边缘分布与条件分布
条件分布和边缘分布的关系

条件分布和边缘分布的关系条件分布和边缘分布是概率论和数理统计学中两个重要的概念,它们之间有一定的联系和关系。
下面我会具体介绍条件分布和边缘分布的概念,并且解释它们之间的关系。
首先,我们来介绍条件分布的概念。
在概率论中,条件分布是指在已知某些条件下,随机变量的分布情况。
换句话说,条件分布是指在已知某个条件时,所关心的随机变量的分布情况。
条件分布通常用P(Y|X)来表示,其中X是所关心的条件变量,Y是需要得到其分布的随机变量。
P(Y|X)表示在已知X的条件下,Y的分布情况。
举个例子来说明条件分布的概念。
假设我们研究一个班级的学生,X表示学生的年龄,Y表示学生的身高。
如果我们对条件分布P(Y|X)感兴趣,那么我们可以根据学生的年龄来推测学生的身高分布。
例如,当X为10岁时,Y的分布可能是一个正态分布,而当X为20岁时,Y的分布可能是另一个不同的正态分布。
接下来,我们来介绍边缘分布的概念。
在概率论中,边缘分布是指随机变量的分布情况,而不考虑其他变量的情况。
换句话说,边缘分布是指所关心的随机变量的分布情况,而不考虑其他随机变量的影响。
边缘分布通常用P(X)或P(Y)来表示,表示随机变量X或Y的分布情况。
继续以上面的例子来说明边缘分布的概念。
假设我们对边缘分布P(Y)感兴趣,表示学生的身高分布情况,而不考虑学生的年龄。
我们可以直接统计班级中学生的身高分布,而不需要考虑他们年龄的影响。
在条件分布和边缘分布之间存在一定的关系。
具体来说,边缘分布可以通过条件分布来计算得到。
这是因为边缘分布是在不考虑其他变量的情况下计算得到的,而条件分布是在已知某个条件下计算得到的。
通过概率论中的乘法规则,我们可以得到边缘分布的公式:P(X) = ∑ P(X, Y)。
这个公式表示随机变量X的边缘分布可以通过将随机变量X和Y的联合分布P(X, Y)在所有可能的取值情况下求和得到。
我们可以通过条件分布来计算边缘分布。
假设我们已知条件分布P(Y|X),我们可以通过边缘分布的公式,将Y积分掉,得到边缘分布P(X)。
条件分布

对于任一给定的值
x
(0<x<1), 在X=x
的条件下, Y 的条件概率密度为 :
1 , f Y |X ( y | x) 1 x 0,
x y 1, 0thers.
f ( x, y ) 由 f Y |X ( y | x) 得X 和 Y 的 联 合概率密度 f X ( x)
P{ X x i , Y y j } P { X xi } pi j pi . , j 1, 2,...
为在X = x i 条件下,随机变量Y的条件分布律.
简言之:条件分布等于联合分布与边缘 分布之商
例1 在一汽车工厂中, 一辆汽车有两道 工序是由机器人完成的. 其一是紧固 3 只螺栓,其二是焊接2处焊点. 以X表示由 机器人紧固的螺栓紧固得不良的数目 , 以Y表示由机器人焊接 的不良焊点的数 目 ,据积累的资料知 ( X , Y ) 具有分布 律:
x
f ( x, y) dx . f Y ( y)
在 X= x 的条件下 Y的条件概率密度为 f ( x, y) f Y|X( y | x ) f X ( x) 在 X = x 的条件下 Y 的条件分布函数为 F Y|X( y | x) P{ Y y | X x }
y
定义 设二维随机变量(X,Y)的概率密度 为 f (x,y),(X,Y)关于 Y 的边缘概率密度 为 f Y ( y ). 若对于固定的 y, f Y ( y ) 0, 则 f ( x, y) 称 为在 Y=y 的条件下X 的条件概 f Y( y ) 率密度, 记为: f ( x, y) . f X|Y ( x | y ) f Y ( y)
概率论第三章 多维随机变量及其分布

1 3
概率论
y
y x
o
x
概率论
四、课堂练习
设随机变量(X,Y)的概率密度是
f
x,
y
k
6
x
y,
0,
0 x 2,2 y 4, 其它.
(1) 确定常数 k;
(2) 求概率 PX 1,Y 3 .
解 (1) 1 f x, ydxdy
R2
k
2 dx
46
0
2
x
y dy
k
2 dx
46
概率论
同理, Y的分布律为:
P{Y y j} pij ˆ p•j , j 1,2,, i1
分别称pi• (i 1, 2,), 和p• j , (j 1, 2,)为(X, Y)关于 X和关于Y的边缘分布律.
概率论
例1 把一枚均匀硬币抛掷三次,设X为三次 抛掷中正面出现的次数 ,而 Y 为正面出现次数与 反面出现次数之差的绝对值 , 求 (X ,Y) 的分布律 和边缘分布律.
也就是说,对于给定的
不同的 对应
不同的二维正态分布,但它们的边缘分布却都是一样的.
此例表明 由边缘分布一般不能确定联合分布.
概率论
五、小结
1. 在这一讲中,我们与一维情形相对照,介 绍了二维随机变量的边缘分布. 2. 请注意联合分布和边缘分布的关系: 由联合分布可以确定边缘分布; 但由边缘分布一般不能确定联合分布.
随机变量维(X,Y )的概率密度 , 或 称为随机变量 X 和 Y 的联合概 率密度.
概率论
一维随机变量X
连续型
F x x
f tdt
x
X的概率密度函数
f x x R
社会统计学复习整理

社会统计学复习整理一、变量的测量层次二、判断变量层次的技巧1.首先所有的变量都是定类变量。
2.其次看变量的取值能否比拟大小,不能这个变量只能是定类变量。
3.最后如果这个变量能够比拟大小,那么就看变量取值加减乘除是否有意义,如果有意义就是定距变量,如果没有意义就只能是定序变量。
三、变量层次的比拟定类变量、定序变量和定比变量的数层次是从低到高排列的,高层次的变量同时具有低层次变量的功能。
四、相关分析方法第二节简化一个变项的分布一、定类变量1.统计表:用表格的形式来表示变量频次〔或频率〕分布的一种工具。
2.统计表必备的容:(1)表号、标题(2)标识行:变量名、对应数据说明〔频次、频率〕(3)主题行:变量取值的统计数据(4)表尾:如果是引用必须说明资料来源二、定序变量1.适合定序变量的简化资料的方法(1)累加次数:把次数逐渐相加起来,分为向上累加次数〔cf↑〕和向下累加次数(cf↓)。
(2)累加频率:把各级的百分率逐渐相加。
也分为向下累加百分率和向下累加百分率。
2.cf↑的计算方法就是按照变量取值的等级从低往高逐层相加。
3.cf↓计算方法就是按照变量取值的等级从高往低逐层相加。
➢cf↑表示低于某个等级的频数有多少➢cf↓表示高于某个等级的频数有多少三、定距变量1.定距变量的简化工具是:分组、直方图和折线图。
2.连续型定距变量的分组统计(1)组数:分组的数量,一般5到7组适宜,分为等距分组和非等距分组。
(2)组限:包括上限〔up〕和下限〔low〕(3)标识下限和标识上限,例500—699(4)真实下限:标识下限—0.5;真实上限:标识上限+0.5.(5)组距:真实上限与真实下限之差。
(6)组中值:真实上限与真实下限的平均值。
第三节集中趋势测量法1.集中趋势:用一个典型的变量值或特征值来代表全体变量的问题,用这个数值来代表变项的资料分布,以反映资料的集结情况。
2.集中趋势测量的意义就是可以根据这个代表值来估计或预测每个研究对象的数值。
北邮概率论与数理统计3.2边际分布

§3.2 边缘分布二维随机向量),(Y X 的联合分布(联合分布函数或联合分布列或联合概率密度)完整地刻画了随机变量X 和Y 作为一个整体的概率分布规律。
为应用方便,我们还需要从这个完整的信息中挖掘出某些方面的信息。
这个完整的信息中包含如下信息:(1)每个分量(或部分分量)的概率分布,即边缘分布。
(2)各分量之间的统计联系。
本章将要介绍的随机变量的独立性,及条件分布以及下一章介绍的相关系数就是用来反映和描述他们的统计联系.一.边缘分布 1.边缘分布函数设二维随机向量),(Y X 具有联合分布函数为),(y x F ,而X 和Y 都是随机变量,各自也有分布函数,将它们分别记为)(x F X 和)(y F Y ,依次称为为),(Y X 关于X 和关于X 的边缘分布函数. 由概率的性质可得),(),(lim },{}{+∞==∞<≤=≤∆+∞→x F y x F Y x X P x X P y可见由),(Y X 的联合分布函数),(y x F 可以X 的边缘分布函数: ),()(+∞=x F x F X (1) 类似地可得),(Y X 关于Y 的边缘分布函数为),()(y F y F Y +∞= (2) 例3.2.1 设二维随机向量),(Y X 的联合分布函数为⎩⎨⎧≥≥+--=λ-----其他,00,0,1),(y x e e e y x F xy y x y x这个分布称为二维指数分布,其中参数0≥λ,求边缘分布函数。
解:易得X ,Y 的边缘分布函数分别为⎩⎨⎧<≥-=+∞=-0,00,1),()(x x e x F x F x X⎩⎨⎧<≥-=+∞=-0,00,1),()(y y e y F y F y Y这两个边缘分布同为指数分布,且与参数λ无关。
这说明边缘分布确定不了联合分布。
也说明联合分布中不仅含有每个分量的信息,还含有各分量之间统计联系方面的信息。
2.边缘分布律如果),(Y X 为二维离散型随机向量,那么它的每个分量都是离散随机变量。
2.4 概率论——二维随机变量的独立性

y
FY ( y) F(, y) [ f ( x, v)dx]dv,
故X,Y 的 边缘密度函数为:
fX ( x) FX ( x)
f ( x, y)dy,
fY ( y) FY ( y)
f ( x, y)dx,
例2:设(X,Y)服从下列区域上的二维均匀分布,
试求X,Y的边缘概率密度。
y
(1)D ( x, y) | 0 x 2,0 y 1 1
2.4 二维随机变量的独立性
一、二维随机变量的边缘分布
随机向量( X ,Y )中, X ,Y的分布分别称为关于X、Y的 边缘分布。X, Y的分布函数 FX ( x), FY ( y) 称为边缘分布函数。
巳知 (X, Y) 的联合分布函数为 F(x, y), 则易知:
FX x PX x PX x,Y F x, FY y PY y PX ,Y y F , y
次击中目标所进行的射击次数,以 Y 表示总共进行 的射击次数 . 试求 X 和 Y 的联合分布及条件分布.
解 依题意,{Y=n} 表示在第n次射击时击中目 标 , 且在前n-1次射击中有一次击中目标. {X=m} 表 首次击中目标时射击了m次 .
1 2 ……m…………. n-1 n
n次射击 击中
击中
j
P{[( X xi ) (Y y j )]}
j
P{X xi ,Y y j }
j
pij pi• (i 1,2, ) j
同理,Y的边缘分布
P{Y y j } pij p• j i
( j 1,2, )
XY
x1 x2 xi
p• j
y1 y2 y j pi•
p11 p12 p1 j p1•
暂时固定
边缘分布和条件分布

即
FX ( x) F ( x, ) FY ( y ) F (, y )
2
2.边缘分布率
二维离散型随机变量(X,Y)中,X与Y各自 的分布率就称为边缘分布率.
设联合分布率为
P{ X xi , Y y j } pij , i, j 1, 2,
解: ( X , Y )的概率密度
1/ , x y ≤1 f ( x, y ) 其它 0,
2 2
y
1 y2
1
y
1 y2
O
1
fY ( y )
x
f ( x, y )dx
2 1 y 2 1 dx 1 y 2 , 1≤y≤1 1 y 2 0, 其它
16
1 于是, 当- y 1时有
f ( x, y ) f X |Y ( x | y ) fY ( y ) 1/ 1 , 1 y2 x 1 y2 (2 / ) 1 y 2 2 1 y 2 0, 其它
当 | y | 1时,X 在Y=y的条件下的条件密度不存在。
7
例: 设(X , Y ) ~ N ( 1 , 2 , 1 , 2 , ), 求X , Y的边缘密度.
2 2
解:
f X ( x)
1 f ( x, y)dy e 2 1
( x 1 )2
2 21
所以 同理
X ~ N ( 1 , 12 )
2 Y ~ N ( 2 , 2 )
FY | X ( y | x) A P{Y≤y | X x} A fY | X ( y | x)dy
概率论第三章二维随机变量

取下列数组中的值:(0,0),( :(0,0),(例2 二维离散型随机向量 ( X ,Y ) 取下列数组中的值:(0,0),(-1,1) 1,2),(2,0);且相应的概率依次为 且相应的概率依次为:1/6, (-1,2),(2,0);且相应的概率依次为:1/6, 1/3, 1/12, 5/12. 的联合概率分布 分布. 求X与Y的联合概率分布.
X Y y1
y2
⋯
yj
⋯
Hale Waihona Puke x1 p11 x 2 p21 ⋮ ⋮ xi pi1 ⋮ ⋮ 联合分布律 联合分布律的性质 (1) p ij ≥
p12 ⋯ p1 j p22 ⋯ p2 j ⋮ ⋮ pi 2 ⋯ pij ⋮ ⋮ 0 ; (2) ∑ ∑
⋯ ⋯ ⋯
p ij = 1
i ≥1 j ≥1
边缘分布 分布律 2. 边缘分布律 二维离散型随机变量的边缘分布律可列于联合分布 二维离散型随机变量的边缘分布律可列于联合分布 可列 的两侧: 表的两侧 Y y y ⋯ y ⋯
型随机变量(X,X, 的分布律,或随机变量X 型随机变量(X,X,)的分布律,或随机变量X与Y的联合 (X,X 分布律 分布律.可记为
, ( X ,Y) ~ pij = P( X = xi ,Y = y j ) (i, j =1,2,⋯ )
二维离散型随机变量的联合分布律可列表如下: 二维离散型随机变量的联合分布律可列表如下 可列表如下
p12 1/ 4 p22 1/ 2 p32 1/ 4 1/ 2 1/ 2 1
3. 求联合分布的步骤与方法 求联合分布的步骤与方法 分布 先画出二向表的表头,并确定X 的取值; (1) 先画出二向表的表头,并确定X与Y的取值; 求联合分布表的中的概率项. (2) 求联合分布表的中的概率项.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
三、二维连续型随机变量(X,Y)的边缘概率密度
二维连续型随机变量(X,Y)的边缘概率密度即X,Y f 各自的概率密度,分别记为: X ( x), fY ( y), 下面讨论二维
连续型随机变量 ( X , Y )的概率密度 f ( x, y)与f X ( x)及
fY ( y)之间的关系:
由于
FX ( x) F ( x, )
记住:
fY ( y) FY ( y) fY ( y )
f ( x, y) d x.
f X (x) f (x, y)d y,
f (x, y)d x.
例3
设随机变量 X 和 Y 具有联合概率密度
6, x 2 y x , f ( x, y) 0, 其他. 求边缘概率密度 f X ( x ), fY ( y ) .
f X ( x)
因而得
O
x
f ( x, y) d y 0d y 0.
6( x x 2 ), 0 x 1, f X ( x) 其他. 0,
下求:fY ( y)
f ( x, y) d x
y y x
(1,1)
当 0 y 1 时, fY ( y ) f ( x , y ) d x
二、二维离散型随机变量(X,Y)的边缘分布律
一般地,对二维离散型随机变量 ( X,Y ), X和Y 的联合分布律为:
P( X xi , Y y j ) pij, i, j 1,2,
(X,Y) 关于X 的边缘分布律(即X的分布律)为:
P X xi P X xi ,Y y j pij pi .
p. j P{Y y } p , j 1, 2,. j ij
i 1
j 1
Y
X
x1
x2
xi
y1 y2 yj
p11 p12 p1 j
p21 p22 p2 j
pi 1 pi 2 pij
我们常将边缘分布律写在联合分布律表格的边 缘上,由此得出边缘分布这个名词.
3
4
0 0
0
1 16 1 16 1 16 1 16
Y
X
1
2
3
1 12
4
p j P{Y y j }
25 48 13 48 7 48 3 48
1 2
1 4
1 8 1 8
0 0 0
1 4
1 12
1 12
3
4
0 0
1 4
0
1 4
1 16 1 16 1 16 1 16
1 4
pi P{ X xi }
解 f X ( x)
f ( x, y) d y
y y x
(1,1)
当 0 x 1 时,
f X ( x)
f ( x, y ) d y
x x
y x2
O
2 6d y
x
6( x x 2 ).
y y x
(1,1)
y x2
当 x 0 或 x 1时,
例1 已知下列分布律求其边缘分布律.
Y
X
0 1
0
12 49 12 49
1
12 49
6 49
解
4 12 12 P{X 0} 42 42 7 4 12 12 P{Y 0} 42 42 7
P{X
P{Y
1}
12 6 3 42 42 7
12 6 3 1} 7 42 42
Y X
0
1
12 42 6 42
012 42 12 142 pi P{ X xi } 4 7
3 7
p j P{Y y j } 4 7 3 7 1
边缘分布
注意
联合分布
例2 已知下列分布律求其边缘分布律.
Y
X
1
2
3
1 12
4
1 2
1 4
1 8 1 8
0 0 0
1 12
1 12
j 1
i 1, 2 ,
X xi X xi , Y y j j 1
j 1
(X,Y) 关于 Y 的边缘分布律(即Y的分布律)为:
P Y y j P X xi ,Y y j pij p. j
第二节
边缘分布
边缘分布函数 离散型随机变量的边缘分布律 连续型随机变量的边缘概率密度
课堂练习
二维联合分布全面地反映了二维随机变量 (X,Y)的取值及其概率规律. 而单个随机变量X,Y 也具有自己的概率分布. 那么要问:二者之间有 什么关系呢?
一、边缘分布函数
二维随机变量 (X,Y)作为一个整体, 具有分布函 数 F x , y , 而 X 和 Y 都是随机变量 , 也有各自的分 布函数, 分别记为 FX x , FY y , 依次称为二维随机 变量 (X,Y) 关于 X 和 Y的边缘分布函数. 关系式:
[
x
f (u, v) d v]d u,
故关于X的边缘概率密度 ( x) f ( x, y) d y, f X ( x)=FX
同理由
FY ( y) F (, y) [ f (u, v)d u] d v,
y
可得关于 Y 的边缘概率密度
FX x P X x P X x ,Y F x , FY y P Y y P X ,Y y F , y
记住:
FX x F x ,
FY y F , y
i 1
i 1
j 1,2,
二维离散型随机变量关于X 和Y 的边缘分布函数分 别为:
FX ( x) F ( x, ) pij ,
Hale Waihona Puke FY ( y) F (, y)
xi x j 1
y j y i 1
p .
ij
pi . P{ X xi } pij , i 1, 2,;
y x2
O
y
y
6d x
x
6( y y ).
当 y 0 或 y 1时, fY ( y )