高中数学导数讲义之定积分
数学《定积分》讲义

第九章 定 积 分1 定积分的定义一、背景1、曲边梯形的面积1()ni i i S f x ξ=≈∆∑2、变力所做的功 1()ni i i W F x ξ=≈∆∑上述问题均可归结为一个特定形式的和式逼近,思想方法:分割、近似求和、取极限.二、定积分的定义定义 1 设闭区间[],a b 内有1n -个点,依次为0121n n a x x x x x b -=<<<⋅⋅⋅<<=,其把[],a b 分成n 个小区间[]1,,1,i i i x x i n -∆==⋅⋅⋅.称这些点或小闭子区间构成[],a b 的一个分割,记为{}01,,n T x x x =⋅⋅⋅或{}12,,n ∆∆⋅⋅⋅∆,小区间i ∆的长度为1i i i x x x -∆=-,同时记{}1max i i nT x ≤≤=∆,称为分割T 的模(或细度).注1 ||||,1,i x T i n ∆≤=⋅⋅⋅. 因而,||||T 可用来刻画[],a b 被分割的细密程度,同时,若T 给定,则||||T 确定,而对同一细度(模), 相应的分割却有无穷多个.定义 2 设f 为[],a b 上的函数,对[],a b 上的分割{}12,,n T =∆∆⋅⋅⋅∆,任取点,i i ξ∈∆1,i n =⋅⋅⋅,作和式1()niii f x ξ=∆∑,称为函数f 在[],a b 上的一个积分和,也称为Riemann 和.注2. Riemann 和与分割T 及i ξ的取法有关. 对同一个分割T ,相应的Riemann 和有无穷多个.定义 3 设f 是[],a b 上的函数,J 为一个确定的数. 若对任给正数0ε>,存在正数0δ>,使得对[],a b 上的任何分割T ,以及其上任选的i ξ,只要T δ<,就有1()niii f x Jξε=∆-<∑,则称f 在[],a b 上可积(或Riemann 可积) ,数J 称为f 在[],a b 上的定积分(或Riemann 积分) ,记作()baJ f x dx =⎰. 其中f 称为被积函数,x 称为积分变量,[],a b 称为积分区间,,a b 分别称为积分的下限、上限.注.1()lim ()nbi i aT i f x dx f x ξ→==∆∑⎰⇔0,0,,,,i i T T εδδξ∀>∃>∀<∀∈∆1()()nbi i ai f x f x dx ξε=∆-<∑⎰定积分的几何意义(f 可积)(1) 0f ≥时,()ba f x dx ⎰就是以,,x a xb x ==轴及()y f x =围成的曲边梯形的面积.(2) 0f ≤时,()baf x dx ⎰为x 轴下方的曲边梯形面积的相反数(负面积) .(3) ()baf x dx ⎰是曲线()y f x =在x 轴上方部分所有曲边梯形的正面积与下方所有曲边梯形的负面积的代数和. (4) 注.()()()bb baaaf x dx f t dt f u du ==⎰⎰⎰,定积分与积分变量无关.三、举例例 1 已知函数2()f x x =在区间[]0,1上可积,求120x dx ⎰.例 2 已知1()1f x x=+,()sin g x x π=在[]0,1上可积. 利用定积分的定义说明 1) 10111lim()1221n dx n n n x→∞++⋅⋅⋅+=+++⎰. 2) 10012(1)1lim (sin sin sin )sin sin n n xdx x dx n n n n ππππππ→∞-++⋅⋅⋅+==⎰⎰.给出一般公式().......ba f x dx =⎰例 3 讨论Dirichlet 函数1()0x D x x ⎧=⎨⎩,为有理数,为无理数 在[]0,1上的可积性.四、 定积分的计算 定理 (微积分基本定理)设[]:,f a b R →可积,存在可导函数[]:,F a b R →,使F f '=,则()()|()()bx bx a af x dx F x F b F a ====-⎰上式也称为Newton-Leibniz 公式.例 4 求例2中定积分的值.例 5 1) 211(ln )eex dx x⎰;2) 2⎰;3) 求11()f x dx -⎰,其中210()0x x x f x e x --<⎧=⎨≥⎩, ,;4) 0⎰;5) 221lim nn i in i→∞=+∑;6) 112lim[(1)(1)(1)]n n n n n n→∞++⋅⋅⋅+.2 可积性条件一、可积的必要条件定理1 若函数f 在[],a b 上可积,则f 在[],a b 上有界.注 有界仅是f 可积的必要条件,而非充分条件. 如[]0,1上的()D x . 定理2 设函数f 在[],a b 上可积,则f 在(),a b 内至少有一个连续点. [ 若函数f 在[],a b 上处处不连续,则f 必不可积. ] 二、可积的充要条件设{}12,,n T =∆∆⋅⋅⋅∆为[],a b 上的一个分割,设f 在[],a b 上有界,则f 在每个i ∆上必有上下确界,记{}sup ()ii x M f x ∈∆=,{}inf ()ii x m f x ∈∆=,1,i n =⋅⋅⋅.作和式1()n i i i S T M x ==∆∑,1()ni i i s T m x ==∆∑,分别称为f 关于T 的上和和下和(Darboux 上下和) , 从而i i ξ∀∈∆,1,i n =⋅⋅⋅,1()()()ni i i s T f x S T ξ=≤∆≤∑. (作图几何意义)注 当分割T 确定后,则上和与下和完全确定.性质1 对同一分割T ,上和()S T 是所有积分和1()ni i i f x ξ=∆∑的上确界(相对于i ξ取),下和()s T 是所有积分和1()ni i i f x ξ=∆∑的下确界, 即{}1()inf ()i i n i i i s T f x ξξ∈∆=⎧⎫=∆⎨⎬⎩⎭∑, {}1()sup ()i i n i i i S T f x ξξ∈∆=⎧⎫=∆⎨⎬⎩⎭∑,且 1()()()()()ni i i m b a s T f x S T M b a ξ=-≤≤∆≤≤-∑,其中,M m 分别为f 在[],a b 上的上、下确界.性质2 设T '为分割T 添加p 个新分点后所得到的分割. 则()()()()s T s T s T p M m T '≤≤+- ()()()()S T S T S T p M m T '≥≥--即分点增加后,下和不减,上和不增.性质3 若T 与T '为任意两个分割,T ''为T 与T '所有分点合并组成的分割,记为T T T '''=+,则 ()()s T s T ''≥, ()()S T S T ''≤;()()s T s T '''≥, ()()S T S T '''≤.性质4 对任意两个分割T 、T ',总有()()s T S T '≤.即:对任何两个分割,下和总不大于上和. 因而,所有的上和有下界,所有的下和有上界,从而分别有下、上确界,记为S 和s . 即{}inf ()TS S T =,{}sup ()Ts s T =,称S 和s 分别为f 在[],a b 上的上、下积分,记为()ba S f x dx -=⎰,()b a s f x dx -=⎰.性质5 ()()()()bbaa mb a f x dx f x dx M b a ---≤≤≤-⎰⎰性质6. [Darboux 定理] 0lim ()()b a T S T f x dx -→=⎰,0lim ()()ba T s T f x dx →-=⎰.定理 3 (第一充要条件) [],a b 上的有界函数f 可积⇔()()bb a a f x dx f x dx --=⎰⎰定理4 (可积的第二充要条件)[],a b 上的有界函数f 可积⇔ 0ε∀>,存在分割T ,使得()()S T s T ε-<.由于11()()()nni i i i i i i S T s T M m x x ω==-=-∆=∆∑∑,其中i i i M m ω=-称为f 在i ∆上的振幅. 从而有定理4' [],a b 上的有界函数f 可积⇔0ε∀>,存在分割T ,使得1ni i i x ωε=∆<∑.定理4'的几何意义:若f 可积,则曲线()y f x =可用总面积任意小的一系列小矩形覆盖. 反之亦然.三、可积函数类(充分条件)定理 5. 若f 在[],a b 上连续,则f 在[],a b 上可积.定理 6. 若f是[],a b上仅有有限个间断点的有界函数,则f在[],a b上可积.注.改变可积性函数在某些点处的值, 不改变可积性, 也不改变积分值. 定理7. 若f为[],a b上的单调函数,则f在[],a b上可积.例1试用两种方法证明函数0 0()1111xf xxn n n=⎧⎪=⎨<≤⎪+⎩,,,1,2n=⋅⋅⋅在[]0,1上可积.例2 设f 在[],a b 上有界,{}[],n a a b ⊂,lim n na c =.证明:若f 仅在{}n a 上间断,则f 在[],a b 上可积.例3 f 在[],a b 上可积,[][],,a b αβ⊂,则f 在[],αβ上可积.例4 证明定理2: 若f 在[],a b 上可积,则f 在(),a b 内至少有一个连续点(从而有无穷多个连续点) .例5 证明: Riemann 函数[]1, ()0 0,10,1p x p q q p q q f x x ⎧=>⎪=⎨⎪=⎩,和互素,,或中的无理数 在[]0,1上可积,且1()0f x dx =⎰.(第三充要条件)3 定积分的性质一、定积分的性质 1. 线性性质定理 1 设f 在[],a b 上可积,k 为常数,则kf 在[],a b 上可积,且 ()()bbaakf x dx k f x dx =⋅⎰⎰.定理 2 设,f g 在[],a b 上可积,则f g ±在[],a b 上可积,且()()()()bb baaaf xg x dx f x dx g x dx ±=±⎰⎰⎰.推论. 设,f g 在[],a b 上可积,,αβ为常数,则f g αβ+在[],a b 上可积,且()()()()bb baaaf xg x dx f x dx g x dx αβαβ+=+⎰⎰⎰.2. 乘积可积性定理 3 设,f g 在[],a b 上可积,则f g ⋅在[],a b 上可积. 注 一般情形下,()()()()b b baaaf xg x dx f x dx g x dx ⋅≠⋅⎰⎰⎰.定理 4 有界函数f 在[],a c 和[],c b 上可积f ⇔在[],a b 上可积,且()()()bcbaacf x dx f x dx f x dx =+⎰⎰⎰规定 1) ()0aa f x dx =⎰.2)()()baab f x dx f x dx =-⎰⎰,()b a <.则对任何,,a b c 均有 ()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰.4. 关于函数的单调性定理5 设,f g 在[],a b 上可积,且()()f x g x ≤,[],x a b ∀∈,则()()bbaaf x dxg x dx ≤⎰⎰.推论 (积分值的估计) 设f 在[],a b 上可积,,M m 分别为f 在[],a b 上的上、下确界,则 ()()()ba mb a f x dx M b a -≤≤-⎰.定理6 若函数f 在[],a b 上可积,则f 在[],a b 上可积,且|()||()|bbaaf x dx f x dx ≤⎰⎰.注. 定理 6的逆不真.6. 积分第一中值定理定理 7 若函数f 在[],a b 上连续,则至少存在一点[],a b ξ∈,使得()()()baf x dx f b a ξ=-⎰.几何意义: 称1()ba f x dxb a -⎰为f 在[],a b 上的平均值.定理7' (推广的第一中值定理) 若,f g 在[],a b 上连续,且()g x 在[],a b 上不变号,则至少存在一点[],a b ξ∈,使得()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.[()1g x ≡时,即为定理7.]二、应用举例例 1 求11()f x dx -⎰. 其中2110() 01x x x f x e x ---≤<⎧=⎨≤<⎩, ,.例 2 求()sin f x x =在[]0,π上的平均值.例 3 若f 在[],a b 上连续,()0f x ≥,且()0f x ≡/,则()0ba f x dx >⎰.例 4比较积分1⎰和21x e dx ⎰的大小.例 5证明:22ππ<<⎰.例 6 若f 在[],a b 上可积,()0f x >,则()0ba f x dx >⎰.例 7 若,f g 在[],a b 上可积,则{}()max (),()M x f x g x =在[],a b 上可积.*例 8 设f 在[],a b 上可积,且()0f x m >>,则1f可积.*例 9 证明:若f 在[],a b 上连续,且()()0b baaf x dx xf x dx ==⎰⎰,则在(),a b 内至少存在两点12,x x 使12()()0f x f x ==. 又若2()0bax f x dx =⎰,此时,f 在(),a b 内是否至少有三个零点?*例 10 设f 在[],a b 上二阶可导,且()0f x ''>,证明: 1) 1()()2ba ab f f x dx b a+≤-⎰ 2) 又若()0f x ≤,[],x a b ∈,则又有2()()ba f x f x dxb a ≥-⎰,[],x a b ∈.*例11证明:(1)11ln(1)11ln2n nn+<++⋅⋅⋅+<+(2)1112lim1lnnnn→∞++⋅⋅⋅+=*例13若f可积,m f M≤≤,g在[,]m M上连续,则复合函数h g f=可积.由此, 若f可积, 则2f,13,f||f, ()f xe, (0)f≥,1(inf0)ff>可积.4 微积分基本定理 定积分的计算一、微积分基本定理 1. 变限积分的可微性设f 在[],a b 上可积,则任何[],x a b ∈,f 在[],a x 上也可积,从而()()xa x f t dt Φ=⎰,[],x ab ∈定义了一个以x 为积分上限的函数, 称为变上限积分.定理1 若f 在[],a b 上可积,则()()xa x f t dt Φ=⎰在[],ab 上连续.定理 2 (原函数存在定理,微积分学基本定理)若f 在[],a b 上连续,则()()xa x f t dt Φ=⎰在[],ab 上处处可导,且()()()xa d x f t dt f x dx'Φ==⎰,[],x a b ∈.注. 1) 当f 在[],a b 上连续,则()()xax f t dt Φ=⎰为f 的一个原函数,且f 的任一原函数()()xaF x f t dt C =+⎰. 令x a =,则()F a C =. 从而()()()xaf t dt F x F a =-⎰——Newton-Leibniz .2) 定理2. 揭示了导数和定积分之间的深刻联系,同时证明了连续函数必有原函数,并说明变上限积分就是一个原函数. 由于它的重要作用而被称为微积分基本定理.3) 同样可定义变下限积分()()bxxbf t dt f t dt =-⎰⎰. 且当f 连续时,有()()bxd f t dt f x dx =-⎰ 4) 变上限积分()xaf t dt ⎰一般不写作()xaf x dx ⎰.例 1 1)⎰2) 220sin cos t tdt π⎰例 2 设f 在[],a b 上连续,()0f x ≥,且()0f x ≡/,证明: ()0baf x dx >⎰.例 3 设f 为连续函数,,u v 均为可导函数,且复合f u ,f v 均有意义,证明()()()(())()(())()v x u x d f t dt f v x v x f u x u x dx''=⋅-⋅⎰.例 4 求1) 230limx x x +→⎰2) 222010cos limx x x t dtx →-⎰二、定积分的换元法定理 3 设f 在[],a b 上连续,Φ满足条件1) ()a αΦ=,()b βΦ=. [](),,a t b t αβ≤Φ≤∈ 2) ()t Φ在[],αβ上有连续导函数,则()(())()baf x dx f t t dt βα'=Φ⋅Φ⎰⎰.例 5 1)⎰2) 220sin cos t tdt π⎰3)10x x dx e e -+⎰4)3212(1)dx x x -+⎰5)120ln(1)1x dx x ++⎰6) 已知32()4f x dx =-⎰,求21(1)xf x dx +.注 在换元法计算定积分时,一要注意积分上下限的变化(这里只需要求,a b 的对应值为,αβ,而不计较,αβ的大小) . 二是要注意代入新变量,直接求定积分的值,而无需变量还原. (此与不定积分是不一样的. 这是因为不定积分求的是被积函数的原函数,其变量应一致,而定积分的结果是一个数值,只需求出即可) .注 定理3换元积分条件,f 可减弱为f 可积,ϕ可减弱为()t ϕ'在[],αβ上可积,且除有限个点外()0t ϕ'>(或()0t ϕ'<) . (保证[][]:,,a b ϕαβ→是11-的.) 例 6 设f 为[],a a -(对称区间) 上的连续奇(偶) 函数,则()0aaf x dx -=⎰(0()2()a aaf x dx f x dx -=⎰⎰) .如求22223(sin3cos 5arctan 1)x x x x x e x dx ππ--⋅+⋅--⎰.例 7 设f 为(,)-∞+∞上以T 为周期的可积函数,证明:对任何实数a R ∈,有()()a TTaf x dx f x dx +=⎰⎰.例 8 设f 为连续函数,则1) 22(sin )(cos )f x dx f x dx ππ=⎰⎰;2)(sin )(sin )2xf x dx f x dx πππ=⎰⎰.由此计算2sin sin cos xdx x x π+⎰和20sin 1cos x x dx xπ⋅+⎰.例 9 设f 在[],a b 上连续,求证:()()bbaaf x dx f a b x dx =+-⎰⎰.由此计算362cos (2)xdx x x πππ-⎰.三、分部积分定理 4 若(),()u x v x 为[],a b 上的连续可导函数,则有定积分分部积分公式()()()()()()bbb a aau x v x dx u x v x u x v x dx ''⋅=⋅-⋅⎰⎰或()()()()()()bb b a aau x dv x u x v x v x du x =⋅-⎰⎰例 10 1) 10x xe dx ⎰ 2)21ln ex xdx ⎰3) 1ln eexdx ⎰4) 1arcsin xdx ⎰5) 2sin x x e dx π⋅⎰6)4⎰例 11 求20sin nxdx π⎰和2cos n xdx π⎰.注 由前两式可推出著名的Wallis 公式:2(2)!!1lim 2(21)!!21m m m m π→∞⎡⎤=⋅⎢⎥-+⎣⎦.四、Taylor 公式的积分型余项 推广的分部积分公式设(),()u t v t 在[,]a b 上有1n +阶连续导函数,则(1)()(1)()()()()()()()(1)()()bn n n n n baau t v t dt u t v t u t v t u t v t +-'⎡⎤⋅=⋅-⋅+⋅⋅⋅+-⋅⎣⎦⎰1(1)(1)()()bn n au t v t dt +++-⋅⎰.设f 在0x 处的某邻域0()U x 有1n +阶连续导函数,0()x U x ∈,则有(1)()1(1)()()()()()()!()0()xxn n n n n n xx x x x t ft dt x t f t n x t f t n f t f t dt +--⎡⎤-=-+-+⋅⋅⋅++⋅⎣⎦⎰⎰()00000()!()![()()()()]!n n f x n f x n f x f x x x x x n '=-+-+⋅⋅⋅+-!()n n R x =(1)1()()()!x n n n x R x f t x t dt n +⇒=-⎰ ——积分型余项注 1) 由推广的第一积分中值定理((1)()n f t +连续,()n x t -在[]0,x x 或[]0,x x 上保持同号) ,则(1)1()()()!x n n n x R x f x t dt n ξ+=-⎰(1)101()()(1)!n n f x x n ξ++=-+ ——Lagrange 型余项2) 直接由积分第一中值定理,有(1)01()()()()!n n n R x f x x x n ξξ+=-- (1)10001(())(1)()!n n n f x x x x x n θθ++=+--- 00x =时,(1)11()()(1)!n n n n R x f x x n θθ++=-, 01θ≤≤——Cauchy 型余项五、积分第二中值定理 定理 5 设f 在[],a b 上可积,1) 若g 在[],a b 上减,且()0g x ≥,则存在[],a b ξ∈,使()()()()baaf xg x dx g a f x dx ξ=⎰⎰.2) 若g 在[],a b 上增,且()0g x ≥,则存在[],a b η∈,使()()()()bbaf xg x dx g b f x dx η=⎰⎰.推论. 设f 在[],a b 上可积,g 为单调函数,则存在[],a b ξ∈,使得()()()()()()bbaaf xg x dx g a f x dx g b f x dx ξξ=+⎰⎰⎰.例 12 设()f x 为[]0,2π上的单调递减函数,证明:对任何正整数n ,恒有20()sin 0f x nxdx π≥⎰.定理 6 设函数f 在闭区间[],a b 上连续,函数g 在[],a b 上可导,且导函数()g x '在[],a b 上非负且连续,则存在[],c a b ∈,使得()()()()()()bc baacf xg x dx g a f x dx g b f x dx =+⎰⎰⎰.例 13 证明:当0x >时,有不等式21sin x cxt dt x+≤⎰(0)c >.例 14 设()y f x =为[],a b 上严格增的连续曲线,试证:存在(),a b ξ∈使图中阴影部分面积相同.习 题1. 求)0(F '及)4(πF '. 其中⎰-=202sin )(x t tdt e x F2. 求下列极限(1) ⎰→xx dt t x 020cos 1lim (2) dxe dt e x txt x ⎰⎰∞→020222)(lim3. 求下列积分(1) ⎰⋅2042sin cos πxdx x (2)dx x ⎰-224(3) dx xx⎰+202sin 1cos π (4) dx xx ⎰+411(5) dx x x ⎰-1122)2( (6)dx x a x a2202-⎰(7)dx xx ⎰++311 (8)xdx x 3sin][3π⎰4. 求下列积分 (1) dx xe x⎰-2ln 0(2) ⎰210arccos xdx(3) ⎰-adx x a 022 (4) dx x x⎰-1221(5)⎰-2ln 01dx e x(6)dx ax x aa⎰-+222(7)dx xb x a xx ⎰+⋅202222sin cos cos sin π(8)dx x x ee⎰1ln(9)⎰+20cos sin cos πdx xx x(10)⎰+-adx xa xa 0arctan(11)dx e x x ⎰-⋅202sin π(12)dx xa xa x a⎰+-025. 求下列极限 (1) ∑=+∞→nk n nk 123lim (2) 2213lim k n nk nk n -∑=∞→6. 证明 (1)⎰⎰-=-11)1()1(dx x x dx x x m n n m(2) 若f 在R 上连续, 且⎰=x adt t f x f )()(, 则.0)(≡x f (3) 0sin sin ,m n mx nxdx m n N m nπππ-≠⎧=∈⎨=⎩⎰,(4)⎰-=ππ0cos sin nx mx(5) 设f 在],0[π上连续,且⎰⎰⎰===πππ0cos )(sin )()(xdx x f xdx x f dx x f求证f 在),0(π内至少两个零点.定积分1、定积分的定义1()lim ()nbi i aT i f x dx f x ξ→==∆∑⎰0,0,,,,di i T T εδδξ⇔∀>∃>∀<∀∈∆1()ni i i f x J ξε=∆-<∑. (())baJ f x dx =⎰2、可积函数(充要) 条件1) f 在[],a b 上可积⇒f 在[],a b 上有界⇒f 在(),a b 内至少有一个连续点2) f 在[],a b 上可积⇔()()b ba a f x dx f x dx --=⎰⎰⇔0,,()()T S T s T εε∀>∃-< ⇔10,,ni i i T w x εε=∀>∃∆<∑3) f 在[],a b 上连续⇒f 在[],a b 上可积f 在[],a b 上单调⇒f 在[],a b 上可积f 在[],a b 上仅有限个间断点(或间断点仅有限个聚点) ,则f 在[],a b 上可积. f 在[],a b 上可积,g 与f 仅有限个点处不相等,则g 在[],a b 上可积,且()()bbaag x dx f x dx =⎰⎰4) 可积函数复合未必可积.3、定积分性质1) 线性性质 2) 子区间可积性 3) 乘积可积 4) 区间可加性 5) 单调性 6) 绝对可积性4、微积分基本定理与Newton-Leibniz 公式定理. 若f 在[],a b 上连续,则()()xa x f t dt Φ=⎰在[],ab 上处处可导,且()()()xa d x f t dt f x dx'Φ==⎰. 由此可得()()()baf x dx F b F a =-⎰.注. 若f '可积,则()()()b af x dx f b f a '=-⎰.定理. 若f 在[],a b 上可积,则()()xax f t dt Φ=⎰在[],a b 上连续.结论 (变限积分的导数)()()(())(())()(())()h x g x f t dt f h x h x f g x g x '''=⋅-⋅⎰5、定积分的积分方法 1) 换元设()y f x =在[],a b 上可积,()x t ϕ=满足ϕ'在[],αβ上可积,且在[],αβ上至多除有限个点使()0t ϕ'=,其余点()0t ϕ'>,(),()a b ϕαϕβ==,则()(())()baf x dx f t t dt βαϕϕ'=⋅⎰⎰[ 注意:积分上下限只需对应,而不管大小. ] 2) 分部积分 (注意具体被积函数的形式) 设,u v ''为[],a b 上可积函数, 则 bbb a aaudv uv vdu =-⎰⎰.6、Taylor 公式与积分中值定理. 1) 可积函数未必有原函数.1, 01;() 1 , 1 2.x f x x -≤≤⎧=⎨<<⎩ 2) 有原函数的函数也未必可积.22211cos 2sin , 0;()0, 0.x x f x x x xx ⎧-+≠⎪=⎨⎪=⎩在[1,1]-上有原函数220, 0;()1sin , 0.x x F x x x =⎧⎪=⎨⋅≠⎪⎩ 但f 在[0,1]上不可积.3) 可积不连续的函数也可能有原函数.习 题 课一、定积分的计算 例 1 1)20πθ⎰2) 1t x t dt -⎰, (1,0,01)x x x ><≤≤3)arctana⎰4) 10(1)xdx x α+⎰5)10ln(1dx ⎰6)0⎰7)121⎰8)2-⎰9) 21,0() , 0x x x f x e x -⎧+<⎪=⎨>⎪⎩ , 求31(2)f x dx -⎰.10) 1(2)2f =,(2)0f '=,20()1f x dx =⎰. 求120(2)x f x dx ''⎰.二、利用定积分定义求和式极限11111()lim ()lim ()nn i i T n i i f x dx f x f n n ξ→→∞===∆=∑∑⎰1()lim ()n ban i b a b af x dx f a i n n→∞=--=+∑⎰例 2 1) 221lim nn i i n i→∞=+∑2) 11lim[(1)]n n n k k n -→∞=+∏3) 12lim 1knnn k n k→∞=+∑4) 444333124lim (12)5n n n n →∞++⋅⋅⋅+=++⋅⋅⋅+三、变限积分的导数例 3 1)2sin b a d x dx dx⎰ 2) 2sin x a d tdt dx ⎰3) 10(arctan )t x e tdt '⋅⎰4)23ln t t d dxdt x⎰ 例 4 1) 设0x ≥时,()f x 连续,且230()x f t dt x =⎰,求()f x .2) 设f 连续,31()x f t dt x c -=+⎰,求c 与(7)f .例 5 1) 设f 在[],a b 上连续,0()()()xF x f t x t dt =-⎰,[],x a b ∈.求证:()()F x f x ''=.2) 设f 在[)0,+∞上连续,且()0f x >,00()()()xx tf t dt x f t dtϕ=⎰⎰.试证:ϕ在()0,+∞上严格增.3) f 为连续可导函数. 试求:()()xa d x t f t dt dx'-⎰.四、求含变限积分未定型极限 例 6 1) 20cos limsin xx x x t dttdt→⎰⎰2) 222020()limxt x x t e dt e dt→∞⎰⎰例 7 1) 设f 在[],a b 上连续,求证:(),x a b ∈时,1lim ()()()()xa h f t h f t dt f x f a n+→+-=-⎰.2) ()f x 在R 上连续,且以T 为周期,求证:0011lim ()()x Tx f t dt f t dt x T→∞=⎰⎰.3)1lim bb -→⎰,(01)b << 存在.4) 设f 在[]0,A (0)A ∀>上可积,lim ()x f x a →+∞=,则01lim()xx f t dt a x →+∞=⎰.五、定积分的极限例 8 1) 求证: 1) 10lim 1nnx dx x +⎰ 2) 120lim (1)n n x dx →∞-⎰3) 2lim sin n n xdx π→∞⎰2) 设f 在[]0,2π上单调,求证:20lim ()sin 0f x xdx πλλ→∞⋅=⎰.六、某些积分不等式1、利用积分关于被积函数的单调性证明不等式.例 9 证明不等式 11201413n x dx n x x n-≤≤-+⎰,n ∈.例 10 证明:1) 211<⋅⋅⋅+< 2) 11ln(1)11ln 2n n n+<++⋅⋅⋅+<+[由此证明11lim(1ln )2n n n ++⋅⋅⋅+-存在,一般称此极限为Euler 常数,记为C ]2、某些不等式的积分形式设函数,f g 在[],a b 上可积,对[],a b 上n 等分, 取[]1,i i i x x ξ-∈,若对任何n ,1i n ≤≤,有11()()nn i i i i b a b af g n n ξξ==--⋅≤⋅∑∑,则有()()b b a a f x dx g x dx ≤⎰⎰. 例 11 1) 证明Schwarz 不等式.设,f g 在[],a b 上可积, 则222()()()()b b ba a a f x g x dx f x dx g x dx ⎡⎤≤⋅⎢⎥⎣⎦⎰⎰⎰.而当,f g 连续时, 等号成立⇔c ∃,g cf =.2) 设f 在[],a b 上连续,且0f >,则21()()()bba af x dx dx b a f x ⋅≥-⎰⎰.3) 设f 在[]0,1上可积,证明:21120()()f x dx f x dx ≤⎰⎰.4) 设,f g 在[],a b 上可积,则有Minkowski 不等式()111222222()()()()b b b a a a f x g x dx f x dx g x dx ⎡⎤⎡⎤⎡⎤+≤+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰.例 12 若ϕ在[]0,a 上连续,f 二阶可导,且()0f x ''≥, 则有Jesen 不等式0011(())(())a af t dt f t dt a a ϕϕ≥⎰⎰.3、其它不等式例13 1) 设f 在[]0,1上连续可导,证明:10()()()f x f t f t dt '≤+⎰,[]0,1x ∈.2) 设0a >,f 在[]0,a 上连续可导,则01(0)()()aa f f x dx f x dx a '≤+⎰⎰.3) 设f 在[]0,1上连续可导, 且(0)0,(1)1f f ==, 求证:110()()f x f x dx e -'-≥⎰.4) 设f 二阶可导, 求证:3()()()()224baa b Mf x dx b a f b a +--≤-⎰. 其中[],sup ()x a b M f x ∈''=.。
导数及其应用定积分的概念

函数的平均值
• 函数在区间内的平均值:定积分可以用来计算函数在给定区间内的平 均值。具体计算方法是先将区间进行分割,然后将每个小区间的长度 近似为相等,再根据每个小区间的端点处的函数值和小区间的长度计 算出该小区间的平均值,最后将所有小区间的平均值相加得到整个区 间的平均值。
05
定积分的计算方法
导数的几何意义
函数在某一点的导数可以理解为函数曲线在该点的切线斜率。
导数的物理意义
函数在某一点的导数可以理解为函数值在该点的变化率。
导数的性质
导数的可加性
两个函数的和的导数等于两个函数的导数的 和。
导数的可乘性
两个函数的积的导数等于两个函数的导数的积。
导数的可导性
任何常数的导数为0。
导数在实际问题中的应用
通过换元将复杂的定积分转化为 易于计算的定积分,从而得到结 果。
通过分部积分公式将两个函数相 乘的定积分转化为两个函数的导 数的定积分,从而得到结果。
通过三角换元将定积分中的被积 函数转化为三角函数,从而得到 结果。
THANKS
谢谢您的观看
速度和加速度
01
导数可以用来描述物体的运动速度和加速度。物体的速度是位
移对时间的导数,物体的加速度是速度对时间的导数。
经济学Leabharlann 02在经济学中,导数可以用来分析成本、收益、利润等经济变量
的变化率。
工程学
03
在工程学中,导数可以用来分析各种物理量如温度、压力、流
量等的变化率。
导数的几何意义
切线斜率
函数在某一点的导数是函数曲线在该点的切线斜率。
函数单调性
函数的导数大于0,则函数在该区间单调递增;函数的导数小于0,则函数在该区间单调递减。
导数与定积分知识汇总

导数与定积分知识汇总导数和定积分是微积分的重要概念之一、导数描述了函数在其中一点上的变化率,而定积分则计算了函数在给定区间上的累积量。
本文将对导数和定积分的基本定义、性质和应用进行详细介绍。
一、导数的定义和性质1. 导数的定义:对于函数f(x),在其中一点a处的导数定义为:f'(a) = lim(x→a) (f(x)-f(a))/(x-a)。
导数表示了函数y=f(x)在x=a处的切线斜率。
2.导数的几何意义:导数表示了函数图像在其中一点上的切线斜率。
如果导数大于零,则函数在该点上递增;如果导数小于零,则函数在该点上递减;如果导数等于零,则函数在该点上取极值;如果导数不存在,则函数在该点上存在间断。
3.导数的计算方法:可以使用基本导数公式来计算导数,例如常数函数、幂函数、指数函数、对数函数等。
此外,还可以使用导数的四则运算法则,包括求和、差、积和商的导数。
4.高阶导数:函数的导数可以继续求导,得到高阶导数。
第n阶导数表示了函数的n次变化率,可以用f^(n)(x)表示。
例如,如果函数的二阶导数大于零,那么函数在该点上呈现凸的曲线形状。
二、定积分的定义和性质1. 定积分的定义:对于函数f(x),在区间[a,b]上的定积分定义为:∫[a,b] f(x) dx = lim(n→∞) Σ[f(x_k) Δx_k],其中Σ表示求和,Δx_k是区间[a,b]上一个子区间的长度,x_k是该子区间内任意一点。
2.定积分的几何意义:定积分表示了函数f(x)在区间[a,b]上的曲线下面积。
如果函数在该区间上为正值,则积分值为正;如果函数在该区间上为负值,则积分值为负;如果函数在该区间上变号,则通过积分可以得到曲线上和曲线下的面积差。
3.定积分的计算方法:可以使用定积分的基本公式来计算定积分,如幂函数的定积分、三角函数的定积分等。
此外,还可以利用换元积分法、分部积分法等方法来计算更复杂的定积分。
4. 积分的性质:积分具有线性性质,即∫[a,b] (f(x) + g(x)) dx = ∫[a,b] f(x) dx + ∫[a,b] g(x) dx;积分也具有保号性质,即如果在[a,b]上f(x) ≤ g(x),那么∫[a,b] f(x) dx ≤ ∫[a,b] g(x) dx。
第一节-导数的概念及运算定积分ppt课件

3.在桥梁设计中,桥墩一般设计成圆柱形,因为其各向受力均衡,而且在相
同截面下,浇筑用模最省.假设一桥梁施工队在浇筑桥墩时,采用由内向
外扩张式浇筑,即保持圆柱高度不变,截面半径逐渐增大,设圆柱半径关
于时间变化的函数为 R(t).若圆柱的体积以均匀速度 c 增长,则圆柱的侧面
积的增长速度与圆柱半径
()
A.成正比,比例系数为 c
四、“基本活动经验”不可少 为了响应国家节能减排的号召,甲、乙两个工厂进行了污 水排放治理,已知某月内两厂污水的排放量 W 与时间 t 的关系如图所示. (1)该月内哪个厂的污水排放量减少得更多? (2)在接近 t0 时,哪个厂的污水排放量减少得更快? 答案:(1)乙 (2)甲
在日常生 活中, 随处都 可以看 到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
为函数y=f(x)在x=x0处的导数
记法
记作f′(x0)或y′|x=x0,即f′(x0)=li m Δx→0
ΔΔxy=
li m fx0+Δx-fx0
Δx→0
Δx
几何 是曲线y=f(x)在点 (x0,f(x0)) 处的 切线的斜率 ,相应的切线方程为 意义 y-f(x0)=f′(x0)(x-x0)
在日常生 活中, 随处都 可以看 到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
高考数学考点突破——导数及其应用与定积分:定积分与微积分基本定理 含解析

高考数学考点突破——导数及其应用与定积分:定积分与微积分基本定理 含解析【考点梳理】1.定积分的概念与几何意义(1)定积分的定义如果函数f(x)在区间[a ,b]上连续,用分点将区间[a ,b]等分成n 个小区间,在每个小区间上任取一点ξi(i =1,2,…,n),作和式f(ξi)Δx =f(ξi),当n→∞时,上述和式无限接近于某个常数,这个常数叫做函数f(x)在区间[a ,b]上的定积分,记作f(x)dx ,即f(x)dx =f(ξi).1n i =∑1n i =∑lim n →∞1n i =∑在f(x)dx 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积式.(2)定积分的几何意义(1)kf(x)dx=kf(x)dx(k为常数).(2)[f1(x)±f2(x)]dx=f1(x)dx±f2(x)dx.(3)f(x)dx=f(x)dx+f(x)dx(其中a<c<b).3.微积分基本定理一般地,如果f(x)是在区间[a,b]上的连续函数,且F′(x)=f(x),那么f(x)dx=F(b)-F(a).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.可以把F(b)-F(a)记为F(x) ,即f(x)dx=F(x))=F(b)-F(a).【考点突破】考点一、定积分的计算【例1】(1)(cos x+1)dx=________.(2)|x2-2x|dx=________.(3)(2x+)dx=________.[答案] (1) π(2) 8 (3) 1+π4[解析] (1)(cos x+1)dx=(sin x+x)=π.(2)|x2-2x|dx=(x2-2x)dx+(2x-x2)dx=+=+4+4-=8.(3)dx表示以原点为圆心,以1为半径的圆的面积的,∴dx=.又∵ 2xdx=x2=1,∴(2x+)dx=2xdx+dx=1+.。
高考数学复习讲义:导数的概念及运算、定积分

返回
[基本能力]
一、判断题(对的打“√”,错的打“×”) (1)曲线的切线与曲线不一定只有一个公共点. ( ) (2)求曲线过点 P 的切线时 P 点一定是切点. ( ) 答案:(1)√ (2)×
返回
看成常数,再求导 复合函数 确定复合关系,由外向内逐层求导
返回
[针对训练]
1.设 f(x)=x(2 019+ln x),若 f′(x0)=2 020,则 x0 等于( )
A.e2
B.1
C.ln 2
D.e
解析:f′(x)=2 019+ln x+1=2 020+ln x,由 f′(x0)= 2 020,得 2 020+ln x0=2 020,则 ln x0=0,解得 x0=1. 答案:B
返回
2.曲线 y=log2x 在点(1,0)处的切线与坐标轴所围成三角形的 面积等于________. 解析:∵y′=xln1 2,∴切线的斜率 k=ln12,∴切线方程为 y=ln12(x-1),∴所求三角形的面积 S=12×1×ln12=2ln1 2= 1 2log2e. 答案:12log2e
二、填空题 1.已知函数 f(x)=axln x+b(a,b∈R),若 f(x)的图象在 x=1
处的切线方程为 2x-y=0,则 a+b=________. 解析:由题意,得 f′(x)=aln x+a,所以 f′(1)=a,因为函 数 f(x)的图象在 x=1 处的切线方程为 2x-y=0,所以 a=2, 又 f(1)=b,则 2×1-b=0,所以 b=2,故 a+b=4. 答案:4
答案:-xsin x 2.已知 f(x)=13-8x+2x2,f′(x0)=4,则 x0=________.
高二第三讲导数的实际应用定积分的概念及应用

第三讲 导数的实际应用定积分的概念及应用一、知识梳理1、若函数f (x )在区间A 上有唯一一个极值点0x ,且0()f x 是这个函数的极大(小)值,那么这个极值必定就是函数f (x )在区间A 上的最大(小)值。
2、定积分的几何意义:当f (x )>0时()b af x dx ⎰表示由直线__________,__________,__________ 和曲线y =f (x )所围成的曲边梯形的面积。
3、微积分基本定理(牛顿—莱布尼兹公式):如果()f x 是区间[a ,b ]上的连续函数,并且F ()()x f x '=,那么()F()F()baf x dx b a =-⎰。
常常把F()F()b a -记作F()|b a x 。
二、典例导析例1、用长为18m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2∶1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?变式训练1、(1)要做一个圆锥形的漏斗,其母线长为20cm ,要使其体积为最大,则高为( )A .33cm B .3310cm C .3316cm D .3320(2)从一块边长为a 的正方形铁皮的各角截去相等的方块,把各边折起来做成一个无盖的箱子,箱子的高是这个正方形的边长几分之几时,箱子容积最大?例2、计算下列定积分:(1)2111e x dx x x ⎛⎫++ ⎪⎝⎭⎰;(2)0(2sin 32)x x e dx π-+⎰;变式训练2、计算下列定积分:(1)⎰--+322616dx x x(2)2201x dx -⎰例3、求由曲线22y x =+与3y x =,0x =,2x =所围成的平面图形的面积(画出图形)。
变式训练3、由直线12x =,x =2,曲线1y x =及x 轴所围图形的面积是( ) A .154 B .174 C .1ln 22D .2ln2例4、在曲线y =x 2(x ≥0)上某一点A 处作一切线使之与曲线以及x 轴所围的面积为121。
高二数学-定积分概念-课件

0
( x f (t)dt)2
0
( x f (t)dt)2
0
0
依题意,在[0, x](x 0)上, f (t) 0, (x t) f (t) 0,
且(x t) f (t) 0,故
x
f (t)dt 0,
x
(x t) f (t)dt 0,
0
0
F(x) 0(x 0),从而F(x)在(0,)内单调增加。
(2) lim 4 sin n xdx 0. n 0
解: (利用积分中值定理)
(1)
1 2
xn
dx
n
(1 0)
(0 1)
0 1 x 1 2
2
原式 lim n 0.
n 2(1 )
(2)
4
sin
n
xdx
sin
n
(
0)
0
4
原式 lim sin n 0.
n 4
(0 )
n
n
(iii)求和: A Ai f (i )xi
i1
i1
o a xi1i xi
bx
(iv)取极限:令 max{ x1,xn},则曲边梯形面积
n
A lim 0 i1
f (i )xi
1.定积分定义 设函数f(x)在[a,b]上有界,
(i)分割: 在[a,b]内插入若干个分点a x0 xn1 xn b,
x
0
(1) (1) 2
例4 设f (x)在[0,)内连续,且f (x) 0.证明
x
tf (t)dt
F(x)
0 x
在(0,)内卫单调增加函数。
0 f (t)dt
证
x
x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分 定积分的概念
问题一 曲边梯形的面积
如图,阴影部分类似于一个梯形,但有一边是曲线()y f x =的一段, 我们把由直线,(),0x a x b a b y ==≠=和曲线()y f x =所围成的图形 称为曲边梯形.如何计算这个曲边梯形的面积?
例如:求由抛物线2
y x =,直线1=x 以及x 轴所围成的平面图形的面积S 。
★求曲边梯形面积的四个步骤:第一步:分割.第二步:近似代替。
第三步:求和.第四步:取极限。
(说明:最后所得曲边形的面积不是近似值,而是真实值) 问题二 汽车行驶的路程
汽车以速度v 组匀速直线运动时,经过时间t 所行驶的路程为S vt =.如果汽车作变速直线运动,在时刻t 的速度为()2
2v t t =-+(单位:km/h ),那么它在0≤t ≤1(单位:h)这段时间内行驶的路程S (单位:km )
是多少?
问题三 定积分的概念 : 一般地,设函数()f x 在区间[,]a b 上连续,用分点
0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,在每个小区间
[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:()()i n
i n i i f n
a
b x f ξξ∑
∑==-=∆•1
1
当n →+∞)时,上述和式无限接近某个常数,这个常数叫做函数()f x 在区间[,]a b 上的定积分。
记为:
()b
a
f x dx ⎰
即
()b
a
f x dx ⎰
=()i n
i n f n
a
b ξ∑
=∞
→-1
lim 其中函数()f x 叫做 ,x 叫做 变量,区间[,]a b 为 区间,b 积分 ,a 积分 。
说明:(1)定积分
()b
a
f x dx ⎰
是一个常数
(2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和:
1()n
i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a
f x dx f n ξ→∞=-=∑⎰ (3)曲边图形面积:()b
a
S f x dx =
⎰
;变速运动路程2
1
()t t S v t dt =⎰
☆定积分的几何意义
从几何上看,如果在区间[a,b]上的函数()f x 连续且恒有()0f x ≥。
那么定积分
()b
a
f x dx ⎰
表示由直
线,x a x b ==(a b ≠),0y =和曲线()y f x =所围成的曲边梯形的面积。
☆定积分的性质
根据定积分的定义,不难得出定积分的如下性质: 性质1 a b dx b
a
-=⎰1
性质2 ⎰⎰=b
a
b
a dx x f k dx x kf )()( (其中k 是不为0的常数) (定积分的线性性质)
性质3
1212[()()]()()b
b b
a
a
a
f x f x dx f x dx f x dx ±=±⎰
⎰⎰ (定积分的线性性质)
性质4
()()()()b c b
a
a
c
f x dx f x dx f x dx
a c
b =+<<⎰⎰⎰其中 (定积分对积分区间的可加性)
说明:①推广:1212[()()()]()()()b
b
b
b
m m a
a
a
a
f x f x f x dx f x dx f x dx f x ±±±=±±±⎰
⎰⎰⎰L L
②推广:
12
1
()()()()k
b
c c b
a
a
c c f x dx f x dx f x dx f x dx =+++⎰
⎰⎰⎰L
微积分基本定理(牛顿—莱布尼兹公式):⎰
-==b
a
b a a F b F x F dx x f )()(|)()(
三.典例分析
例1.利用定积分定义,证明
a b dx b
a
-=⎰
1,其中a,b 均为常数且a<b.
例2 用定积分表示阴影部分的面积(不要求计算) 例3.(1)计算定积分2
1
(1)x dx +⎰
(2)2
2
(1)x dx -+⎰
四.练习
1、由y=sinx, x=0,x=2
π
,y=0所围成图形的面积写成定积分的形式是 2、计算下列定积分 (1)
⎰
2
3
dx x (2)dx x ⎰
--2
2
2
4 (3)⎰⎰-+-2
1
10
)1()1(dx x dx x
3.将和式的极限)0(.......321lim 1>+++++∞→p n
n P p
p p p n 表示成定积分 ( )
A .dx x ⎰1
01 B .dx x p ⎰10 C .dx x p ⎰10)1( D .dx n
x p
⎰10)(
4.将和式)21
.........2111(lim n
n n n +++++∞→表示为定积分 .
5.曲线]2
3
,0[,cos π∈=x x y 与坐标周围成的面积____________
6.
dx e e
x x
⎰-+1
)(=______________
7.若1
x m e dx =
⎰
,1
1
e
n dx x
=⎰
,则m 与n 的大小关系是_________ 8. 按万有引力定律,两质点间的吸引力2
2
1r
m m k
F =,k 为常数,21,m m 为两质点的质量,r 为两点间距离,若两质点起始距离为a ,质点1m 沿直线移动至离2m 的距离为b 处,试求所作之功(b >a ) .
9.由曲线2
1y x =-和x 轴围成图形的面积等于S .给出下列结果,其中正确的是____________ ①
1
21
(1)x dx --⎰
;②121
(1)x dx --⎰;③120
2(1)x dx -⎰;④0
21
2(1)x dx --⎰.
10.0
(sin cos sin )x
y t t t dt =
+⎰
,则y 的最大值是__________
11. 若()f x 是一次函数,且
1
()5f x dx =⎰
,1
17
()6xf x dx =
⎰,那么21()f x dx x
⎰的值是 .
12.计算 ⎰202
sin π
dx x dx d
dx x x ⎰-π03sin sin dx x x ⎰-π03cos cos ⎰-20|cos sin |π
dx x x
13
综合题:1
1
2
52
2
2
(1)(2)ln(1)(3)(cos )2
x dx x dx
x x x dx x x -+---⎰
⎰⎰
2
22230
22
2
(4)(5)(6)tan [sin 2ln((32)
e dx x x x dx x x π
π-+++-⎰
⎰
2
(7)⎰。