椭圆离心率的范围问题

合集下载

求离心率的取值范围方法总结

求离心率的取值范围方法总结

求离心率的取值范围求离心率的取值范围椭圆的离心率,双曲线的离心率,抛物线的离心率。

求椭圆与双曲线离心率的范围是圆锥曲线这一章的重点题型。

求离心率的取值范围涉及到解析几何、平面几何、代数等多个知识点,综合性强方法灵活,解题关键是挖掘题中的隐含条件,构造不等式。

下面从几个方面浅谈如何确定椭圆、双曲线离心率e的范围。

一、利用曲线的范围,建立不等关系例1.设椭圆的左右焦点分别为、,如果椭圆上存在点P,使,求离心率e的取值范围。

例2.已知椭圆22221(0)x ya ba b+=>>右顶为A,点P在椭圆上,O为坐标原点,且OP垂直于PA,求椭圆的离心率e的取值范围。

二、利用曲线的平面几何性质,建立不等关系例1.已知12、F F是椭圆的两个焦点,满足的点P总在椭圆内部,则椭圆离心率的取值范围是()A.(0,1)B.1(0,]2C.2(0,)2D.2[,1)2例2.直线L过双曲线的右焦点,斜率k=2。

若L与双曲线的两个交点分别在左、右两支上,求双曲线离心率的取值范围。

例3. 已知F1、F2分别是双曲线的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A、B两点。

若△ABF2是锐角三角形,求双曲线的离心率的取值范围。

例4.设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,使|A1B1|=|A2B2|,其中A1,B1和A2,B2分别是这对直线与双曲线C的交点,则该双曲线的离心率的取值范围是( ).A.2323⎛⎤⎥⎝⎦ B.323⎡⎫⎪⎢⎪⎣⎭ C.33⎛⎫+∞⎪⎪⎝⎭ D.233⎡⎫+∞⎪⎢⎪⎣⎭例5.过双曲线的左焦点1F且与双曲线的实轴垂直的直线交双曲线于A、B两点,若在双曲线的虚轴所在直线上存在一点C,使得090ACB∠=,双曲线的离心率e的取值范围为_______________.三、利用曲线的定义和焦半径范围,建立不等关系例1.已知双曲线的左右焦点分别为、,点P 在双曲线的右支上,且,求此双曲线的离心率e 的取值范围。

椭圆离心率取值范围解题策略

椭圆离心率取值范围解题策略

椭圆离心率取值范围解题策略离心率是高中“圆锥曲线”的一个重要几何性质,是三种圆锥曲线统一定义的桥梁和纽带,是研究圆锥曲线其他性质的基础,它是一个比值椭圆的离心率是刻画椭圆“扁圆”程度的基本量之一.在我们的教材中直接给出了离心率的定义,并没有明确解释为什么把这个比值作为椭圆的离心率.如果教师在教学中只是告诉学生这是“人为规定”,学生没有经历概念的产生和发展过程,就很难理解概念的本质,因此在运用概念解题时无从下手.本节课就是希望通过数学文化背景深入认识椭圆的离心率,从而更好地解决和椭圆离心率有关的问题.一、离心率定义的内涵在教材中焦距与长轴长的比值定义为椭圆的离心率.在教学中,许多学生会有这样的疑问:也可以刻画椭圆的扁圆程度,为什么不用它们定义椭圆的离心率?”其实作为椭圆的离心率更有优势,我们知道椭圆是平面上到两个定点F1,F2距离的和为常数2a的动点的轨迹(其中|F1F2|=2c,且2a>2c),此定义中涉及的参数是a和c,为了和椭圆的定义保持一致,所以用表示椭圆的离心率;另外,椭圆的第二定义是“到定点的距离与到定直线的距离的比值为常数的动点的轨迹”,而这个常数恰好是即椭圆的离心率.其实说椭圆的离心率是“人为规定”也未尝不可,因为在天文学中把天体运行轨道的离心率也叫作偏心率,描述的是某一天体椭圆轨道与理想圆形的偏离程度.天文学家发现太阳系中,行星是围绕着以太阳为焦点的椭圆形轨道运行的,所以行星和太阳之间的距离不是恒定的,其中离太阳最近的距离为a-c,离太阳最远的距离为a+c,也就是说偏心率就是衡量行星偏离太阳的程度,所以用表示椭圆的偏心率更符合客观实际.二、椭圆离心率取值范围的几种求法求椭圆离心率的取值范围是高考经常考查的热点问题之一,这类题涉及解析几何、平面几何、代数等多个知识点,综合性强、方法灵活,解题关键是构造关于a,c或e的不等式,下面用几个实例通过构造不等式求椭圆离心率的取值范围.1.利用椭圆的范围构造不等式例1 设椭圆的左、右焦点分别为F1,F2,若椭圆上存在点P,使得∠F1PF2=90°,求椭圆离心率e的取值范围.解:设点P的坐标为(x,y),点F1的坐标为(-c,0),点F2的坐标为(c,0),则有因为∠F1PF2=90°,得则即(x+c)(x-c)+y2=0,整理得x2+y2=c2,将其与椭圆方程联立,消去y,可得由椭圆上点的坐标的范围可知,0≤x2<a2,解得c2≥b2,即所以2.利用二次方程判别式构造不等式以上题为例.解:由椭圆的定义可知|PF1|+|PF2|=2a,所以有+2|PF1|·|PF2|=4a2,又因为∠F1PF2=90°,所以=4c2,由此可得|PF1|·|PF2|=2(a2-c2),所以|PF1|,|PF2|可以看作二次方程x2-2ax+2(a2-c2)=0的两实根.所以Δ=4a2-8(a2-c2)≥0,整理得所以3.利用焦半径的取值范围构造不等式例2 已知椭圆的左、右焦点分别为F1,F2,椭圆上存在一点P,使得线段PF1的中垂线经过焦点F2,则椭圆离心率e的取值范围是______.图1解:如图1,因为线段PF1的中垂线经过焦点F2,所以|PF2|=|F1F2|=2c,即椭圆上存在一点P,使得|PF2|=2c.所以|PF2|=2c≥a-c,所以a≤3c,所以即4.利用均值不等式构造不等式例3 设F1,F2是椭圆的两个焦点,若椭圆上任意一点M都满足∠F1MF2为锐角,则椭圆离心率的取值范围是( ).解:因为又因为∠F1MF2为锐角,所以又因为-4c2=(|MF1|+|MF2|)2-2|MF1||MF2|-4c2>0,所以|MF1||MF2|<2a2-2c2,由均值不等式得所以a2<2a2-2c2,解得所以图25.利用椭圆中重要结论构造不等式以上题为例.解:如图2,当M移动到椭圆的短轴的端点B时,∠F1MF2最大.由已知可知,∠F1BF2为锐角,即∠F1BO<45°,在Rt△F1BO中,所以6.利用题设中的已知条件构造不等式例4 已知椭圆的右焦点为F,短轴的一个端点为M,直线l:5x-12y=0交椭圆于A,B两点,若|AF|+|BF|=6,点M到直线l的距离不小于则该椭圆E的离心率的取值范围是( ).图3解:如图3所示,设F1为椭圆的左焦点,连接AF1,BF1,则四边形AFBF1为平行四边形,所以6=|AF|+|BF|=|AF1|+|AF|=2a,所以a=3.取M(0,b),因为点M到直线l的距离不小于所以解得b≥1,所以又因为0<e<1,所以椭圆E的离心率的取值范围是故选A.在新一轮课改的实施过程中,作为数学教师,需要在平时的教学中,适时地引导学生探究出问题的本源,只有这样深入才能使学生更容易掌握解决问题的方法.而椭圆离心率取值范围的解法灵活多样,综合性强,需要我们认真分析题意,探究问题本源,才能找到最佳突破口,从而准确、快速地解决问题.参考文献:[1]王侠.椭圆离心率的深入认知及基本求法[J].中小学数学,2013(4).[2]黄贻淦.如何建立不等式求离心率的范围[J].数理化解题研究,2012(2).[3]林风,林善柱.数学概念教学要重视其生成过程——“椭圆离心率及其应用”的教学思考[J].中学数学教学参考(上),2017(12).*基金项目:本文系2018年度甘肃省教育科学“十三五”规划重点课题“基于核心素养下的数学史融入高中数学教学的实践”(课题编号:GS[2018]GHB3863)的阶段性成果之一.。

椭圆的扁平程度与离心率的关系

椭圆的扁平程度与离心率的关系

椭圆的扁平程度与离心率的关系
椭圆是一种常见的几何形状,具有各种有趣的性质。

其扁平程度与离心率之间存在着紧密的关系。

离心率是椭圆形状的一个重要参数,它可以描述椭圆的扁平程度。

离心率是一个无量纲的数字,它的取值范围在0到1之间。

当离心率为0时,椭圆退化成一个圆形,而当离心率接近1时,椭圆的扁平程度就越高。

换句话说,离心率越大,椭圆就越扁平。

为了更好地理解椭圆的扁平程度与离心率的关系,我们可以比较一下不同离心率的椭圆形状。

当离心率较小的时候,椭圆的形状接近于一个圆形,长轴和短轴的差异不大,椭圆的扁平程度较低。

而当离心率较大时,椭圆的形状则更加扁平,长轴和短轴的差异更加明显。

离心率还可以用数学的方法来定义。

它等于椭圆焦点之间的距离与长轴长度的比值。

换句话说,离心率越大,椭圆焦点之间的距离就越大。

椭圆的扁平程度对于很多领域都有着重要的应用,如天文学、航天工程等。

在天文学中,行星的轨道往往是椭圆形状,而行星的离心率可以决定行星运动的稳定性和周期性。

在航天工程中,椭圆的扁平程度可以影响卫星的轨道设计和飞行路径。

总的来说,椭圆的扁平程度与离心率之间存在着紧密的关系。

离心率越大,椭圆就越扁平。

这个关系不仅在几何学中有着重要的应用,还在天文学和航天工程等领域发挥着重要作用。

我们可以通过研究离心率来更好地理解和应用椭圆形状。

椭圆和双曲线的离心率的求值及范围问题

椭圆和双曲线的离心率的求值及范围问题

椭圆和双曲线的离心率的求值及范围求解问题【重点知识温馨提示】1.e=ca=1-b2a2(0<e<1),e=ca=1+b2a2(e>1)2.确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,c的方程或不等式,进而得到关于e的方程或不等式,3.【典例解析】例1.(2015·新课标全国Ⅱ,11)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为( )A. 5 B.2 C. 3 D. 2例2.【2016高考新课标3文数】已知O为坐标原点,F是椭圆C:22221(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12(C )23(D )34例3 (2015·福建)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A.⎝⎛⎦⎤0,32 B.⎝⎛⎦⎤0,34 C.⎣⎡⎭⎫32,1 D.⎣⎡⎭⎫34,1例4.(2014·江西)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________. 【跟踪练习】1. (2015·浙江)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线y =b c x 的对称点Q 在椭圆上,则椭圆的离心率是________.2. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),若c 是a 、m 的等比中项,n 2是2m 2与c 2的等差中项, 则椭圆的离心率是( ) A.33 B.22 C.14 D.123.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0)、F 2(c,0),若椭圆上存在点P 使a sin ∠PF 1F 2=csin ∠PF 2F 1,则椭圆的离心率的取值范围为______.4.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条渐近线交于点B ,若FB →=2F A →,则此双曲线的离心率为( ) A. 2B. 3 C .2D. 55.(2015·山东)过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为________.6.(2015·湖北)将离心率为e 1的双曲线C 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线C 2,则( )A .对任意的a ,b ,e 1<e 2B .当a >b 时,e 1<e 2;当a <b 时,e 1>e 2C .对任意的a ,b ,e 1>e 2D .当a >b 时,e 1>e 2;当a <b 时,e 1<e 27、(2016年山东高考)已知双曲线E :22x a–22y b =1(a >0,b >0).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______.8(2015年高考)过双曲线C :22221x y a a-=0,0a b >>()的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为 .9、(齐鲁名校协作体2016届高三上学期第二次调研联考)设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|P A |=|PB |,则该双曲线的离心率是()(A)(B)(C) (D) 10、(东营市、潍坊市2016届高三高三三模)已知1F 、2F 为椭圆()222210x y a b a b+=>>的左、右焦点,以原点O 为圆心,半焦距长为半径的圆与椭圆相交于四个点,设位于y 轴右侧的两个交点为A 、B ,若1ABF ∆为等边三角形,则椭圆的离心率为( )A 1B 1-C D11、(济宁市2016届高三上学期期末)已知抛物线2y =-的焦点到双曲线()222210,0x y a b a b -=>>A.3B.3C.D.3912、(莱芜市2016届高三上学期期末)已知双曲线()222210,0x y a b a b-=>>的左焦点是(),0F c -,离心率为e ,过点F 且与双曲线的一条渐近线平行的直线与圆222x y c y +=在轴右侧交于点P ,若P 在抛物线22y cx =上,则2e =A.5B.51+ C.51-D.213,(烟台市2016届高三上学期期末)设点F 是抛物线()2:20x py p τ=>的焦点,1F 是双曲线()2222:10,0x y C a b a b-=>>的右焦点,若线段1FF 的中点P 恰为抛物线τ与双曲线C 的渐近线在第一象限内的交点,则双曲线C 的离心率e 的值为 A.322B.334C.98D.3241,4、(青岛市2016高三3月模拟)已知点12,F F 为双曲线()2222:10,0x y C a b a b-=>>的左,右焦点,点P 在双曲线C 的右支上,且满足21212,120PF F F F F P =∠=,则双曲线的离心率为_________.15、(日照市2016高三3月模拟)已知抛物线28y x =的准线与双曲线222116x y a -=相交于A,B 两点,点F 为抛物线的焦点,ABF ∆为直角三角形,则双曲线的离心率为 A.3B.2C.6D.316. (2015·重庆)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程;(2)若|PQ |=λ|PF 1|,且34≤λ<43,试确定椭圆离心率e 的取值范围.答案部分:例1【解析】 如图,设双曲线E 的方程为x 2a 2-y 2b2=1(a >0,b >0),则|AB |=2a ,由双曲线的对称性,可设点M (x 1,y 1)在第一象限内,过M 作MN ⊥x 轴于点N (x 1,0),∵△ABM 为等腰三角形,且∠ABM =120°,∴|BM |=|AB |=2a ,∠MBN =60°,∴y 1=|MN |=|BM |sin ∠MBN =2a sin 60°=3a ,x 1=|OB |+|BN |=a +2a cos 60°=2a .将点M (x 1,y 1)的坐标代入x 2a 2-y 2b 2=1,可得a 2=b 2,∴e =c a =a 2+b 2a 2=2,选D.例2【答案】A例3如图,设左焦点为F 0,连接F 0A ,F 0B ,则四边形AFBF 0为平行四边形.∵|AF |+|BF |=4, ∴|AF |+|AF 0|=4, ∴a =2.设M (0,b ),则4b 5≥45,∴1≤b <2.离心率e =ca =c 2a 2=a 2-b 2a 2=4-b 24∈⎝⎛⎦⎤0,32, 故选A.例4.直线AB :x =c ,代入x 2a 2+y 2b 2=1,得y =±b 2a .∴A (c ,b 2a ),B (c ,-b 2a ).∴kBF 1=-b 2a -0c -(-c )=-b 2a 2c =-b 22ac .∴直线BF 1:y -0=-b 22ac (x +c ).令x =0,则y =-b 22a,∴D (0,-b 22a ),∴k AD =b 2a +b 22ac =3b 22ac .由于AD ⊥BF 1,∴-b 22ac ·3b 22ac =-1,∴3b 4=4a 2c 2,∴3b 2=2ac ,即3(a 2-c 2)=2ac , ∴3e 2+2e -3=0,∴e =-2±4-4×3×(-3)23=-2±423.∵e >0,∴e =-2+423=223=33.【跟踪练习】1,答案 方法一 设椭圆的另一个焦点为F 1(-c,0),如图,连接QF 1,QF ,设QF 与直线y =bcx 交于点M .由题意知M 为线段QF 的中点,且OM ⊥FQ .又O 为线段F 1F 的中点, ∴F 1Q ∥OM ,∴F 1Q ⊥QF ,|F 1Q |=2|OM |.在Rt △MOF 中,tan ∠MOF =|MF ||OM |=bc ,|OF |=c ,可解得|OM |=c 2a ,|MF |=bca,故|QF |=2|MF |=2bc a ,|QF 1|=2|OM |=2c 2a .由椭圆的定义得|QF |+|QF 1|=2bc a +2c 2a =2a ,整理得b =c ,∴a =b 2+c 2=2c ,故e =c a =22.方法二 设Q (x 0,y 0),则FQ 的中点坐标⎝⎛⎭⎫x 0+c 2,y 02,k FQ=y0x 0-c ,依题意⎩⎨⎧y 02=b c ·x 0+c 2,y 0x 0-c ·bc =-1,解得⎩⎨⎧x 0=c (2c 2-a 2)a 2,y 0=2bc2a 2,又因为(x 0,y 0)在椭圆上,所以c 2(2c 2-a 2)2a 6+4c 4a 4=1,令e =c a ,则4e 6+e 2=1,∴离心率e =22. 2解析 在双曲线中m 2+n 2=c 2,又2n 2=2m 2+c 2,解得m =c2,又c 2=am ,故椭圆的离心率e =c a =12.3依题意及正弦定理,得|PF 2||PF 1|=a c (注意到P 不与F 1,F 2共线), 即|PF 2|2a -|PF 2|=a c , ∴2a |PF 2|-1=c a ,∴2a |PF 2|=c a +1>2a a +c,即e +1>21+e ,∴(e +1)2>2.又0<e <1,因此2-1<e <1.4解析 (1) 如图,∵FB →=2F A →,∴A 为线段BF 的中点, ∴∠2=∠3.又∠1=∠2,∴∠2=60°, ∴ba=tan 60°=3, ∴e 2=1+(ba )2=4,∴e =2. 答案 C5.把x =2a 代入x 2a 2-y 2b 2=1得y =±3b .不妨取P (2a ,-3b ).又∵双曲线右焦点F 2的坐标为(c,0), ∴kF 2P =3b c -2a .由题意,得3b c -2a =ba.∴(2+3)a =c .∴双曲线C 的离心率为e =ca =2+ 3.6. e 1=1+b 2a2,e 2=1+(b +m )2(a +m )2.不妨令e 1<e 2,化简得b a <b +m a +m (m >0),得bm <am ,得b <a .所以当b >a 时,有b a >b +m a +m ,即e 1>e 2;当b <a 时,有b a <b +ma +m ,即e 1<e 2.故选B.7、【答案】2 【解析】试题分析:依题意,不妨设6,4AB AD ==作出图像如下图所示则2124,2;2532,1,c c a DF DF a ===-=-==故离心率221c a == 8、【答案】23+考点:1.双曲线的几何性质;2.直线方程. 9、【答案】B【解析】双曲线的渐近线为y =±bax ,易求得渐近线与直线x -3y +m =0的交点为A ⎝ ⎛⎭⎪⎫-am a +3b ,bm a +3b ,B ⎝ ⎛⎭⎪⎫-am a -3b ,-bm a -3b .设AB 的中点为D .由|P A |=|PB |知AB 与DP 垂直,则D ⎝ ⎛⎭⎪⎫-a 2m (a +3b )(a -3b ),-3b 2m (a +3b )(a -3b ),k DP=-3,解得a 2=4b 2,故该双曲线的离心率是52.10B,11.B 12.D 13 D 14. 15.A16.解 (1)由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2, 因此2c =|F 1F 2|=|PF 1|2+|PF 2|2 =(2+2)2+(2-2)2=23, 即c =3,从而b =a 2-c 2=1. 故所求椭圆的标准方程为x 24+y 2=1.(2)如图,连接F 1Q ,由PF 1⊥PQ ,|PQ |=λ|PF 1|,得 |QF 1|=|PF 1|2+|PQ |2 =1+λ2|PF 1|.由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a , 进而|PF 1|+|PQ |+|QF 1|=4a ,高中数学 于是(1+λ+1+λ2)|PF 1|=4a ,解得|PF 1|=4a 1+λ+1+λ2, 故|PF 2|=2a -|PF 1|=2a (λ+1+λ2-1)1+λ+1+λ2. 由勾股定理得|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2=4c 2,从而⎝ ⎛⎭⎪⎫4a 1+λ+1+λ22+⎝ ⎛⎭⎪⎫2a (λ+1+λ2-1)1+λ+1+λ22=4c 2. 两边除以4a 2,得4(1+λ+1+λ2)2+(λ+1+λ2-1)2(1+λ+1+λ2)2=e 2. 若记t =1+λ+1+λ2,则上式变成e 2=4+(t -2)2t 2=8⎝⎛⎭⎫1t -142+12. 由34≤λ<43,并注意到t =1+λ+1+λ2关于λ的单调性,得3≤t <4,即14<1t ≤13. 进而12<e 2≤59,即22<e ≤53.。

求离心率的范围问题整理分类

求离心率的范围问题整理分类

求离心率的范围问题求离心率范围的方法 一、建立不等式法:1.利用曲线的范围建立不等关系。

2.利用线段长度的大小建立不等关系。

F 1,F 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,PF 1|∈[a -c ,a +c ];F 1,F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,|PF 1|≥c -a .3.利用角度长度的大小建立不等关系。

4.利用题目不等关系建立不等关系。

5. 利用判别式建立不等关系。

6.利用与双曲线渐近线的斜率比较建立不等关系。

7.利用基本不等式,建立不等关系。

二、函数法:1. 根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式;2.通过确定函数的定义域;3.利用函数求值域的方法求解离心率的范围.练习利用曲线的范围建立不等关系1.F 1,F 2是椭圆x 2a 2+y2b 2=1(a>b>0)的左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,求椭圆的离心率的取值范围.2.A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使∠OPA = , 则椭圆离心率的范围是_________.3.设12,F F 为椭圆22221(0)x y a b a b +=>>的左、右焦点,且12||2F F c =,若椭圆上存在点P 使得212||||2PF PF c ⋅=,则椭圆的离心率的最小值为( )A .12B .13 C.2 D.32π4.5.设F 1(-c ,0),F 2(c ,0)分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A.⎝ ⎛⎦⎥⎤0,22 B.⎝⎛⎦⎥⎤0,33 C.⎣⎢⎡⎭⎪⎫22,1 D.⎣⎢⎡⎭⎪⎫33,1 6.已知点()()000,P x y x a ≠±在椭圆()2222:10x y C a b a b+=>>上,若点M 为椭圆C 的右顶点,且PO PM ⊥(O为坐标原点),则椭圆C 的离心率e 的取值范围是( )A .⎛ ⎝⎭B .()0,1C .⎫⎪⎪⎝⎭D .⎛ ⎝⎭利用线段长度的大小建立不等关系7. 设点P 在双曲线)0b ,0a (1by a x 2222>>=-的右支上,双曲线两焦点21F F 、,|PF |4|PF |21=,求双曲线离心率的取值范围。

求椭圆离心率范围的常见题型及解析

求椭圆离心率范围的常见题型及解析

求椭圆离心率范围的常见题型及解析解析解题关键:挖掘题中的隐含条件,构造关于离心率e的不等式。

一、利用曲线的范围,建立不等关系已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$右顶点为A,点P在椭圆上,O为坐标原点,且OP垂直于PA,求椭圆的离心率e的取值范围。

小改写:已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,右顶点为A,点P在椭圆上,且OP垂直于PA,求椭圆的离心率e的取值范围。

二、利用曲线的平面几何性质,建立不等关系已知F1、F2是椭圆的两个焦点,满足所有点P总在椭圆内部,则椭圆离心率的取值范围是()。

小改写:已知F1、F2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点,满足所有点P总在椭圆内部,则椭圆离心率的取值范围是()。

三、利用点与椭圆的位置关系,建立不等关系已知$\triangle ABC$的顶点B为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$短轴的一个端点,另两个顶点也在椭圆上,若$\triangle ABC$的重心恰好为椭圆的一个焦点F(c,0),求椭圆离心率的范围。

小改写:已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,短轴的一个端点为B,另两个顶点也在椭圆上,$\triangle ABC$的重心恰好为椭圆的一个焦点F(c,0),求椭圆离心率的范围。

四、利用函数的值域,建立不等关系椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$与直线$x+y-1=0$相交于A、B两点,且OA·OB=(O为原点),若椭圆长轴长的取值范围为$[5,6]$,求椭圆离心率的范围。

离心率e的取值范围 -回复

离心率e的取值范围 -回复

离心率e的取值范围-回复离心率e是描述椭圆轨道的一个重要参数,用来度量椭圆形状的“挤扁”程度。

在天文学中,离心率的取值范围非常广泛,从0到1都有可能出现,甚至可以超过1。

首先,让我们从基本概念开始,解释离心率e的意义和如何计算。

离心率e是一个无单位的数值,在0到1之间,它用来衡量椭圆轨道的形状。

当e=0时,轨道是一个圆形,表示所有点距离中心点的距离都相等。

当e=1时,是一个特殊的椭圆,被称为抛物线轨道,表示一个非常狭长的椭圆,其中一半径无限大,轨道上的物体会趋近于无穷远。

当e大于1时,轨道变成一条叫做双曲线的曲线,其中一部分也趋近于无穷远。

离心率的计算方法是根据轨道上两个焦点之间的距离与纵轴长度的比值。

我们可以用以下公式来表示:e = √(1 - b²/a²)其中,a和b分别是椭圆轨道的长半轴和短半轴的长度。

根据这个公式,我们可以计算出任意椭圆轨道的离心率。

接下来,让我们来讨论一下离心率e的取值范围及其在不同天体运动中的应用。

1. 离心率e=0:当离心率为0时,轨道是一个完美的圆形。

这种情况在人造卫星的轨道或者地球绕太阳公转的轨道中是比较常见的。

例如,国际空间站绕地球的轨道就非常接近圆形,其离心率接近于0。

2. 离心率0<e<1:当离心率介于0和1之间时,轨道是一个椭圆形。

这种情况在太阳系中的行星和一些天体之间的相互作用中出现。

例如,地球绕太阳公转的轨道就是一个接近于椭圆的形状,其离心率大约为0.0167。

3. 离心率e=1:当离心率等于1时,轨道是一个特殊的椭圆,称为抛物线轨道。

这种轨道形状非常狭长,其中一半径趋近于无穷大。

抛物线轨道在一些宇宙探测器的飞行中被广泛应用,例如,旅行到近地行星或彗星的探测器会利用抛物线轨道来调整速度和方向。

4. 离心率e>1:当离心率大于1时,轨道变成一条双曲线。

这种轨道在一些天文现象中会出现,例如,彗星绕太阳的轨道就是一条双曲线。

椭圆双曲线离心率范围问题 专题讲义--高三数学一轮复习备考

椭圆双曲线离心率范围问题 专题讲义--高三数学一轮复习备考

椭圆双曲线离心率范围问题离心率的范围问题:在寻找不等关系时通常可从以下几个方面考虑:(1)题目中某点的横坐标(或纵坐标)是否有范围要求:例如椭圆与双曲线对横坐标的范围有要求。

如果问题围绕在“曲线上存在一点”,则可考虑该点坐标用,,a b c 表示,且点坐标的范围就是求离心率范围的突破口如:椭圆(以()222210x y a b a b+=>>为例),则[],x a a ∈-,[],y b b ∈-双曲线:(以()22221,0x y a b a b-=>为例),则(],x a ∈-∞-(左支)[),a +∞(右支)(2)若题目中有一个核心变量,则可以考虑离心率表示为某个变量的函数,从而求该函数的值域即可(3)通过一些不等关系得到关于,,a b c 的不等式,进而解出离心率注:在求解离心率范围时要注意圆锥曲线中对离心率范围的初始要求:椭圆:()0,1e ∈,双曲线:()1,+e ∈∞典例讲解例1:已知12,F F 是椭圆()2222:10x y E a b a b+=>>的左右焦点,若椭圆上存在点P ,使得12PF PF ⊥,则椭圆离心率的取值范围是( )A. 55⎫⎪⎪⎣⎭B. 22⎫⎪⎪⎣⎭C. 50,5⎛ ⎝⎦D. 22⎛ ⎝⎦解:在椭圆上的点P 与焦点连线所成的角中,当P 位于椭圆短轴顶点位置时,12F PF ∠达到最大值。

所以若椭圆上存在12PF PF ⊥的点P ,则短轴顶点与焦点连线所成的角90θ≥,考虑该角与,,a b c 的关系,由椭圆对称性可知,2452OPF θ∠=≥,所以22tan 1OF c OPF OP b∠==≥,即22222c b c b c a c ≥⇒≥⇒≥-,进而2212c a ≥即212e ≥,解得22e ≥,再由()0,1e ∈可得22e ⎫∈⎪⎪⎣⎭例2:已知双曲线)0,0(12222>>=-b a by a x 上有一点A ,它关于原点的对称点为B ,点F 为双曲线的右焦点,且满足BF AF ⊥,设α=∠ABF ,且]6,12[ππα∈,则该双曲线 离心率e 的取值范围为( )A .]32,3[+B .]13,2[+C .]32,2[+D .]13,3[+解:BF AF ⊥可得ABF 为直角三角形,且22AB OF c ==,结合α=∠ABF 可得2sin ,2cos AF c BF c αα==,因为,A B 关于原点对称,所以AF 即为B 的左焦半径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆离心率的范围问题
作者:嘉平
来源:《读写算》2012年第10期
圆锥曲线的离心率的范围问题是解析几何中的常见问题。

近几年高考中又出现了与存在性有关的离心率范围问题。

下面就椭圆结合实例谈谈这类问题的处理方法。

一、由存在点的坐标范围,结合与存在点有关的等量关系,转化成方程有解问题,进而求离心率的范围。

例1.已知椭圆(a>b>0)的两个焦点为F1(-c,0),F2(c,0),若直线x= 上总存在一点p,使线段F1P的垂直平分线恰好过F2点,求椭圆的离心率的范围。

解:设点P的坐标为(,y),y∈R.由线段F1P的垂直平分线过点F2知,|F1F2|=|PF2|,则关于y的方程2C= ,y∈R有解,整理,得 ,则,即,开方,得,即,故。

二、由与存在点有关的焦半径范围,求离心率的范围。

例2.(2010四川)椭圆(a>b>0)的右焦点F,其右准线与x轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆离心率的取值范围是。

解:由线段AP的垂直平分线过点F知 |PF| = |AF|,而P在椭圆上,由题意知a-c
三、由焦点三角形F1PF2中∠F1PF2的变化规律求离心率的范围。

椭圆(a>b>0)的左、右两个焦点分别为F1(-c,0),F2(c,0),P是椭圆上任一点。

如图设P(x,y)在第一象限,由椭圆定义知|PF1|+|PF2|=2a,又由焦半径公式知|PF1|=a+ex,
|PF2|=a-ex
Cos∠F1PF2=
=
=
=
=
当点P在第一象限从短轴端点向长轴端点运动时,cos∠F1PF2逐渐增大,而0
例3.椭圆(a>b>0)的两个焦点为F1(-c,0),F2(c,0),若在椭圆上存在一点P,使PF1⊥PF2,则椭圆离心率的范围是。

方法一:如图一,∠F1BF2∠F1PF2 = ,则∠OBF2,而e= = =sin∠OBF2,故≤e
方法二:设P(x,y),由P在椭圆上,使PF1⊥PF2知,-
例4.点A是椭圆(a>b>0)长轴的一个端点,O是椭圆的中心,若椭圆上存在点P,使∠OPA= ,则椭圆离心率的范围是。

解:A( ,0),设P(x,y),02 b2,即 2>2( 2 -c2),也即e2> ,故
与存在性有关的椭圆离心率的范围问题,基本方法是转化为方程有解问题,目的是寻找不等关系,列不等式(组)求离心率的取值范围。

相关文档
最新文档