二元一次方程组的应用(二)
二元一次方程组的应用(二)

同步课程˙二元一次方程组的应用(二)【例1】某县为鼓励失地农民自主创业,在2010年对60位自主创业的失地农民自主创业的失地农民进行奖励,共计划奖励10万元.奖励标准是:失地农民自主创业连续经营一年以上的给予1000元奖励;自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励.问:该县失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民分别有多少人?【例2】利民商店经销甲、乙两种商品.现有如下信息:请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元.在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?二元一次方程组的应用(二)同步练习同步课程˙二元一次方程组的应用(二)【例3】 古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A 、B 两个工程队先后接力完成。
A 工程队每天整治12米,B 工程队每天整治8米,共用时20天。
(1)根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:⎩⎨⎧=+=+y x y x 812乙:⎪⎩⎪⎨⎧=+=+812y x y x根据甲、乙两名同学所列的方程组,请你分别指出未知数x,y 表示的意义,然后在方框中补全甲、乙两名同学所列的方程组: 甲:x 表示,y 表示; 乙:x 表示,y 表示;(2)求A 、B 两工程队分别整治河道多少米?(写出完整的解答过程)(1)此题蕴含两个基本数量关系:A 工程队用的时间+B 工程队用的时间=20天,A 工程队整治河道的米数+B 工程队整治河道的米数=180,由此进行解答即可;(2)选择其中一个方程组解答解决问题.同步课程˙二元一次方程组的应用(二)【例4】某商店以6元/千克的价格购进某种干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售.这批干果销售结束后,店主从销售统计中发出:甲级干果与乙级干果在销售过程中每天都有销量,且在同一天卖完;甲级干果从开始销售至销售的第x天的总销量y1(千克)与x的关系为y1=﹣x2+40x;乙级干果从开始销售至销售的第t天的总销量y2(千克)与t的关系为y2=a t2+b t,且乙级干果的前三天的销售量的情况见下表:t 1 2 3y221 44 69(1)求a.b的值;(2)若甲级干果与乙级干果分别以8元/千克的6元/千克的零售价出售,则卖完这批干果获得的毛利润是多少元?(3)问从第几天起乙级干果每天的销量比甲级干果每天的销量至少多6千克?(说明:毛利润=销售总金额﹣进货总金额.这批干果进货至卖完的过程中的损耗忽略不计)【例5】潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积(单位:亩)种植B类蔬菜面积(单位:亩)总收入(单位:元)甲 3 1 12500乙 2 3 16500 说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.【例6】某班到毕业时共结余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T恤或一本影集作为纪念品.已知每件T恤比每本影集贵9元,用200元恰好可以买到2件T恤和5本影集.(1)求每件T恤和每本影集的价格分别为多少元?(2)有几种购买T恤和影集的方案?【例7】为了参加2011年威海国际铁人三项(游泳,自行车,长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.【巩固】小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?【例8】某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?【巩固】某班到毕业时共结余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T恤或一本影集作为纪念品.已知每件T恤比每本影集贵9元,用200元恰好可以买到2件T恤和5本影集.(1)求每件T恤和每本影集的价格分别为多少元?(2)有几种购买T恤和影集的方案?【例9】童星玩具厂工人的工作时间为:每月22天,每天8小时.工资待遇为:按件计酬,多劳多得,每月另加福利工资500元,按月结算.该厂生产A、B两种产品,工人每生产一件A种产品可得报酬1.50元,每生产一件B种产品可得报酬2.80元.该厂工人可以选择A、B两种产品中的一种或两种进行生产.工人小李生产1件A产品和1件B产品需35分钟;生产3件A产品和2件B产品需85分钟.(1)小李生产1件A产品需要15分钟,生产1件B产品需要20分钟.(2)求小李每月的工资收入范围.【例10】建华小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区预计投资金额超过10万元而不超过11万元,则共有几种建造方案?(3)已知每个地上停车位月租金100元,每个地下停车位月租金300元.在(2)的条件下,新建停车位全部租出.若该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,请直接写出该小区选择的是哪种建造方案?【例11】 某班将举行“庆祝建党90周年知识竞赛“活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:请根据上面的信息.解决问題: (1)试计算两种笔记本各买了多少本? (2)请你解释:小明为什么不可能找回68元?1、我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株? (2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.课后练习2、毕业在即,九年级某班为纪念师生情谊,班委决定花800元班费买两种不同单价的留念册,分别给50位同学和10位任课教师每人一本作纪念,其中送给任课教师的留念册单价比给同学的单价多8元.请问这两种不同留念册的单价分别是多少?3、某旅行杜拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m0<m≤100100<m≤200m>200收费标准(元/人)90 85 75甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费10 800元,若两校联合组团只需花赞18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?4、为建设节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作.某地决定对居民家庭用电实际“阶梯电价”,电力公司规定:居民家庭每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实际“基本电价”;当居民家庭月用电量超过80千瓦时时,超过部分实行“提高电价”.(1)小张家2011年4月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元.求“基本电价”和“提高电价”分别为多少元/千瓦时?(2)若6月份小张家预计用电130千瓦时,请预算小张家6月份应上缴的电费.5、某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此施工速度,能够比原来少用多少天完成任务?6、食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?7、在长为10m,宽为8m的矩形空地中,沿平行于矩形各边的方向分割出三个全等的小矩形花圃,其示意图如图所示.求小矩形花圃的长和宽.同步课程˙二元一次方程组的应用(二)8、某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表:A种产品B种产品成本(万元∕件) 3 5利润(万元∕件) 1 2(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?(2)若工厂投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?(3)在(2)条件下,哪种方案获利最大?并求最大利润.11 / 11。
北师大版八年级(下)数学第18讲:二元一次方程组应用(2)(教师版)——王琪

二元一次方程组应用(2)1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是找等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数值要相等.2.列二元一次方程组解应用题的一般步骤:设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组)解:解方程组,求出未知数的值;验:检验求得的值是否正确和符合实际情形;答:写出答案.1.七年级(1)班买了若干本4元及7元的笔记本作为奖品,共花费40元,则这两种笔记本的数量可能相差()A.1 B.4 C.1或4 D.不确定解:设购买4元笔记本x本,7元笔记本y本,根据题意得:4x+7y=40,∴x=10﹣y.∵x、y均为正整数,∴当y=4时,x=3.∴y﹣x=4﹣3=1.故选A.2.某校七年级一班有x人,分y小组进行课外兴趣活动,若每组6人,则余4人,若每组7人,则不足5人,则全班的人数为()A.60人B.58人C.62人D.59人解:由题意,得,解得:.故选B.3.四川雅安地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(即不多不少)能容纳这60名灾民,则不同的搭建方案有()A.4种 B.11种 C.6种 D.9种解:设6人帐篷用了x个,4人帐篷用了y个,根据题意得:6x+4y=60,即y==,当x=0时,y=15;当x=2时,y=12;当x=4时,y=9;当x=6,y=6;当x=8时,y=3;当x=10时,y=0;则不同的搭建方案有6种.故选:C.4.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.15解:设一个笑脸气球为x元,一个爱心气球为y元,由题意得,,解得:,则2x+2y=16.故选C.5.鸡兔同笼问题是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?经计算可得()A.鸡23只,兔12只 B.鸡12只,兔23只C.鸡15只,兔20只 D.鸡20只,兔15只解:设笼中有鸡x只,兔y只,根据题意得:,解得:.故选A.6.在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都相等,又填在图中的数字如图,则x,y的值是()A.x=1,y=﹣1 B.x=﹣1,y=1 C.x=2,y=﹣1 D.x=﹣2,y=1解:由题意得,,解得:.故选B.7.某企业决定投资不超过20万元建造A、B两种类型的温室大棚.经测算,投资A种类型的大棚6万元/个、B种类型的大棚7万元/个,那么建造方案有()A.2种 B.3种C.4种 D.5种解:设建造A种类型的温室大棚x个,建造B种类型的温室大棚y个,根据题意可得:6x+7y≤20,当x=1,y=2符合题意;当x=2,y=1符合题意;当x=3,y=0符合题意;故建造方案有3种.故选:B.8.“双11”促销活动中,小芳的妈妈计划用1000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有()A.4种 B.5种C.6种 D.7种解:设购买80元的商品数量为x,购买120元的商品数量为y,依题意得:80x+120y=1000,整理,得y=.因为x是正整数,所以当x=2时,y=7.当x=5时,y=5.当x=8时,y=3.当x=11时,y=1.即有4种购买方案.故选:A.9.威立到小吃店买水饺,他身上带的钱恰好等于15粒虾仁水饺或20粒韭菜水饺的价钱,若威立先买了9粒虾仁水饺,则他身上剩下的钱恰好可买多少粒韭菜水饺()A.6 B.8 C.9 D.12解:设1粒虾仁水饺为x元,1粒韭菜水饺为y元,则由题意可得15x=20y,∴3x=4y,∴15x﹣9x=6x=2×3x=2×4y=8y,∴他身上剩下的钱恰好可买8粒韭菜水饺,故选B.10.某次知识竞赛共出了25道题,评分标准如下:答对1题加4分;答错1题扣1分,不答记0分,已知李刚不答的题比答错的题多2题,他的总分为74分,则他答对了()A.19题B.18题C.20题D.21题解:设他答错了x道,答对了y道,由题意得:,解得:,故选:A.11.利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm解:设长方体长xcm,宽ycm,高acm,由题意,得,解得:2a=152,∴a=76.故选:D.12.吉安县澧田中学每年都会举行乒乓球比赛,比赛规定采取积分制:赢一局得3分,负一局扣1分.在7局比赛中,积分超过10分的就可以晋级下一轮比赛,李胜进入了下一轮比赛,问李胜输掉的比赛最多是()A.2局 B.3局 C.4局D.5局解:设李胜输掉的比赛最多是x局,依题意得3(7﹣x)﹣x>10,∴x<,而x为正整数,∴x≤2.答:李胜输掉的比赛最多是2场.故选A.13.2013年4月20日四川雅安芦山县境内发生7.0级地震后,全国人民抗震救灾,众志成城.某地政府急灾民之所需,立即组织12辆汽车,将A、B、C三种救灾物资共82吨一次性运往灾区,假设甲、乙、丙三种车型分别运载A、B、C三种物资.根据如表提供的信息解答下列问题:(1)设装运A、B品种物资的车辆数分别为x、y,试用含x的代数式表示y;(2)根据(1)中的表达式,求装运A、B、C三种物资的车辆各几辆和A、B、C三种物资各几吨?解:(1)根据题意得:5x+8y+10(12﹣x﹣y)=82,化简,得y=﹣x+19.(2)由y=﹣x+19及题意知y>0,x>0,且x必须是2的整数倍,∵x+y<12,∴x=6,y=4,∴A种物资有5×6=30(吨);B种物资有8×4=32(吨);C种物资有82﹣(30+32)=20(吨).14.学期即将结束,为了表彰优秀,班主任王老师用W元钱购买奖品.若以2支钢笔和3本笔记本为一份奖品,则可买60份奖品;若以2支钢笔和6本笔记本为一份奖品,则可以买40份奖品.设钢笔单价为x元/支,笔记本单价为y元/本.(1)请用y的代数式表示x.(2)若用这W元钱全部购买笔记本,总共可以买几本?(3)若王老师用这W元钱恰好能买30份同样的奖品,可以选择a支钢笔和b本笔记本作为一份奖品(两种奖品都要有).请求出所有可能的a,b值.解:(1)由题意得:60(2x+3y)=40(2x+6y),(2分)化简得:.(1分)(2)60(2x+3y)÷y=360(本).(2分)答:总共可以买卖360本;(1分)(3)由题意得:60(2x+3y)=30(ax+by),把代入得:(1分)解得此方程的正整数解为,,.(3分)15.被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km,隧道累计长度的2倍比桥梁累计长度多36km.求隧道累计长度与桥梁累计长度.解:设隧道累计长度为x km,桥梁累计长度为y km,根据题意得:,解得:.答:隧道累计长度为126km,桥梁累计长度为216km.16.某校组织“大手拉小手,义卖献爱心”活动,购买了黑白两种颜色的文化衫共140件,进行手绘设计后了出售,所获利润全部捐给山区困难孩子.每件文化衫的批发价和零售价如下表:假设文化衫全部售出,共获利1860元,求黑白两种文化衫各多少件?解:设黑色文化衫x件,白色文化衫y件,依题意得,解得,答:黑色文化衫60件,白色文化衫80件.17.某地区住宅用电之电费计算规则如下:每月每户不超过50度时,每度以4元收费;超过50度的部分,每度以5元收费,并规定用电按整数度计算(小数部份无条件舍去).(1)下表给出了今年3月份A,B两用户的部分用电数据,请将表格数据补充完整,(2)若假定某月份C用户比D用户多缴电费38元,求C用户该月可能缴的电费为多少?解:(1)设A用户用电量为x度,则4×50+5(x﹣50)=240,解得x=58;B用户的用电量:90﹣58=32(度).B用户的电费:32×4=128(元)A、B用户的电费:240+128=368(元),故答案是:(2)设3月份C用户用电x度,D用户用电y度.∵38不能被4和5整除,∴x>50,y≤50,∴200+5(x﹣50)﹣4y=38∴5x﹣4y=88,∴.∵,∴50<x≤57.6.又∵x是4的倍数,∴x=52,56 C用户可能缴的缴电费为210元或230元.18.“全民阅读”深入人心,好读书,读好书,让人终身受益.我校上月举办了“读书节”活动.为了表彰优秀,主办单位王老师负责购买奖品.他发现:若以2支钢笔和3本笔记本为一份奖品,则可买60份奖品;若以2支钢笔和6本笔记本为一份奖品,则可以买40份奖品.设钢笔单价为x元/支,笔记本单价为y元/本.(1)请用x的代数式表示y.(2)若用这钱全部购买笔记本,总共可以买几本?(3)若王老师用这钱恰好买30份同样的奖品,可以选择a支钢笔和b本笔记本作为一份奖品(两种奖品都要有),请求出所有可能的a、b值.解:(1)根据题意得:60(2x+3y)=40(2x+6y),化简得:y=x.(2)60(2x+3y)÷y=360.答:若用这钱全部购买笔记本,总共可以买360本.(3)根据题意得:60(2x+3y)=30(ax+by),即4x+6y=ax+by,把y=x代入得:4x+4x=ax+bx,整理得:a+b=8.∵a、b均为正整数,∴b为3的整数倍,∴当b=3时,a=6;当b=6时,a=4;当b=9时,a=2.∴,,.19.我国古代数学名著《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”,意思是:鸡和兔关在一个笼子里,从上面看有35个头,从下面看有94条腿,问笼中鸡或兔各有多少只?解:设笼中鸡有x只,兔有y只,由题意得:,解得.答:笼中鸡有23只,兔有12只.20.在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.解:设甲种车辆一次运土x立方米,乙种车辆一次运土y立方米,由题意得,,解得:.答:甲种车辆一次运土8立方米,乙种车辆一次运土12立方米.基础演练1.周末,某团体组织公益活动,16名成员分甲、乙、丙三组到48个单位做宣传,若甲组a人每人负责4个单位,乙组b人每人负责3个单位,丙组每人负责1个单位,则分组方案有()A.5种 B.6种C.7种 D.8种解:依题意有4a+3b+(16﹣a﹣b)=48,3a+2b=32,∵a,b是正整数,∴当a=2时,b=13,16﹣a﹣b=1,符合题意;当a=4时,b=10,16﹣a﹣b=2,符合题意;当x=6时,b=7,16﹣a﹣b=3,符合题意;当a=8时,b=4,16﹣a﹣b=4,符合题意;当a=10时,b=1,16﹣a﹣b=5,符合题意.故分组方案有5种.故选:A.2.将一张面值为50元的人民币,兑换成10元或20元的零钱,兑换方案有()A.3种B.4种C.5种 D.6种解:设能兑换x张10元、y张20元的零钱,根据题意得:10x+20y=50,即x+2y=5.∵x、y为自然数,∴当y=0时,x=5;当y=1时,x=3;当y=2时,x=1.∴兑换方案有三种.故选A.3.小明去逛商场,发现有他非常喜欢的邮票,小明就把兜里仅有的8元钱全部买了60分和80分的两种邮票.请问:小明购买邮票有几种方案()A.1种B.2种C.3种D.4种解:设小明买60分和80分的邮票各x枚和y枚;根据题意得出:0.6x+0.8y=8,解得:,,.共3种方案,故选:C.4.如图,用12块相同的小长方形瓷砖拼成一个大的长方形,则每个小长方形瓷砖的面积是()A.175cm2B.300cm2C.375cm2D.336cm2解:设小长方形的长为xcm,宽为ycm.根据题意得:解得:.故xy=30×10=300cm2.故选:B.5.两个角的大小之比是7:3,它们的差是72°,则这两个角的关系是()A.相等 B.互余 C.互补 D.无法确定解:设这两个角分别是x°,y°,根据题意得:,解得:,则这两个角互补.故选C.6.如图,用8块相同的长方形地砖拼成一个大长方形,则每个长方形地砖的面积是()A.200cm2B.300cm2C.600cm2D.2400cm2解:设每个小长方形地砖的长为xcm,宽为ycm,由题意可得,即,解之,所以每个长方形地砖的面积是300cm2.故选:B.7.滴滴快车是一种便捷的出行工具,计价规则如下表:小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里.如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差()A.10分钟B.13分钟C.15分钟D.19分钟解:设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5﹣7),10.8+0.3x=16.5+0.3y,0.3(x﹣y)=5.7,x﹣y=19.故这两辆滴滴快车的行车时间相差19分钟.故选:D.8.王老师的数学课采用小组合作学习方式,把班上40名学生分成若干小组,如果要求每小组只能是5人或6人,则有几种分组方案()A.4 B.3 C.2 D.1解:设5人一组的有x个,6人一组的有y个,根据题意可得:5x+6y=40,当x=1,则y=(不合题意);当x=2,则y=5;当x=3,则y=(不合题意);当x=4,则y=(不合题意);当x=5,则y=(不合题意);当x=6,则y=(不合题意);当x=7,则y=(不合题意);当x=8,则y=0;故有2种分组方案.故选:C.9.张老师到文具店购买A、B两种文具,A种文具每件2.5元,B种文具每件1元,共花了30元钱,则可供他选择的购买方案的个数为(两样都买)()A.4 B.5 C.6 D.7解:设买A种文具为x件,B种文具为y件,依题意得:2.5x+y=30,则y=30﹣2.5x.∵x、y为正整数,∴当x=2时,y=25;当x=4时,y=20;当x=6时,y=15;当x=8时,y=10;当x=10时,y=5;当x=12时,y=0(舍去);综上所述,共有5种购买方案.故选:B.10.小明和小莉出生于2000年12月份,他们的生日不是同一天,但都是星期五,且小明比小莉出生早,两人出生日期和是22,那么小莉的生日是()A.15号B.16号C.17号D.18号解:设小明的生日是12月份的x号,小莉的生日是12月份的y号,则或或或,解得,(不是整数,舍去)或或(不是整数,舍去)或(不合题意,舍去).综上所述,小莉的生日是18号.故选:D.巩固提高11.一个两位数的两个数字之和为11,两个数字之差为5.求这个两位数,此题的解()A.0个 B.1个 C.2个 D.4个解:设十位数字为x,个位数字为y,根据题意得:或,解得:或,∴该两位数为83或38.故选C.12.如图是由同一种长方形的墙砖粘贴的部分墙面,其中3块横放的墙砖比1块竖放的墙砖高10cm,2块横放的墙砖比2块竖放的墙砖低40cm,则每块墙砖的面积是()A.425cm2B.525cm2C.600cm2D.800cm2解:设每块墙砖的长为xcm,宽为ycm,根据题意得:,解得:,∴xy=35×15=525.故选B.13.一个家电维修中心有技术员工和辅助员工共15人,技术员工数是辅导员工数的2倍.家电维修中心计划对员工发放奖金共计20000元,按“技术员工个人奖金”A元和“辅导员工个人奖金”B元两种标准发放,其中A≥B≥800,并且A,B都是100的整数倍.(1)求该家电维修中心中技术员工和辅导员工的人数;(2)求本次奖金发放的具体方案?解:(1)设该家电维修中心有技术员工x人、辅助员工y人.则,解得.答:该家电维修中心有技术员工10人、辅助员工5人;(2)由10A+5B=20000,得2A+B=4000.∵A≥B≥800,∴800≤B≤A≤1600,并且A,B都是100的整数倍,∴,,.∴本次奖金发放的具体方案有3种:方案一:技术员工每人1600元、辅助员工每人800元;方案二:技术员工每人1500元、辅助员工每人1000元;方案三:技术员工每人1400元、辅助员工每人1200元.14.已知有10包相同数量的饼干,若将其中1包平分给23名学生,最后剩三片,若将此10包平分给23名学生,则最后剩的片数是多少?(用二元一次方程解)解:设这包饼干有y片,则y=23x+3(x是大于0的整数),而10y=230x+30,30÷23=1(片)…7(片),故最后剩7片.答:最后剩的片数是7片.15.某商场按定价销售某种电器时,每台可获利48元,按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等.求该电器每台的进价、定价各是多少元?解:设该电器每台的进价为x元,定价为y元,由题意得,解得:.答:该电器每台的进价是162元,定价是210元.16.为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.(1)求A,B两种品牌的足球的单价.(2)求该校购买20个A品牌的足球和2个B品牌的足球的总费用.解:(1)设A品牌的足球的单价为x元/个,B品牌的足球的单价为y元/个,根据题意得:,解得:.答:A品牌的足球的单价为40元/个,B品牌的足球的单价为100元/个.(2)20×40+2×100=1000(元).答:该校购买20个A品牌的足球和2个B品牌的足球的总费用是1000元.17.某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的.问该兴趣小组男生、女生各有多少人?解:设该兴趣小组男生有x人,女生有y人,依题意得:,解得:.答:该兴趣小组男生有12人,女生有21人.18.甲、乙、丙三种车型的汽车按运载量运载货物,它们的运载量如表:(1)甲种车型的汽车3辆,乙种车型的汽车a辆,丙种车型的汽车2a辆,它们一次性能运载吨货物(可用含a的代数式表示)(2)甲、乙、丙三种车型的汽车共12辆,刚好能一次性运载物资共82吨,甲、乙、丙三种车型的汽车各有多少辆?解:(1)3×5+8a+10×2a=28a+15.故答案为:28a+15.(2)设甲种车型的汽车x辆,乙种车型的汽车y辆,则丙种车型的汽车(12﹣x﹣y)辆.依题意得:5x+8y+10(12﹣x﹣y)=82,整理得:y=19﹣x(0≤y≤12,.且x、y是非负整数)所以x只能取4和6.当x=4,得y=9(不合题意,舍去),当x=6,得y=4,12﹣x﹣y=2.答:甲、乙、丙三种车型的汽车分别为6辆、4辆、2辆.19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?解:设男生志愿者有x人,女生志愿者有y人,根据题意得:,解得:.答:男生志愿者有12人,女生志愿者有16人.20.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号中选择:已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?解:(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y万元,依题意有,解得.答:每台A型污水处理器的价格是10万元,每台B型污水处理器的价格是8万元;(2)购买9台A型污水处理器,费用为10×9=90(万元);购买8台A型污水处理器、1台B型污水处理器,费用为10×8+8=80+8=88(万元);购买7台A型污水处理器、2台B型污水处理器,费用为10×7+8×2=70+16=86(万元);购买6台A型污水处理器、3台B型污水处理器,费用为10×6+8×3=60+24=84(万元);购买5台A型污水处理器、5台B型污水处理器,费用为10×5+8×5=50+40=90(万元);购买4台A型污水处理器、6台B型污水处理器,费用为10×4+8×6=40+48=88(万元);购买3台A型污水处理器、7台B型污水处理器,费用为10×3+8×7=30+56=86(万元);购买2台A型污水处理器、9台B型污水处理器,费用为10×2+8×9=20+72=92(万元);购买1台A型污水处理器、10台B型污水处理器,费用为10×1+8×10=10+90=90(万元);.购买11台B型污水处理器,费用为8×11=88(万元).故购买6台A型污水处理器、3台B型污水处理器,费用最少.答:他们至少要支付84万元钱.1.将一张面值50元的人民币,兑换成5元或10元的零钱,那么兑换方案共有()A.5种 B.6种 C.7种 D.8种解:设10元的数量为x,5元的数量为y.则10x+5y=50,(x≥0,y≥0),解得:,,,,,,故选B.2.七年级部分学生在小会议室开会,若每排座位坐10人,则有2人无处坐;如果每排座位坐11人,则最后一排空3个座儿,则参加会议的学生人数是()A.52 B.62 C.5 D.6解:设参加会议的学生人数为x人,有y排座位,根据题意可得:,解得:,故选:A.3.足球比赛的记分规则是:胜一场记3分,平一场记1分,负一场记0分.一支中学生足球队参加了15场比赛,负了4场,共得29分,则这支球队胜了()A.5场B.7场C.9场 D.11场解:设这支球队胜了x场,平了y场,则,解得,所以球队胜了9场.故选C.4.甲比乙大15岁,5年前甲的年龄是乙的年龄的2倍,则乙现在的年龄是()A.10岁B.15岁C.20岁D.30岁解:甲现在的年龄是x岁,乙年龄为y岁,根据题意得:解得:,答:乙现在的年龄是20岁.故选:C.5.九年级(1)班为奖励学习进步的学生,计划花费120元购买削笔机或多色笔袋,削笔机单价为10元,多色笔袋单价为12元,则购买方案有()A.1种 B.2种C.3种 D.4种解:设购买了削笔机x个,多色笔袋y个,根据题意得:10x+12y=120,化简得:y=10﹣x,∵x,y为正整数,∴符合题意的方案有:,,∴共有2种购买方案;故选B.6.足球比赛规定:胜一场得3分,平一场得1分,负一场得0分,中超联赛某足球队已经进行了7场比赛,得了13分,该队获胜的场数可能是()A.2场或3场 B.2场或3场或4场C.3场或4场D.3场或4场或5场解:设该队胜x场、平y场,则负(7﹣x﹣y)场,根据题意得:3x+y=13,∴y=13﹣3x.当x=0时,y=13,此时x+y=13>7(舍去).当x=1时,y=10,此时x+y=11>7(舍去);当x=2时,y=7,此时x+y=9>7(舍去);当x=3时,y=4,此时x+y=7符合题意;当x=4时,y=1,此时x+y=5<7符合题意.综上所述:该队获胜的场数可能是3场或4场.故选C.7.如图,宽为50的大长方形图案由10个完全相同的小长方形拼成,其中一个小长方形的面积为()A.400 B.500 C.600 D.4000解:设一个小长方形的长为x,宽为y,则可列方程组,解得,则一个小长方形的面积=40×10=400.故选A.8.如图,宽为60cm的矩形图案由10个完全一样的小长方形拼成,则其中一个小长方形的周长为()A.60cm B.120cm C.312cm D.576cm解:设一个小长方形的长为xcm,宽为ycm,由图形可知,,解得:.所以一个小长方形的周长为:2(48+12)=120(cm).故选B.9.如图所示的两台天平保持平衡,已知每块巧克力的质量相等,且每个果冻的质量也相等.求每块巧克力和每个果冻的质量.解:设每块巧克力质量为x克,每个果冻的质量为y克,根据题意得:,解得.答:每块巧克力质量为20克,每个果冻的质量为30克.10.某校食堂的中餐与晚餐的消费标准如表一学生某星期从周一到周五每天的中餐与晚餐均在学校用餐,每次用餐米饭选1份,A、B类套餐菜选其中一份,这5天共消费36元,请问这位学生A、B类套餐菜各选用多少次?解:设这位学生A类套餐菜选了x次,B类套餐菜选了y次,根据题意得:,解得:.答:这位学生A类套餐菜选了6次,B类套餐菜选了4次.1.某人只带了2元和5元两种纸币(两种纸币都足够多),他要买一件27元的商品,而商店不给找钱,要他恰好付27元,他付钱方式的种数是()A.1 B.2 C.3 D.4解:设2元的用x枚,5元的用y枚,由题意,得2x+5y=27,x=.∵x≥0,y≥0为整数,∴≥0,∴0≤y≤,∴y=0,1,2,3,4,5当y=0时,x=舍去,当y=1时,x=11,当y=2时,x=舍去,当y=3时,x=6,当y=4时,x=舍去,当y=5时,x=1,则共有3种付款方式.故选C.2.有一个两位数,它的十位数字与个位数字之和为5,则符合条件的两位数有()A.4个 B.5个 C.6个 D.7个解:设两位数个数上数字为x,则十位数上数字为y,根据题意得:x+y=5,当x=1时,y=4;x=2,y=3;x=3,y=2;x=4,y=1;x=0,y=5;则符合条件的两位数有5个,故选B3.有一个两位数,它的十位数字和个位数字的和为6,则这样的两位数有()个.A.4 B.5 C.6 D.7解:设两位数的个位数为x,十位为y,根据题意得:x+y=6,∵xy都是整数,∴当x=0时,y=6,两位数为60;当x=1时,y=5,两位数为51;当x=2时,y=4,两位数为42;当x=3时,y=3,两位数为33;当x=4时,y=2,两位数为24;当x=5时,y=1,两位数为15;则此两位数可以为:60、51、42、33、24、15,共6个,故选:C.4.如图,用10块相同的长方形的地砖拼成一个长方形,则每块长方形地砖的面积为()A.128 B.256 C.512 D.1024解:设长方形地砖的长为x,宽为y,根据题意得:,解得:,∴xy=32×8=256.故选B.5.一个两位数,十位数字比个位数字的2倍大1,若将这个两位数减去36恰好等于个位数字与十位数字对调后所得的两位数,则这个两位数是()A.86 B.68 C.97 D.73解:设这个两位数的十位数字为x,个位数字为y.则,解得.故选D.6.如图,正方形ABCD由四个相同的大长方形,四个相同的小长方形以及一个小正方形组成.其中四个大长方形的长和宽分别是小长方形长和宽的3倍,若中间小正方形的面积为1,则大正方形ABCD 的面积是()A.49 B.64 C.81 D.100解:设小长方形的长为a,宽为b,则大长方形的长为3a,宽为3b,由已知得:,解得:,∴正方形ABCD的边长AB=3a+3b=3×(2+1)=9,∴正方形ABCD的面积为9×9=81.故选C.7.把一张面值10元的人民币兑换成1元或2元的零钱,兑换方案有()A.9种 B.8种C.7种D.6种解:设1元x张,2元的y张,x+2y=10,解的,,,,,,,故有6种兑换方案,故选D.8.要把一张面值20元的人民币换成零钱,现有足够的面值为1元、5元人民币,那么共有()A.2种换法B.3种换法C.4种换法D.5种换法解:设1元的x张,5元的y张,则x+5y=20,解得,,,,,,故有5种方法,故选D.9.已知一根火腿肠2元,一盒方便面3元,小明外出时想用不超过15元来购买这两种食品,且至少购买一根火腿肠和一盒方便面,那么他可以采用的不同的购买方案有()A.12种B.13种C.14种D.15种解:设小明一根火腿肠x根,一盒方便面y盒,则解得:1≤y≤,1≤x≤7.5,当y=1时,x只能为6、5、4、3、2、1,共6个,当y=2时,x只能为4、3、2、1,共4个,当y=3时,x只能为3、2、1,共3个,当y=4时,x只能为1,共1个,∴6+4+3+1=14,故选C.10.学生问老师:“老师,你今年多大了?”,老师风趣地说:“我像你那么大时,你才1岁;你到我这么大时,我已经37岁了.”则老师今年()A.25岁B.26岁C.27岁D.28岁解:设老师今年x岁,学生今年y岁,根据题意得:,解得:.故选A.11.现有八个大小相同的长方形,可拼成如图①,②所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,则每个小正方形的面积是()A.50 B.60 C.70 D.80解:设小长方形的长为x,宽为y,根据题意得:,解得:,∴xy=10×6=60.故选B.12.用四个完全一样的长方形(长、宽分别设为x、y)拼成如图所示的大正方形,已知大正方形的面积为36,中间空缺的小正方形的面积为4,则下列关系式中不正确的是()A.x+y=6 B.x2+y2=36 C.x•y=8 D.x﹣y=2解:设小长方形的长为x、宽为y,根据题意得:.A、由①可得出x+y=6,A正确;C、由①﹣②可得出x•y=8,C正确;D、由②可得出x﹣y=2,D正确.故选B.13.周老师为学校购买运动会的奖品后,回学校向后勤处张老师交账说:“我买了两种书,共100本,单价分别为8元和11元,买书前我领了1500元,现在还余417元.”张老师算了一下说:“你肯定搞错了.”(1)张老师为什么说他搞错了?试用方程的知识给予解释.(2)周老师连忙拿出购物发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨别出应为小于8元的整数,笔记本的单价可能多少元?解:(1)设8元的书买了x本,11元的书买了y本,由题意,得,解得:x=.∵x的值为整数,故x的值不符合题意,∴张老师搞错.(2)设8元的书买了a本,则11元的书买了(100﹣a)本,笔记本的单价为b元,由题意,得,由①,得b=3a﹣17,∴1≤3a﹣17<8,∴6≤a<.。
(完整版)二元一次方程组应用题大全(2),推荐文档

知识点:二元一次方程组的概念及解法:代入法和加减法二元一次方程组解决实际问题的基本步骤:1、审题,搞清已知量和待求量,分析数量关系. (审题,寻找等量关系)2、考虑如何根据等量关系设元,列出方程组.(设未知数,列方程组)3、列出方程组并求解,得到答案.(解方程组)4、检查和反思解题过程,检验答案的正确性以及是否符合题意.(检验,答)相似题:鸡兔同笼问题(1)1、野鸡和兔子共有39只,它们的腿共有100条,求野鸡和兔子各有多少只。
2、已知板凳和木马共有33个,腿共有101条。
板凳和木马各有多少个?(注:板凳4条腿,木马3条腿)3、某文艺团体为“希望工程”募捐组织了一场义演。
其中成人票每张8元,学生票每张5元,共售出1000张票,共筹得票款6950元。
问成人票与学生票各售出多少张?分析:两个相等关系:①;②。
4、某校买了甲、乙两种型号的彩电共7台,花去人民币15900元。
已知这两种型号的彩电的价格分别是3000元和1300元,问该校两种彩电各买了多少台?鸡兔同笼问题(2)1、某校150名学生参加数学考试,平均每人55分,其中及格的学生人均77分,不及格的学生人均47分。
及格、不及格的学生各有多少人?2、一队敌军一队狗,两队并成一队走;脑袋共有八十个,数腿却有二百条;请君仔细算一算,多少敌军多少狗3、现有大人、幼儿共100人,大人一餐吃4个面包,幼儿4人一餐吃一个面包,一餐刚好吃光100个面包,问大人、幼儿各有几人?分配问题(1)【例】栖树一群鸦,鸦树不知数;三只坐一棵,五只没去处;五只栖一棵,闲了一棵树;请你列式算,鸦树各几何?分析:两个等量关系:①3⨯树的棵数+5=乌鸦的只数;②5⨯(树的棵数-1)=乌鸦的只数。
解:设乌鸦有x只,树有y棵。
1、某单位召开会议,安排参加会议人员住宿,若每间宿舍住12人,便有34人没有住处;若每间住14人便多处4间宿舍没人住。
求参加会议的人数和宿舍数。
分析:两个相等关系:①;②。
二元一次方程组的应用

二元一次方程组的应用一、简介二元一次方程组是由两个未知数和两个方程组成的方程集合。
在数学中,二元一次方程组广泛应用于解决各种实际问题。
本文将探讨二元一次方程组在实际应用中的一些例子,并说明其在解决问题中的重要性。
二、线性方程组的应用1. 计算问题:二元一次方程组常被用于计算相关问题。
例如,设想你在购买书籍和笔记本时共花费了100元,已知一本书的价格是10元,一台笔记本的价格是20元,那么用二元一次方程组可以表示为:x + y = 10010x + 20y = 100通过求解以上方程组,我们可以得到书籍和笔记本的具体数量。
2. 几何问题:二元一次方程组也可以应用于几何问题。
例如,在平面上给定两个直线的斜率和截距,我们可以用二元一次方程组表示这两条直线,并通过求解方程组确定两条直线的交点坐标。
三、应用案例分析1. 混合液体问题:假设有一瓶含有某种化学物质的溶液,溶液中物质的含量为x,另有一瓶纯净的溶液,其中物质的含量为y。
我们需要将两种溶液混合,使得混合后的溶液物质的含量为k。
根据物质守恒定律,可以得到以下方程组:x + y = kCx + Dy = E其中C、D、E为给定的常数。
通过求解该方程组,我们可以确定混合液体的比例,从而达到所需的物质含量。
2. 财务问题:考虑以下情境:张三和李四各自投资了一笔钱到同一项业务中,两人最终收益相等。
已知张三投资的金额为x,收益率为p,李四投资的金额为y,收益率为q。
我们可以列出以下方程组:x(1 + p) = y(1 + q)x + y = T其中T为总投资金额。
通过求解该方程组,我们可以确定张三和李四的具体投资金额,从而平衡他们的收益。
四、总结通过以上例子可以看出,二元一次方程组在实际问题中的应用非常广泛。
无论是计算问题、几何问题还是财务问题,二元一次方程组都能提供简洁而有效的数学解决方案。
因此,掌握二元一次方程组的求解方法对于解决实际应用问题非常重要。
总之,二元一次方程组在数学和实际问题中都具有重要的应用价值。
二元一次方程组的应用(二)

你试一试:
4、某旅馆的客房有三人间和二人间两种,三人间每人每天25元, 二人间每人每天35元,一个50人的旅游团到该旅馆住宿,租住了 若干间客房,并且每间客房正好注满,一天共花去住宿费1510元, 则这两种客房各租住了多少间? 分析:此题涉及多种量及数量关系:若设租住三人间客房的有x 人,租住二人间客房的有y人,则列方程组为______,解得_____, 所以三人间客房租住了_____间,二人间客房租住了_____间。
提示:请你设计一种分法:如果不予许剪开白卡纸,能不能找到符 合题意的分法?如果允许剪开一张白卡纸,怎样才能既符合题意又 能最充分地利用白卡纸? 切入点:本问题有两个未知数——做盒身白卡纸的张数与做盒底盖 白卡纸的张数。
方法小结: 上题是属于配套问题,但计算结果不是 正整数,有的同学采用四舍五入的方法, 是错误的,解决实际问题要从实际情况出 发,合理地应用数学知识。
二元一次方程组的应用(二)
:配套问题
例1:根据市场调查,某种消毒液的大瓶装(500g) 和小瓶装(250g)两种产品的销售数量(按瓶计算) 比为2:5,某厂每天生产这种消毒液22.5t,这些消 毒液应该分装大、小瓶两种产品各多少瓶? (注意计算化简,单位换算)
5、如图,某纸品加工厂为了制作甲、乙两种无盖的长方体 小盒,利用边角料裁出长方形的宽和正方形的边长相等,现 将150张正方形硬纸片和300张长方形硬纸片全部用于制作这 两种小盒,可以做成甲、乙两种小盒各多少个?
甲种小盒
乙种小盒
探究1:书上99页
变式练习: 1、书上102页 4题
2、要用20张白卡纸做包装盒,每张白卡纸可以做盒身2个,或者做盒底 盖3个,如果1个盒身和2个盒底盖可以做成一个包装盒,要求把这些白 卡纸分成两部分,一部分做盒身,一部分做盒底盖,做成的盒身和盒底 盖正好配套。
4.4二元一次方程组的应用(2)

4.4 二元一次方程组的应用(二)索引档案【知识提要】应用二元一次方程组解决较复杂的实际问题.【学法指导】1.仔细审题,根据问题中的数量关系,找出两个等量关系.2.当出现两个以上的未知量时,应设与其他已知量、•未知量关系密切的为佳.范例积累【例1】有人问某男孩,他家中有几个兄弟姐妹,•他回答说:有几个兄弟就有几个姐妹,然后,此人再问他妹妹,她回答说:我的兄弟是姐妹的两倍.问这一家兄弟和姐妹各几人?【分析】由男孩的回答中可知兄弟人数比姐妹人数多一人;由女孩的回答中可知兄弟数相当于不包括女孩在内的姐妹数的两倍,因而可由这两个等量关系列方程组.【解】设这家兄弟有x人,姐妹有y人,由题意,得1, 2(1)x yy x-=⎧⎨-=⎩把①代入②,得2(x-2)=x,解得x=4把x=4代入①,得y=3∴方程组的解为4,3 xy=⎧⎨=⎩经检验,这个解满足方程组,且符合题意.答:这家兄弟有4人,姐妹有3人.【注意】列方程组解应用题时,必须注意挖掘隐含的条件,如调配问题总量不变,相遇问题时间相等,本题易忽略的条件是被问者没有把自己计算在内.【例2】某蔬菜某地生产一种绿色蔬菜,若在市场上直接销售,•每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收获这种蔬菜140吨,•该公司的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨.•但两种方式不能同时进行,受季节条件的限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此公司研制三种可行方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能多地对蔬菜进行精加工,没来得及加工的蔬菜在市场上销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为选择哪种方案获利最多?为什么?【分析】 必须对三种方案进行计算再对比,找出最佳方案.【解】 方案一获利为:4500×140=630000(元)方案二获利为:7500×(6×15)+1000×(140-6×15)=765000+50000=725000(元) 方案三获利计算如下:设将x 吨蔬菜进行精加工,y 吨蔬菜进行粗加工,根据题意,得 140,15616x y x y +=⎧⎪⎨+=⎪⎩ 解得60,80x y =⎧⎨=⎩ 经检验,这个解满足方程组,且符合题意.所以方案三获利为:7500×60+4500×80=810000(元)答:由以上计算可知选择方案三获利最多.【注意】 这是一道选择方案题,也是日常生活中经常会遇到的问题.通过列方程组计算,进行比较对比,找出最佳方案,是解决这类问题有效方法之一.基础训练1.学生到工厂勤工俭学,按合同规定干满30天,•工厂将付给他一套工作服和70元钱,但他工作了20天,由于另有任务,•他中止了合同,•工厂只付给他一套工作服和20元钱,那么这套工作服的价值是多少元?该学生每天的工资是多少元?2.一个两位数,它的个位数字比十位数字大5,•而且这个两位数是它的个位数字与十位数字的3倍,求这个两位数.3.化妆晚会上,男生脸上涂蓝色油彩,女生脸上涂红色油彩.游戏时,每个男生都看见涂红色的人数是涂蓝色人数的2倍;而每个女生都看见涂蓝色的人数是涂红色人数的3/5,则晚会上男、女生各几人?4.甲、乙两地相距60千米,一艘轮船往返于甲、乙两地之间,顺流要4小时,逆流要5 小时,求该船在静水中的速度和水流速度.5.某商场出售茶壶和茶杯,茶壶每只15元,茶杯每只3元,商场规定购一只茶壶赠一只茶杯,某人共付款180元,共得茶壶茶杯36只(含赠品在内),则茶壶和茶杯各有多少只?提高训练6.甲、乙两车同时从A、B两站开出,已知甲车行驶每时比乙车快10千米,两车相遇后继续前进,到达对方车站,已知甲车相遇后所用时间比相遇前所用时间少1•时36分,乙车相遇后所用时间比相遇前所用时间多2时,求甲、乙两车的速度.7.某班进行个人投篮比赛,•受污损的下表记录了在规定时间内投进几个球的人数分布情况:同时,已知进3投进2.5个球.问:投进3个球和4个球的各有多少人?8.阅读下列材料:某城市出租车收费标准为:(1)起步价(3千米)6.00元;(2)3千米以上每千米收费1.20元;小李第一次乘出租车8千米,花去12.00元,第二次乘出租车11千米,花去15.60元.请你利用上面的信息编一道适当的应用题,列出二元一次方程组,写出求解过程.应用拓展9.有三块牧场,草长得一样密一样多,面积分别为313公顷、10公顷和24公顷.第一块12头牛可吃4个星期,第二块21头牛可吃9个星期,第三块可供多少头牛吃18个星期?10.2002年世界杯足球赛韩国组委会公布的四分之一决赛的门票价格是:一等席300美元,二等席200美元,三等席125美元.某服装公司在促销活动中组织获得特等奖、一等奖的36名顾客到韩国观看2002年世界杯足球赛四分之一决赛,•除去其他费用后,计划买两种门票,用完5025美元.你能设计出几种方案供该公司选择,并说明理由.答案:1.工作服的价值是80元,学生每天的工资是5元2.这个两位数是273.男生9人,女生16人4.船在静水中的速度为13.5千米/时,水流为1.5千米/时5.茶壶8只,茶杯28只6.设从出发后到相遇两车用时t 时,乙车速度为x 千米/时,则甲车速度为(x+•10)千米/时,则(10)(2),3(10)(1),5x t x t xt x t +=+⎧⎪⎨=+-⎪⎩解得40,8,x t =⎧⎨=⎩x+10=50 即甲车的速度为50千米/时,乙车的速度为40千米/时 7.设进3个球的有x 人,进4个球的有y 人,则3452 3.5(2),01122734 2.5(127)x y x y x x x y ++⨯=++⎧⎨⨯+⨯+⨯++=++++⎩ 解得9,3,x y =⎧⎨=⎩即投进3个球的有9人,投进4个球的3人 8.略9.设牧场每公顷有草x 吨,每周每公顷新增草y 吨,每头牛每周吃a 吨,则11334412,3310109921x y a x y a⎧+⨯=⨯⎪⎨⎪+⨯=⨯⎩ 解得:10.8,0.9x a y a =⎧⎨=⎩ 所以第三块牧场18周的供草量可供牛吃的头数为24241818x y a +⨯=24(10.8240.9)18a a a+⨯=36(头) 10.共两种方案:(1)若购一等席门票x 张,三等席门y 票张,则36,3001255025x y x y +=⎧⎨+=⎩ 解得3,33x y =⎧⎨=⎩(2)若购二等席门票x 张,三等席y 张,则36,2001255025x y x y +=⎧⎨+=⎩ 解得7,29x y =⎧⎨=⎩(3)若购一等席门票x 张,二等席门票y 张,则36,3002005025x yx y+=⎧⎨+=⎩解得21.75,57.75xy=-⎧⎨=⎩此方案不可行.。
二元一次方程组应用题练习的 2

5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。
已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。
(1)初一年级人数是多少?原计划租用45座汽车多少辆?(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?6、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?7、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生。
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定?请说明理由。
8、现有190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制成盒身,多少张铁皮制成盒底,可以正好制成一批完整的盒子?10、为了保护生态环境,我省某山区县响应国家“退耕还林”号召,将该县某地一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,求改变后林地面积和耕地各为多少平方千米?12、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?13、某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售,该公司的加工能力是:每天精加工6吨或者粗加工16吨,现计划用15天完成加工任务,该公司应安排几天粗加工,几天精加工,才能按期完成任务?如果每吨蔬菜粗加工后的利润为1000元,精加工后为2000元,那么该公司出售这些加工后的蔬菜共可获利多少元?14、在一次足球选拔赛中,有12支球队参加选拔,每一队都要与另外的球队比赛一次,记分规则为胜一场记3分,平一场记1分,负一场记0分。
专题2.4二元一次方程组的应用(二)(重点题专项讲练)(浙教版)(原卷版)

专题2.4 二元一次方程组的应用(二)【典例1】李明在某商场购买甲乙两种商品若干次(每次甲,乙两种商品都购买),其中前两次按标价购买,第三次购买时,甲,乙两种商品同时打折,三次购买甲,乙两种商品的数量和费用情况如表所示:购买甲商品的数量购买乙商品的数量购买总费用第一次 6 4 880 第二次 4 6 920 第三次98912(1)求甲,乙两种商品的标价各是多少元?(2)若李明第三次购买时,甲,乙两种商品的折扣相同,则商场是打几折出售这两种商品的?(3)在(2)的条件下打折,若李明第四次购买甲,乙两种商品共花去1200元,则李明可能有哪几种购买方案?(1)设甲商品的标价是x 元,乙商品的标价是y 元,利用总价=单价×数量,结合前两次购买的数量及总费用,即可得出关于x ,y 的二元一次方程组,解之即可求出甲,乙两种商品的标价;(2)设商场是打m 折出售这两种商品的,利用总价=单价×数量,即可得出关于m 的一元一次方程,解之即可得出商场是打6折出售这两种商品的;(3)设李明购买了a 件甲商品,b 件乙商品,利用总价=单价×数量,即可得出关于a ,b 的二元一次方程,结合a ,b 均为正整数,即可得出各购买方案.解:(1)设甲商品的标价是x 元,乙商品的标价是y 元, 依题意得:{6x +4y =8804x +6y =920,解得:{x =80y =100.答:甲商品的标价是80元,乙商品的标价是100元. (2)设商场是打m 折出售这两种商品的, 依题意得:9×80×m10+8×100×m10=912,解得:m =6.答:商场是打6折出售这两种商品的. (3)设李明购买了a 件甲商品,b 件乙商品, 依题意得:80a +100b =1200, ∴b =12−45a . 又∴a ,b 均为正整数, ∴{a =5b =8或{a =10b =4, ∴李明共有2种购买方案,方案1:购买了5件甲商品,8件乙商品; 方案2:购买了10件甲商品,4件乙商品.1.(2021•无棣县一模)疫情期间,小区的王阿姨和张妈妈通过外卖订购了两包蔬菜.王阿姨订购的一包蔬菜包括西葫芦、茄子、青椒各1千克,共花费11.8元;张妈妈订购的一包蔬菜包括西葫芦2千克,茄子1.5千克,共花费13元.已知青椒每千克4.2元,则西葫芦和茄子的价格是( ) A .3.6元/千克,4元/千克 B .4.4元/千克,3.2元/千克 C .3.2元/千克,4.4元/千克 D .4元/千克,3.6元/千克2.(2021秋•开江县期末)某商场按定价销售某种商品时,每件可获利45元;按定价的8.5折销售该商品8件与将定价降低35元销售该商品12件所获利润相等.该商品的进价、定价分别是( ) A .95元,180元 B .155元,200元 C .100元,120元D .150元,125元3.(2021春•萧山区期末)某超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入144元;第2天,卖出18支牙刷和11盒牙膏,收入219元;第3天,卖出23支牙刷和20盒牙膏,收入368元;第4天,卖出17支牙刷和11盒牙膏,收入216元,聪明的小方发现这四天中有一天的记录有误,其中记录有误的是( ) A .第1天B .第2天C .第3天D .第4天4.(2020春•铜陵期末)小华在文具超市挑选了6支中性笔和5本笔记本.结账时,小华付款50元,营业店员找零4元,小华说:“阿姨您好,6支中性笔和5本笔记本一共42元,应该找零8元.”店员说:“啊…哦,我明白了,小朋友你真棒,我刚才把中性笔和笔记本的单价弄反了,对不起,再找给你4元”.根据两人的对话计算:若购买一支中性笔和一本笔记本一共需要付款元.5.(2020秋•和平区期末)某班的一个综合实践活动小组去甲、乙两个超市调查去年和今年“元旦”期间的销售情况,下面是调查后小明与其它两位同学进行交流的情景.小明说:“去年两超市销售额共为150万元,今年两超市销售额共为170万元”,小亮说:“甲超市销售额今年比去年增加10%小颖说:“乙超市销售额今年比去年增加20%根据他们的对话,得出今年甲超市销售额为万元6.(2021春•九龙坡区校级期中)向日葵水果店推出甲乙两种礼盒,甲礼盒中有樱桃1千克,枇杷0.5千克,香梨1千克,乙礼盒中有樱桃1千克,枇杷0.5千克,哈密瓜1千克,已知樱桃每千克30元,甲礼盒每盒100元,乙礼盒每盒98元,当然,顾客也可根据需要自由搭配,小陶用1100元买乙礼盒和自由搭配礼盒(香梨1千克,枇杷1千克,哈密瓜1千克)若干盒,则小陶一共可买礼盒个.7.(2021春•万州区校级月考)寒假期间,爱学习的小明决定将部分压岁钱用于购买A、B两种文具,2月10日,A文具的单价比B文具的单价少2元,小明购进A、B两种文具共3件;2月20日,A文具的单价翻倍,B文具的单价不变,小明购进A、B两种文具共4件.若A、B文具的单价和数量均为正整数且小明第二次购买文具比第一次购买文具多花费5元,则小明两次购买文具共花费元.8.(2021春•漳平市月考)为了提高市民的环保意识,倡导“节能减排、绿色出行”,某市计划在城区投放一批“共享单车”.这批单车分为A、B两种不同款型,其中A型车单价400元,B型车单价320元.今年年初,“共享单车”试点投放在某市中心城区正式启动,投放A、B两种款型的单车共100辆,总价值36800元,试问本次投放的A型车与B型车各多少辆?9.(2021•海口模拟)为了防治“新型冠状病毒”,我市某小区准备用5400元购买医用口罩和洗手液发放给本小区住户,若医用口罩买800个,洗手液买120瓶,则钱还缺200元;若医用口罩买1200个,洗手液买80瓶,则钱恰好用完、求医用口罩和洗手液的单价.10.(2021秋•会宁县期末)某商场去年的利润为10万元,今年的总收入比去年增加10%,总支出比去年减少了5%,今年的利润为30万元.求去年的总收入和总支出?11.(2021秋•富川县期末)小明的妈妈在菜市场花费30.4元钱买回2斤萝卜和1斤排骨,准备做萝卜排骨汤,而上个星期小明的妈妈买同样重量的这两种菜一共才花费了22元.小明的妈妈告诉小明,由于受天气及市场等因素的影响,本周的萝卜单价比上周上涨了30%,排骨的单价上涨了40%,请你帮小明求出本周萝卜和排骨的单价.12.(2021秋•济南期末)为了响应“阳光运动一小时”校园体育活动,我校计划再购买一批篮球,已知购买2个A品牌的篮球和3个B品牌的篮球共需380元;购买4个A品牌的篮球和2个B品牌的篮球共需360元.(1)求A、B两种品牌的篮球的单价.(2)我校打算网购20个A品牌的篮球和3个B品牌的篮球,“双十一”期间,京东购物打折促销,其中A 品牌打八折,B品牌打九折,问:打折后学校购买篮球需用多少钱?13.(2021秋•阳山县期末)某小区为了绿化环境,计划分两次购进A,B两种树苗,第一次购进A种树苗40棵,B种树苗15棵,共花费1750元;第二次购进A种树苗20棵,B种树苗6棵,共花费860元.(两次购进的A,B两种树苗各自的单价均不变)(1)A,B两种树苗每棵的价格分别是多少元?(2)因受季节影响,A种树苗价格下降10%,B种树苗价格上升20%,计划购进A种树苗25棵,B种树苗20棵,问总费用是多少元?14.(2021春•丰都县期末)丰都是旅游文化名城,庙会期间有爵士舞和和民族舞两个文娱节目,两节目组主要演员和次要演员每天的费用分别相同.从节省资金和保证节目效果两个角度,现两个节目组有方案如下表:主要演员(人)次要演员(人)总费用(元/天)爵士舞451300民族舞23700(1)方案中主要演员和次要演员每天的费用分别多少元?(2)在(1)问的结论下,现爵士舞和民族舞分别表演若干天,已知两节目组主要演员费用共为2800元,次要演员费用共为1900元,问两节目各表演多少天?15.(2021秋•建宁县期末)某超市计划购买甲、乙两种玩具,已知购买2件甲种玩具与1件乙种玩具共需87元,购买1件甲种玩具与2件乙种玩具共需84元.(1)求甲、乙两种玩具每件的价格分别是多少元;(2)如果卖方仅给予甲种玩具优惠,优惠方案为:购进甲种玩具超过a件时,超出部分可以享受7折优惠.若购买30件甲种玩具需支付855元,求a的值.16.(2021秋•韶关期末)为发展校园足球运动,我市四校决定联合购买一批足球运动装备.经市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球.已知每套队服比每个足球多60元,5套队服与8个足球的费用相等,经洽谈,甲商场优惠方案是每购买10套队服,送1个足球;乙商场优惠方案是购买队服超过80套,则购买足球打8折.(1)求每套队服和每个足球的价格各是多少?(2)若这四所学校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用.(3)在(2)的条件下,若a=70,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?请说明理由.17.(2021春•大武口区校级月考)为了防治“新型冠状病毒”,小王准备购买A,B两种型号的医用口罩,已知1只A型口罩和1只B型口罩共7元,3只A型口罩和1只B型口罩共13元;(1)A型和B型口罩的单价是多少?(2)现在小王同学计划用17元钱购买A,B两种型号的口罩,则A型,B型各能购买多少只?18.(2021秋•东至县期末)一水果店第一次购进400kg西瓜,由于天气炎热,很快卖完.该店马上又购进了800kg西瓜,进货价比第一次每千克少了0.5元.两次进货共花费4400元.(1)第一次购进的西瓜进价每千克多少元;(2)在销售过程中,两次购进的西瓜售价相同.由于西瓜是易坏水果,从购进到全部售完会有部分损耗.第一次购进的西瓜有4%的损耗,第二次购进的西瓜有6%的损耗,该水果店售完这些西瓜共获利2984元,则每千克西瓜的售价为多少元.19.(2021秋•福田区校级期末)目前节能灯在城市已基本普及,某商场计划购进甲、乙两种型号的节能灯共600只,这两种型号的节能灯的进价、售价如表:进价(元/只)售价(元/只)甲型2530乙型4560(1)要使进货款恰好为23000元,甲、乙两种节能灯应各进多少只?(2)如何进货,商场销售完节能灯时获利恰好是进货价的30%,此时利润为多少元?20.(2021•济宁模拟)某超市第一次用6000元购进甲、乙两种商品,其中甲商品件数的2倍比乙商品件数的3倍多20件,甲、乙两种商品的进价和售价如下表(利润=售价﹣进价):甲乙进价(元/件)2028售价(元/件)2640(1)该超市第一次购进甲、乙两种商品的件数分别是多少?(2)该超市将第一次购进的甲、乙两种商品全部卖出后一共可获得多少利润?(3)该超市第二次以同样的进价又购进甲、乙两种商品.其中甲商品件数是第一次的2倍,乙商品的件数不变.甲商品按原价销售,乙商品打折销售.第二次甲、乙两种商品销售完以后获得的利润比第一次获得的利润多560元,则第二次乙商品是按原价打几折销售的?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作物品种
每公顷所需人数
每公顷投入资金/万元
蔬菜
5
1.5
荞麦
4
1
在现有条件下,这18位农民应承包多少公顷田地, 怎样安排种植才能使所有的人都有工作,且资金正 好够用?
作物品种 蔬菜 荞麦 合计
种植面积S/hm 2 x y
需要人数 5x 4y 18
投入资金/万元 1.5 x y 5
解 设蔬菜的种植面积为x hm 2,荞麦的种植面积为y hm 2.根据题意,得
二元一次方程组的应用(二) 物资配比和人员调配
拓展提高
.甲、乙两人在周长为400m的环形跑道上练跑,如果相 向出发,每隔2.5min相遇一次;如果同向出发,每隔 10min相遇一次,假定两人速度不变,且甲快乙慢,求甲、 乙两人的速度.
解:设甲乙两人的速度分 别为xm/min、ym/min 根据题意,得
变式练习2 .用白钢铁皮做盒,每张铁皮可做盒身25个,或做盒底40个,
一个盒身与两个盒底配成一套,现有36张白铁皮,用多少张
做盒身,多少张做盒底,可使盒身与盒底正好配套?
解:设用x张白铁皮做盒身,用y张制盒底,则共 制盒身25x个,共制盒底40y个.
根据题意 ,得 x+y=36 2×25x=40y 解得
X=16 Y=20
答:所以用16张制盒 身,20张制盒 底正好 使盒身与盒底配套
小结
实际问题 找等量关系、设未知数、列方程组
数学问题
(二元一次方程组)
实际问题
双检验
的答案
解 代入法 方 程 ( 加减法 组 ) (消元)
数学问题的解
(二元一次方程组的解)
作业
2.5(x+y)=400
甲、乙两人在周长为 400m的环形跑道上练 跑,如果相向出发,每 隔2.5min相遇一次
A B
解:设甲乙两人的速度分 甲、乙两人在周长为400m的
别为xm/min、ym/min 环形跑道上练跑,如果同向出
根据题意,得
发,每隔10min相遇一次
2.5(x+y)=400 解之得
10(X-Y)=4甲00
乙
X=100 答:甲乙两人的速度分别 Y=60 为100m/min、60m/min
A
B
【例一】(比例问题)
玻璃厂熔炼玻璃液,原料是石英砂和长石粉混合而 成,要求原料中含二氧化硅70%.根据化验,石英砂 中含二氧化硅99%,长石粉中含二氧化硅67%.试问 在3.2t原料中,石英砂和长石粉各多少吨?
即 x+y=100
解此方程组,得
9x+8y=825
x=25 y=75
答:第一种合金取25克,第二种合金取75克。
现有两种酒精溶液,甲种酒精溶液的浓度为30%,乙种 酒精溶液的浓度为80%,今要得到浓度为50%的酒精溶 液50千克,则甲乙两种酒精溶液各取多少?
【例二】(配套与人员分配问题)
某村18位农民筹集5万元资金,承包一些低产田地. 根据市场调查,他们计划对种植作物的品种进行调 查,改种蔬菜和荞麦.这两种作物每公顷需要的人数 和需投入的资金如下表:
5 x4 y18 1.5 x y 5
解方程组,得
x2 y2
承包田地的面积为
x y 4(hm2 )
人员安排为
5x=5×2=10(人), 4y=4×2=8(人)
答:这18位农民应承包4hm 2的田地,种植蔬菜和荞麦各2hm2 ,并安排10人种 蔬菜,8人种荞麦.
变式Байду номын сангаас习1
.某车间22名工人生产螺钉与螺母,每人每天平均生产 螺钉1200个或螺母2000个,一个螺钉要配两个螺母, 为了使每天生产的产品刚好配套,应该分配多少名工 人生产螺钉,多少名工人生产螺母?
一个螺钉配两个螺母 螺钉数:螺母数=1:2
解:设分配名x工人生产螺钉,y名工人生产螺母,则一天 生产的螺钉数为1200x个,生产的螺母数为2000y个.
根据题意, 得 x+y =22
2×1200x=2000
解得 x=10
Y =12
所以为了使每天y 生产的产品刚好配套,应安排10人生
产螺钉,12人生产螺母
80%,这两种合金各取多少克,熔化以后才能得到含金 82.5%的合金100克?
熔化前 熔化后
合金重量
第一种 第二种
x克
y克
100克
含金量
第一种 第二种
90%·x 80%·y 100×82.5%
解:设第一种合金取x克,第二种合金取y克。
依题意,得
x+y=100 90% x+80% y=100×82.5%
需要量 含二氧化硅
石英砂/t x
99%x
长石粉/t y
67%y
解 设需要石英砂x t,长石粉y t.根据题意,得
x y3.2 99%x67% y70%3.2
解方程组,得
x0.3 y 2.9
总量/t 3.2
70%×3.2
答:在3.2 t原料中,石英砂0.3 t,长石粉2.9 t.
练一练 有两种合金,第一种合金含金90%,第二种合金含金