ANSYS教程-第3章-几何实体模型生成网格模型

合集下载

手把手教你用ANSYS-workbench

手把手教你用ANSYS-workbench

手把手教你用ANSYS-workbench手把手教你用ANSYS workbench 本文的目的主要是帮助那些没有接触过ansys workbench的人快速上手使用这个软件。

在本文里将展示ansys workbench如何从一片空白起步,建立几何模型、划分网格、设置约束和边界条件、进行求解计算,以及在后处理中运行疲劳分析模块,得到估计寿命的全过程。

一、建立算例打开ansys workbench,这时还是一片空白。

首先我们要清楚自己要计算的算例的分析类型,一般对于结构力学领域,有静态分析(Static Structural)、动态分析(Rigid Dynamics)、模态分析(Modal)。

在Toolbox窗口中用鼠标点中算例的分析类型,将它拖出到右边白色的Project Schematic窗口中,就会出现一个算例框图。

比如本文选择进行静态分析,将Static Structural条目拖出到右边,出现A框图。

在算例框图中,有多个栏目,这些是计算一个静态结构分析算例需要完成的步骤,完成的步骤在它右边会出现一个绿色的勾,没有完成的步骤,右边会出现问号,修改过没有更新的步骤右边会出现循环箭头。

第二项EngineeringData 已经默认设置好了钢材料,如果需要修改材料的参数,直接双击点开它,会出现Properties窗口,一些主要用到的材料参数如下图所示:点中SN曲线,可在右侧或者下方的窗口中找到SN曲线的具体数据。

窗口出现的位置应该与个人设置的窗口布局有关。

二、几何建模现在进行到第三步,建立几何模型。

右键点击Grometry条目可以创建,或者在Toolbox窗口的Component Systems下面找到Geometry条目,将它拖出来,也可以创建,拖出来之后,出现一个新的框图,几何模型框图。

双击框图中的Geometry,会跳出一个新窗口,几何模型设计窗口,如下图所示:点击XYPlane,再点击创建草图的按钮,表示在XY平面上创建草图,如下图所示:右键点击XYPlane,选择Look at,可将右边图形窗口的视角旋转到XYPlane 平面上:创建了草图之后点击XYPlane下面的Sketch2(具体名字可按用户需要修改),再点击激活Sketching页面:在Sketching页面可以创建几何体,从基本的轮廓线开始创建起,我们现在右边的图形窗口中随便画一条横线:画出的横线长度是鼠标随便点出来的,并不是精确地等于用户想要的长度,甚至可能与想要的长度相差好多个数量级。

Ansys15.0workbench网格划分教程

Ansys15.0workbench网格划分教程

第3章Workbench网格划分3.1 网格划分平台ANSYS Workbench中提供ANSYS Meshing应用程序(网格划分平台)的目标是提供通用的网格划分格局。

网格划分工具可以在任何分析类型中使用。

●FEA仿真:包括结构动力学分析、显示动力学分析(AUTODYN、ANSYS LS/DYNA)、电磁场分析等。

●CFD分析:包括ANSYS CFX、ANSYS FLUENT等。

3.1.1 网格划分特点在ANSYS Workbench中进行网格划分,具有以下特点:●ANSYS网格划分的应用程序采用的是Divide & Conquer(分解克服)方法。

●几何体的各部件可以使用不同的网格划分方法,亦即不同部件的体网格可以不匹配或不一致。

●所有网格数据需要写入共同的中心数据库。

●3D和2D几何拥有各种不同的网格划分方法。

ANSYS Workbench 15.0从入门到精通ANSYS Workbench中提供的网格划分法可以在几何体的不同部位运用不同的方法。

1.对于三维几何体对于三维几何体(3D)有如图3-1所示的几种不同的网格划分方法。

图3-1 3D几何体的网格划分法(1)自动划分法(Automatic)自动设置四面体或扫掠网格划分,如果体是可扫掠的,则体将被扫掠划分网格,否则将使用Tetrahedrons下的Patch Conforming网格划分器划分网格。

同一部件的体具有一致的网格单元。

(2)四面体划分法(Tetrahedrons)四面体划分法包括Patch Conforming划分法(Workbench自带功能)及Patch Independent划分法(依靠ICEM CFD Tetra Algorithm软件包实现)。

四面体划分法的参数设置如图3-2所示。

图3-2 四面体划分法的参数设置Patch Independent网格划分时可能会忽略面及其边界,若在面上施加了边界条件,便不能忽略。

ANSYS 18.0有限元分析基础与实例教程课件第3章

ANSYS 18.0有限元分析基础与实例教程课件第3章

四边形网络(默认)
三角形网络
图3-4 四边形单元形状的退化
图3-5 默认单元尺寸
2. 选择自由或映射网格划分
单元形状(MSHAPE)和网格划分类型(MSHEKEY)的设置共同影
响网格的生成,表3-2列出了ANSYS程序支持的单元形状和网格划分
类型。
表3-2 ANSYS程序支持的单元形状和网格划分类型
4.在节点处定义不同的厚度 可以利用下列方式对壳单元在节点处定义不同的厚度:
命令:RTHICK。 GUI:Main Menu > Preprocessor > Real Constants > Thickness Func 。
下面用一个实例来详细说明该过程,该实例的模型为10×10的矩形 板,用0.5×0.5的方形SHELL63单元划分网格。现在ANSYS程序里输 入如下命令流:
Main Menu > Preprocessor > Meshing > Mesh Attributes > All Volumes(Picked Volumes)
2.分配默认属性 可以通过指向属性表的不同条目来分配默认的属性,在开始划分网格 时,ANSYS程序会自动将默认属性分配给模型。直接分配给模型的单 元属性将取代上述默认属性,而且,当清除实体模型图元的节点和单 元时,其默认的单元属性也将被删除。
1
自由网格和映射网格示意图如图3-1所示。 ELEMENTS
SEP 16 2004
1
12:44:54
ELEMENTS
SEP 16 2004 12:45:40
Y ZX
Y ZX
图3-1 自由网格和映射网格示意图
3.2 设定单元属性
在生成节点和单元网格之前,必须定义合适的单元属性,包括如

【流体】ANSYSmeshing网格划分之-入门3-总体网格控制参数详解(上)

【流体】ANSYSmeshing网格划分之-入门3-总体网格控制参数详解(上)

【流体】ANSYSmeshing网格划分之-入门3-总体网格控制参数详解(上)1.Defaults2.Sizing3.Inflation4.Assembly Meshing5.Patch conforming Options6.Patch Independent Options7.Advanced8.Defeaturing9.Statistics1、Defaults点击Defaults左边的+号,展开Defaults。

可以看到,有三个选项。

可以看出Defaults主要是设置网格适用软件。

1.1 Physics Preference根据仿真需求,选择网格划分的参考。

因为不同分析类型对网格的划分要求是不同的,例如粗糙度,边界层是否需求,网格过度平滑等。

当你选择了分析类型后,ANSYS Meshing会提供默认选项,帮助更好划分所需网格。

下面是ANSYS Meshing物理场网格默认选项。

这里,我们的教程系列是流体力学网格,所以选择CFD类型。

1.2、Solver Preference网格求解器类型。

提供了3种ANSYS中的流体力学仿真软件。

这里我们用Fluent仿真,选择Fluent即可。

1.3、Relevance网格相关度,数值可以设置-100到100,表示由疏到密。

下面这幅图是来自网上显示网格相关度对网格疏密的影响。

但是,我尝试自己划分看看效果,发现并没有效果,改变不了网格疏密。

下图中,将相关性数值由0改到100,发现网格并没有变密,只是面网格分布发生一些微小变化而已。

其实,个人觉得这个数值没必要改,想要网格加密的话,修改网格大小或者局部加密即可。

2、Sizing在这里设置网格全局划分的尺寸参数。

2.1 Use Advanced Size Function高级尺寸功能,ANSYS Meshing提供了5种高级尺寸功能。

当你选择不同的尺寸功能时,尺寸参数的设置会跟着变化。

•Off-关闭高级尺寸功能,只能设置•Curvature-可以控制曲面网格的变化,细化转角处网格•Proximity-控制几何狭窄处的网格层数。

Ansys基础培训-网格划分-MeshTool

Ansys基础培训-网格划分-MeshTool

Training Manual
INTRODUCTION TO ANSYS 11.0
建立有限元模型 — 生成网格和改变网格

Training Manual
演示:
– – – – 恢复 ribgeom.db。 用 SMRT,6划分网格 (并非很好的网格)。 用 SMRT,3 重新划分网格(好的网格)。 将 ESIZE 设为 0.2 后重新划分网格,由于智能网格划分考虑了ESIZE,即使 SMRT 设为 3,网格也变得很粗糙,届时,注意单元尺寸并不相同 (因为 SMRT为打开状态)。 – 关闭 SMRT 重新划分网格。单元尺寸现在完全相同。
Training Manual
INTRODUCTION TO ANSYS 11.0
不同的面可以有不同的 AESIZE。 • 边界线仅在未指定 LESIZE 或 KESIZE时, 采用指定尺寸。 • 智能网格划分打开时,为适应线的曲率或几 何近似,指定的尺寸可能无效。
建立有限元模型 —网格密度控制
• 网格工具MeshTool
0trainingmanual建立有限元模型网格密度控制125台湾地区的认证要求?台湾标准检验局bsmi为了岛内电子电机产品的电磁辐射干扰于1995年5月公布商品电磁兼容性管理办法?并于1996年7月正式公告自1997年1月1日起管制复印机等产品的电磁兼容性能?之后陆续管制信息周边产品家电与广播音响产品
• 可以指定边长比例 — 最后一个分割和 第一个分割的比率,使网格数偏向中间 或一边。
建立有限元模型 —网格密度控制
面尺寸 • 在面的内部控制单元尺寸:
– Main Menu > Preprocessor > Meshing > MeshTool; then select ―Size Controls‖, ―Areas‖, and [Set] – 或使用 AESIZE 命令 – 或 Main Menu > Preprocessor > Meshing > Size Cntrls > ManualSize > Areas

Ansys基础教程

Ansys基础教程
• 在生成线时, 关键点必须存在。
Create > -Lines- Lines
Create > -Lines- Arcs
Create > -Lines- Splines
L,k1,k2
L,k1,k2,k3,radius

• 用由下向上的方法生成面时, 需要的关键点或线必须已经定义。 (A——关键点〔顺序〕、AL——线)
可以根据模型形状选择最佳建模途径.
下面详细讨论建模途径。
实体建模 B. 自顶向下建模
• 自顶向下建模: 首先建立高级图元(体或 面),对这些高级图元(体或面)按一定规 则组合得到最终需要的形状.
• 开始建立的体或面称为图元。 • 生成一种体素时会自动生成所有的从属于
该体素的较低级图元。 • 对几何图元进行组合计算形成最终形状的
ANSYS教程
ANSYS 结构分析
第一章 ANSYS主要功能与模块
• ANSYS是世界上著名的大型通用有 限元计算软件, 它包括热、电、磁、流体和 结构等诸多模块, 具有强大的求解器和前、 后处理功能, 为我们解决复杂、庞大的工程 项目和致力于高水平的科研攻关提供了一 个优良的工作环境, 是一个开放的软件, 支 持进行二次开发。 • 目前主流版本12.0,13.0,14.0,14.5
一、主要功能简介
• 1. 结构分析
• 1) 静力分析 – 求解静力载荷作用下结 构的位移和应力等. 可以考虑结构的线性及 非线性行为。
• ● 线性结构静力分析 (linear)
• ● 非线性结构静力分析 (nonlinear)

♦ 几何非线性: 大变形、大应变、
应力强化、旋转软化

♦ 材料非线性: 塑性、粘弹性、粘

ANSYS中文教程

ANSYS中文教程

第1章ANSYS 基本介绍1.1 ANSYS 6.1 的安装1.2 ANSYS 6.1 的启动和配置1.3 ANSYS 界面介绍1.4 ANSYS 输出文件第 2 章建立模型2.1 设置工作目录2.2 指定作业名和分析标题2.3 定义图形界面过滤参数2.4 ANSYS 的单位制2.5 定义单元类型2.6 定义单元实常数2.7 定义材料属性2.8 关于建立模型的基本概念2.9 坐标系2.10 实体建模2.11 对实体模型划分网格2.12 耦合和约束2.13 模型的合并和归档第三章加载和求解3.1 加载3.2 求解第四章后处理4.1 通用后处理器4.2 单元表4.3 路径4.4 时间历程后处理器第五章六方孔螺钉投用扳手的静力分析5.1 问题描述5.2 建立模型5.3 定义边条并求解5.4 查看结果5.5 命令流输入第六章缺失第七章平面问题分析实例7.1 问题描述7.2 建立模型7.3 定义边条并求解7.4 查看结果7.5 命令流输入第八章轴对称结构的静力分析8.1 问题描述8.2 建立模型8.3 定义边条并求解8.4 查看结果8.5 命令流输入第九章周期对称结构的静力分析9.1 问题描述9.2 建立模型9.3 定义边条并求解9.4 查看结果9.5 命令流输入第10 章动力学分析介绍10.1 动力分析简介10.2 动力学分析分类10.3 各类动力学分析的基本步骤第11 章有预应力作用结构的模态分析实例11.1 问题描述11.2 建立模型11.3 定义边条并求解11.4 结果分析11.5 命令流输入第12 章周期对称结构的模态分析12.1 问题描述12.2 建立模型12.3 定义边条并求解12.4 查看结果12.5 命令流输入第13 章有预应力作用结构的谐响应实例13.1 问题描述13.2 建立模型13.3 定义边条、加载并求解13.4 观察分析结果13.5 命令流输入第十四章瞬态结构动力分析实例14.1 问题描述14.2 建立模型14.3 定义边条、加载并求解14.4 观察分析结果14.5 命令流输入第15 章随机振动和随机疲劳分析实例15.1 问题描述15.2 建立模型15.3 定义边条、加载并求解15.4 观察分析结果15.5 命令流输入第16 章单点响应谱分析实例16.1 问题描述16.2 建立模型16.3 定义边条、加载并求解16.4 观察分析结果第17 章非线性结构分析17.1 非线性结构分析简介17.2 非线性结构分析的分析过程17.3 几何非线性17.4 材料非线性17.5 状态非线性第18 章非线性瞬态实例分析18.1 问题描述18.2 建立模型18.3 定义分析类型、加载并求解18.4 观察分析结果18.5 非线性瞬态分析命令流第19 章塑性分析实例19.1 问题描述19.2 建立有限元模型19.3 加载并求解19.4 结果分析17.5 塑性实例分析的命令流方式第20 章接触分析实例20.1 问题描述20.2 建立有限元模型。

ANSYS第3章 网格划分技术及技巧(完全版)

ANSYS第3章  网格划分技术及技巧(完全版)

ANSYS 入门教程(5) - 网格划分技术及技巧之网格划分技术及技巧、网格划分控制及网格划分高级技术第 3 章网格划分技术及技巧3。

1 定义单元属性单元类型 / 实常数 / 材料属性 / 梁截面 / 设置几何模型的单元属性3。

2 网格划分控制单元形状控制及网格类型选择 / 单元尺寸控制 / 内部网格划分控制 / 划分网格3。

3 网格划分高级技术面映射网格划分 / 体映射网格划分 / 扫掠生成体网格 / 单元有效性检查 / 网格修改3.4 网格划分实例基本模型的网格划分 / 复杂面模型的网格划分 / 复杂体模型的网格划分创建几何模型后,必须生成有限元模型才能分析计算,生成有限元模型的方法就是对几何模型进行网格划分,网格划分主要过程包括三个步骤:⑴定义单元属性单元属性包括:单元类型、实常数、材料特性、单元坐标系和截面号等。

⑵定义网格控制选项★对几何图素边界划分网格的大小和数目进行设置;★没有固定的网格密度可供参考;★可通过评估结果来评价网格的密度是否合理。

⑶生成网格★执行网格划分,生成有限元模型;★可清除已经生成的网格并重新划分;★局部进行细化。

3。

1 定义单元属性一、定义单元类型1。

定义单元类型命令:ET, ITYPE, Ename, KOP1, KOP2, KOP3, KOP4, KOP5, KOP6, INOPR ITYPE —用户定义的单元类型的参考号。

Ename —ANSYS 单元库中给定的单元名或编号,它由一个类别前缀和惟一的编号组成,类别前缀可以省略,而仅使用单元编号。

KOP1~KOP6 - 单元描述选项,此值在单元库中有明确的定义,可参考单元手册。

也可通过命令KEYOPT进行设置。

INOPR —如果此值为 1 则不输出该类单元的所有结果。

例如:et,1,link8 !定义 LINK8 单元,其参考号为 1;也可用 ET,1,8 定义et,3,beam4 ! 定义 BEAM4 单元,其参考号为 3;也可用 ET,3,4 定义2. 单元类型的 KEYOPT命令:KEYOPT, ITYPE, KNUM, VALUEITYPE - 由ET命令定义的单元类型参考号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
元类型)、分配材料属性等);
(2)设定网格尺寸控制和网格形状(可选择的,由ANSYS确定单元尺
寸通常比较合理);
(3)执行网格划分。
3.2.1 分配单元属性
完成单元属性定义后,在划分网格之前,用户要对几何模型 各部分分配相应的单元属性。 ■手动分配单元属性
1. 分配关键点的单元属性
当对关键点划分单元前,需要指定关键点的单元属性。 命令:KATT, MAT, REAL, TYPE, ESYS GUI:MainMenu>Preprocessor>Meshing>Mesh Attributes>All Keypoints GUI:MainMenu>Preprocessor>Meshing>Mesh Attributes>Picked KPs
3.1.1 单元类型
3.1.1.1 单元的名称及其组成 为了适用不同分析问题的需要,ANSYS提供了近200种不 同的单元类型。不同的单元类型适用于不同的分析类型、不同 材料和不同几何类型。因此单元的正确选择至关重要。 每一种单元都有固定的编号,单元名称由字符和编号数字组 成。其中字符部分代表单元的组别符号,尾部的数字是单元的 唯一标识号。如Beam3,Solid45 通过单元名称可判断该单元适用范围及其形状,单元按维数 分类:点单元、1D线单元、2D平面单元、3D立体单元。
在计算单元矩阵时,有一些数据可能无法从节点坐标和材料特 性得到,这时就需要定义单元实常数。实常数是某一单元的补称几 何特征,因此,单元实常数是依赖单元类型的单元特性,并不是所有 的单元类型都需要实常数,同一类型的不同单元可以有不同的实常 数值。例如二维梁单元BEAM3的实常数:面积(AREA)、惯性矩 (IZZ)、高度(HEIGHT)、剪切变形常数(SHERZ)、初始应变 (ISTRAN)和单位长度质量(ADDMAS)等。
分配单元属性后,需要设定网格尺寸。ANSYS网格划分中有许 多不同的单元尺寸控制方式。主要有: (1)智能网格尺寸”Smart Sizing”;
(2)手动控制单元尺寸; □给定单元边长 □指定线上单元分割数 注:划分网格后,还可以细化网格
3.2.3 指定单元划分的形状 ANSYS中网格形状多种多样。单元形状可以通过命令、GUI或 通过网格工具栏中的网格类型部分进行选择。 命令:MOPT,Lab, Value GUI :MainMenu>Prerocessor>Meshing>Mesher Opts 单元的形状可以为三角形(triangle)、 四边形(quadrilateral)、四面体 (Tetrahedral)或者六面体(Hexahedral)。 形状。随着Mesh对象的类型(面、体) 和网格类型(自由网格、映射网格、扫 掠网格)不同而不同。如果Mesh对象是 线或关键点,则形状选项无效。 【见下页】
3.1.4 定义截面类型
对于用Beam188和beam 189单元对梁进行网格划分,可以定义单元横截面。 ANSYS提供了11种常用的截面类型,并允许用户自定义截面。用户可以从中选 择与实际结构截面相近的截面类型或用截面自定义功能定义截面。 3.1.4.1 常用截面类型的定义 命令:SECTYPE,SECID,Type,Subtype,Name,REFINEKEY 选择截面类型
3.1.1.3 确定单元类型时应考虑的因素
选择合适的单元类型后,还需进一步考虑单元的插值函 数(形函数)的维数,即采用线性、二次或P-单元。 线性单元和高阶单元之间的差别是线性单元只有角节点, 而高阶单元还有边中点。线性单元的位移按线性变化,因此线 性单元上的应变、应力是常数。
二次单元假定位移是二阶变化的,因此单元上的应变、应 力是线性变化的。 P-单元的位移可以在2~8阶间选择,而且具有求解收敛精 度自动控制功能。在许多情况下,同线性单元相比,采用高阶 类型的单元可以得到更好的计算结果。
GUI:
MainMenu|Preprocessor>Element Type>Add/Edit/Delete
定义了单元类型后,ANSYS会自动生成一个与此单元类型 对应的单元类型参考号,如果模型中定义了多种单元类型,则 与这些单元类型相对应的类型参考号组成的表称为单元类型表。 在创建实际单元时(直接创建单元或者划分网格),需要从单 元类型表中为其分配一个类型参考号以选择对应的单元类型生 成有限元模型。
本章主要介绍由几何模型的网格划分生成有限元模型。另外介 绍通过创建节点和单元直接生成有限元模型。 建立几何模型后,就可以按以下步骤划分有限元网格: (1)定义有限元模型中的单元属性 (2)目标网格选项控制 (3)网格划分 (4)修改与优化有限元网格 对于简单的模型,往往通过创建节点和单元,直接生成有限元模 型
(3)轴对称问题 主要几何与力学特征是:①回转体;②只有回转轴上的轴向载 荷。 周向位移=0。在ANSYS中,轴对称假定三维实体模 型是由XY面内的横截面绕Y轴旋转360°形成的(管、圆锥、圆 板、圆顶盖、圆盘等,对称轴必须和整体Y轴重合,不允许有负 X坐标。X方向是径向,Y方向是轴向,Z方向是周向。 ■3D实体单元:三维实体单元有四面体、六面体两种,节点数 从4~20不等,适用于不同的分析类型和精度。
其采用的材料特性组。
定义材料属性: •Command:MP,Lab,MAT,C0,C1,C2,C3,C4 •GUI:[Main Menu]Preprocessor|Material Props|Material Models
弹性模量
泊松比
在材料属性对话框窗口的左边,同样用树型结构文件夹方式显 示已经定义的参数的材料,默认的时候会有材料1,要添加、删除 或者拷贝相近的材料,使用材料特性窗口的菜单命令。需要修改材 料特性的时候,可以双击要修改的材料文件夹,选择其中所定义的 特性,双击进行修改。
每种单元的用法在ANSYS的帮助文档中都有详细的说明。
进入帮助文档有2种方法: (1)单击工具栏中的 (2)通过应用菜单Help进入 按钮
3.1.1.4 定义单元类型 定义途径:必须在通用处理器PREP7(预处理器)中定义单元 类型。
命令:ET,ITYPE,Ename,KOP1,KOP2,KOP3,KOP4,KOP5,KOP6,INOPR
ANSYS会计算所定义的截面的几何特性(如截面面积、惯性矩、 翘曲常数、扭转常数等,并输出到ANSYS的输出窗口。单击 Preview,在图形窗口中显示所定义的截面。单击Meshview,在图 形窗口中显示该截面的同时,显示截面上的网格。 3.1.4.2 用户自定义截面类型 略
3.1.4.3 截面类型的删除、列表显示、图形显示与截面网格细化
SECDATA,VAL1,VAL2,VAL3,…VAL9,VAL10
定义截面几何数据
SECOFFSET,Location,OFFSETY,OFFSETZ,CG-Y,CG-Z,SH-Y,SH-Z 指定单元节点在截面上的位置 GUI:[Main Menu]Preprocessor|Sections>Beam>Common Sectns
2. 分配线的单元属性
当对线划分单元前,需要指定线的单元属性,定义是否指定方向关键点。 命令:LATT, MAT, REAL, TYPE, KB,KE, SECNUM GUI:MainMenu>Preprocessor>Meshing>Mesh Attributes>All Lines GUI:MainMenu>Preprocessor>Meshing>Mesh Attributes>Picked Lines
对应于特定单元类型,每组实常数有一个参考号,与每组实常 数对应的参考号组成的表称为实常数表。在创建单元(直接创建单 元或者划分网格)时,可以为将要创建的单元分配实常数号。
定义途径:
•CommandMain Menu]:Preprocessor|Real Constants|Add/Edit/Delete 3.1.3 定义材料特性 绝大多数单元类型都需要材料特性。根据应用的不同,材料特 性指如下几种特性:
4. 分配体的单元属性
当对体划分网格前,要指定体的单元属性。 命令:VATT, MAT, REAL, TYPE, ESYS GUI:MainMenu>Preprocessor>Meshing>Mesh Attributes>All Volumes GUI:MainMenu>Preprocessor>Meshing>Mesh Attributes>Picked Volumes
□线性或者非线性;
□弹性(各向同性、正交异性)或非弹性; □不随温度变化或者随温度变化; 像单元类型和单元实常数一样,每一组材料特性也有一个材料 特性参考号。与材料特性组对应的材料特性参考号表称为材料属性 表。在一个分析中,可能有多个材料特性组(对应模型中的多种材 料)。在创建单元时可以使用相关命令通过材料特性参考号来分配
3. 分配面的单元属性
当对面划分网格前,要指定面的单元属性。 命令:AATT, MAT, REAL, TYPE, ESYS GUI:MainMenu>Preprocessor>Meshing>Mesh Attributes>All Areas GUI:MainMenu>Preprocessor>Meshing>Mesh Attributes>Picked Areas
3.1.1.2 典型的单元类型
在结构分析中,结构的应力状态决定单元类型的选择。应 当选择维数最低的单元去获得预期的结果。按单元形状分:
■点单元:一般用于简化的质点模型,表示质量单元,或用于 创建控制节点。 ■1D线单元:线单元由两个节点连接而成,通常用来分析简化 的梁、管、杆、弹簧模型等。 (1)梁单元(Beam):用于梁构件、薄壁管件、C型截面构件、 角钢等模型;
相关文档
最新文档