倍数大约在10.81;
(2) 1728r/min为最大转速,对应VIW0为18730;
(3)输入转速V/最大转速Vmax←->“0-1”;
(4)“0-18730”*1.7084←->“0-32000”。
2、由数据分析换算关系,可用于程序编写设计使用,使调速、速度监控
更加准确。
七、小组成员收获体会、系统存在的问题和进一步的改进意见
1、小组成员分工:
(1)卢泽涛主要负责PLC程序设计编写;
(2)吴钟森主要负责MCGS组态界面设计;
(3)夏杰东主要负责硬件接线,变频器参数设置;
(4)三人合作一起完成调试阶段,数据记录,问题分析,解决措施,改进建议,报告撰写等。
2、系统存在的问题及进一步改进:
目前电机转速波动较大,在±50r/min左右。
改进意见:可以在采样时进行滤波,即提高中断采样速度,每10才采样值相加,再去平均值,可较好的抑制波动。
3、成员收获体会:
(1)卢泽涛:
本次课程设计我主要负责PLC程序编写,设计系统整体原理思路,撰写报告等。
从本次控制系统的课程设计中,我对西门子s7-200的编程指令,功能模块(PID指令),系统原理设计等更加熟悉了,对变频器
的基本参数设定、对MCGS组态界面设计,搭建与PLC的通信也有了一定的了解。
基本掌握了使用组态—PLC—变频器的闭环PID系统控制。
总的来说,本次课程设计的编程技术,参数设定,通信技术以及报告的撰写我有学习到东西,收获颇丰!
(2)吴钟森:
随着老师验收结束,课程设计也告一段落。
在课程设计过程中,我体会颇多、收获颇多。
这次控制系统课程设计内容是用西门子PLC做一个闭环调速的的电机控制系统,并使用组态软件实时操控电机。
在确定课题后,当天晚上就翻查变频器说明书和PLC课本,自学PLC模拟量的使用以及组态软件的使用,确定大致的进度表,因为我觉得对待设计项目,必须树立一个严谨的态度,认真对待。
次日先进行了变频器测试,直接用变频器控制鼠笼式电机,用旋钮调速。
测试完就和组员讨论具体接线,我们之所以先确定接线,是为了方便同步进行组态软件的通信设置,这点细节也就成为了我们组进度较快的决定性因素。
在完成基本编程任务后,我就主要负责组态搭建任务了。
在自学组态的过程中,我遇到了很多困难,通信失败,实时数据库理解有误。
于是我请教老师,在老师的解说下逐渐摸索到要领,最后担起演示控制系统的任务。
本次课设不仅巩固了了PLC的知识,还学习了组态的使用,掌握了欧姆龙变频器远程操作原理,提高了自身的学习能力,与组员共同解决问题的过程也感受到了喜悦。
今后也将以严谨的态度对待各种挑战。
(3)夏杰东:
在这次课程设计中,我主要负责的是一些辅助性的工作,在贡献方面来说没有其他两位组员大,可是学到的东西同样很多,以前面试的时候提起PLC,专业人员都会说到触摸板,我当时连触摸板是什么概念都不太清楚。
通过这次课程设计,让我学会了组态的使用,也了解触摸板对PLC的控制和使用,相信对我日后和工作和学习有很大的帮助。